Newer
Older
arm-trusted-firmware / plat / qemu / sp_min / sp_min_setup.c
@Antonio Nino Diaz Antonio Nino Diaz on 28 Sep 2018 5 KB qemu: Migrate to new interfaces
/*
 * Copyright (c) 2017, ARM Limited and Contributors. All rights reserved.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

#include <arch_helpers.h>
#include <assert.h>
#include <bl_common.h>
#include <console.h>
#include <debug.h>
#include <gic_common.h>
#include <gicv2.h>
#include <mmio.h>
#include <platform.h>
#include <platform_def.h>
#include <string.h>
#include <xlat_tables.h>
#include "../qemu_private.h"

#if RESET_TO_SP_MIN
#error qemu does not support RESET_TO_SP_MIN
#endif

static entry_point_info_t bl33_image_ep_info;

/*
 * The next 3 constants identify the extents of the code, RO data region and the
 * limit of the BL3-1 image.  These addresses are used by the MMU setup code and
 * therefore they must be page-aligned.  It is the responsibility of the linker
 * script to ensure that __RO_START__, __RO_END__ & __BL31_END__ linker symbols
 * refer to page-aligned addresses.
 */
#define BL32_RO_BASE (unsigned long)(&__RO_START__)
#define BL32_RO_LIMIT (unsigned long)(&__RO_END__)
#define BL32_END (unsigned long)(&__BL32_END__)

#if USE_COHERENT_MEM
/*
 * The next 2 constants identify the extents of the coherent memory region.
 * These addresses are used by the MMU setup code and therefore they must be
 * page-aligned.  It is the responsibility of the linker script to ensure that
 * __COHERENT_RAM_START__ and __COHERENT_RAM_END__ linker symbols
 * refer to page-aligned addresses.
 */
#define BL32_COHERENT_RAM_BASE (unsigned long)(&__COHERENT_RAM_START__)
#define BL32_COHERENT_RAM_LIMIT (unsigned long)(&__COHERENT_RAM_END__)
#endif

/******************************************************************************
 * On a GICv2 system, the Group 1 secure interrupts are treated as Group 0
 * interrupts.
 *****************************************************************************/
#define PLATFORM_G1S_PROPS(grp)						\
	INTR_PROP_DESC(QEMU_IRQ_SEC_SGI_0, