Newer
Older
arm-trusted-firmware / plat / arm / board / fvp / fconf / fconf_hw_config_getter.c
/*
 * Copyright (c) 2020, Arm Limited. All rights reserved.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

#include <assert.h>
#include <common/debug.h>
#include <common/fdt_wrappers.h>
#include <fconf_hw_config_getter.h>
#include <libfdt.h>
#include <plat/common/platform.h>

struct gicv3_config_t gicv3_config;
struct hw_topology_t soc_topology;
struct uart_serial_config_t uart_serial_config;

#define ILLEGAL_ADDR	ULL(~0)

int fconf_populate_gicv3_config(uintptr_t config)
{
	int err;
	int node;
	uintptr_t addr;

	/* Necessary to work with libfdt APIs */
	const void *hw_config_dtb = (const void *)config;

	/*
	 * Find the offset of the node containing "arm,gic-v3" compatible property.
	 * Populating fconf strucutures dynamically is not supported for legacy
	 * systems which use GICv2 IP. Simply skip extracting GIC properties.
	 */
	node = fdt_node_offset_by_compatible(hw_config_dtb, -1, "arm,gic-v3");
	if (node < 0) {
		WARN("FCONF: Unable to locate node with arm,gic-v3 compatible property\n");
		return 0;
	}
	/* The GICv3 DT binding holds at least two address/size pairs,
	 * the first describing the distributor, the second the redistributors.
	 * See: bindings/interrupt-controller/arm,gic-v3.yaml
	 */
	err = fdt_get_reg_props_by_index(hw_config_dtb, node, 0, &addr, NULL);
	if (err < 0) {
		ERROR("FCONF: Failed to read GICD reg property of GIC node\n");
		return err;
	}
	gicv3_config.gicd_base = addr;

	err = fdt_get_reg_props_by_index(hw_config_dtb, node, 1, &addr, NULL);
	if (err < 0) {
		ERROR("FCONF: Failed to read GICR reg property of GIC node\n");
	} else {
		gicv3_config.gicr_base = addr;
	}

	return err;
}

int fconf_populate_topology(uintptr_t config)
{
	int err, node, cluster_node, core_node, thread_node;
	uint32_t cluster_count = 0, max_cpu_per_cluster = 0, total_cpu_count = 0;
	uint32_t max_pwr_lvl = 0;

	/* Necessary to work with libfdt APIs */
	const void *hw_config_dtb = (const void *)config;

	/* Find the offset of the node containing "arm,psci-1.0" compatible property */
	node = fdt_node_offset_by_compatible(hw_config_dtb, -1, "arm,psci-1.0");
	if (node < 0) {
		ERROR("FCONF: Unable to locate node with arm,psci-1.0 compatible property\n");
		return node;
	}

	err = fdt_read_uint32(hw_config_dtb, node, "max-pwr-lvl", &max_pwr_lvl);
	if (err < 0) {
		/*
		 * Some legacy FVP dts may not have this property. Assign the default
		 * value.
		 */
		WARN("FCONF: Could not locate max-pwr-lvl property\n");
		max_pwr_lvl = 2;
	}

	assert(max_pwr_lvl <= MPIDR_AFFLVL2);

	/* Find the offset of the "cpus" node */
	node = fdt_path_offset(hw_config_dtb, "/cpus");
	if (node < 0) {
		ERROR("FCONF: Node '%s' not found in hardware configuration dtb\n", "cpus");
		return node;
	}

	/* A typical cpu-map node in a device tree is shown here for reference
	cpu-map {
		cluster0 {
			core0 {
				cpu = <&CPU0>;
			};
			core1 {
				cpu = <&CPU1>;
			};
		};

		cluster1 {
			core0 {
				cpu = <&CPU2>;
			};
			core1 {
				cpu = <&CPU3>;
			};
		};
	};
	*/

	/* Locate the cpu-map child node */
	node = fdt_subnode_offset(hw_config_dtb, node, "cpu-map");
	if (node < 0) {
		ERROR("FCONF: Node '%s' not found in hardware configuration dtb\n", "cpu-map");
		return node;
	}

	uint32_t cpus_per_cluster[PLAT_ARM_CLUSTER_COUNT] = {0};

	/* Iterate through cluster nodes */
	fdt_for_each_subnode(cluster_node, hw_config_dtb, node) {
		assert(cluster_count < PLAT_ARM_CLUSTER_COUNT);

		/* Iterate through core nodes */
		fdt_for_each_subnode(core_node, hw_config_dtb, cluster_node) {
			/* core nodes may have child nodes i.e., "thread" nodes */
			if (fdt_first_subnode(hw_config_dtb, core_node) < 0) {
				cpus_per_cluster[cluster_count]++;
			} else {
				/* Multi-threaded CPU description is found in dtb */
				fdt_for_each_subnode(thread_node, hw_config_dtb, core_node) {
					cpus_per_cluster[cluster_count]++;
				}

				/* Since in some dtbs, core nodes may not have thread node,
				 * no need to error if even one child node is not found.
				 */
			}
		}

		/* Ensure every cluster node has at least 1 child node */
		if (cpus_per_cluster[cluster_count] < 1U) {
			ERROR("FCONF: Unable to locate the core node in cluster %d\n", cluster_count);
			return -1;
		}

		VERBOSE("CLUSTER ID: %d cpu-count: %d\n", cluster_count,
					cpus_per_cluster[cluster_count]);

		/* Find the maximum number of cpus in any cluster */
		max_cpu_per_cluster = MAX(max_cpu_per_cluster, cpus_per_cluster[cluster_count]);
		total_cpu_count += cpus_per_cluster[cluster_count];
		cluster_count++;
	}


	/* At least one cluster node is expected in hardware configuration dtb */
	if (cluster_count < 1U) {
		ERROR("FCONF: Unable to locate the cluster node in cpu-map node\n");
		return -1;
	}

	soc_topology.plat_max_pwr_level = max_pwr_lvl;
	soc_topology.plat_cluster_count = cluster_count;
	soc_topology.cluster_cpu_count = max_cpu_per_cluster;
	soc_topology.plat_cpu_count = total_cpu_count;

	return 0;
}

int fconf_populate_uart_config(uintptr_t config)
{
	int uart_node, node, err;
	uintptr_t addr;
	const char *path;
	uint32_t phandle;
	uint64_t translated_addr;

	/* Necessary to work with libfdt APIs */
	const void *hw_config_dtb = (const void *)config;

	/*
	 * uart child node is indirectly referenced through its path which is
	 * specified in the `serial1` property of the "aliases" node.
	 * Note that TF-A boot console is mapped to serial0 while runtime
	 * console is mapped to serial1.
	 */

	path = fdt_get_alias(hw_config_dtb, "serial1");
	if (path == NULL) {
		ERROR("FCONF: Could not read serial1 property in aliases node\n");
		return -1;
	}

	/* Find the offset of the uart serial node */
	uart_node = fdt_path_offset(hw_config_dtb, path);
	if (uart_node < 0) {
		ERROR("FCONF: Failed to locate uart serial node using its path\n");
		return -1;
	}

	/* uart serial node has its offset and size of address in reg property */
	err = fdt_get_reg_props_by_index(hw_config_dtb, uart_node, 0, &addr,
						NULL);
	if (err < 0) {
		ERROR("FCONF: Failed to read reg property of '%s' node\n",
			"uart serial");
		return err;
	}
	VERBOSE("FCONF: UART node address: %lx\n", addr);

	/*
	 * Perform address translation of local device address to CPU address
	 * domain.
	 */
	translated_addr = fdtw_translate_address(hw_config_dtb,
						 uart_node, (uint64_t)addr);
	if (translated_addr == ILLEGAL_ADDR) {
		ERROR("FCONF: failed to translate UART node base address");
		return -1;
	}

	uart_serial_config.uart_base = translated_addr;

	VERBOSE("FCONF: UART serial device base address: %llx\n",
		uart_serial_config.uart_base);

	/*
	 * The phandle of the DT node which captures the clock info of uart
	 * serial node is specified in the "clocks" property.
	 */
	err = fdt_read_uint32(hw_config_dtb, uart_node, "clocks", &phandle);
	if (err < 0) {
		ERROR("FCONF: Could not read clocks property in uart serial node\n");
		return err;
	}

	node = fdt_node_offset_by_phandle(hw_config_dtb, phandle);
	if (node < 0) {
		ERROR("FCONF: Failed to locate clk node using its path\n");
		return node;
	}

	/*
	 * Retrieve clock frequency. We assume clock provider generates a fixed
	 * clock.
	 */
	err = fdt_read_uint32(hw_config_dtb, node, "clock-frequency",
				&uart_serial_config.uart_clk);
	if (err < 0) {
		ERROR("FCONF: Could not read clock-frequency property in clk node\n");
		return err;
	}

	VERBOSE("FCONF: UART serial device clk frequency: %x\n",
		uart_serial_config.uart_clk);
	return 0;
}

FCONF_REGISTER_POPULATOR(HW_CONFIG, gicv3_config, fconf_populate_gicv3_config);
FCONF_REGISTER_POPULATOR(HW_CONFIG, topology, fconf_populate_topology);
FCONF_REGISTER_POPULATOR(HW_CONFIG, uart_config, fconf_populate_uart_config);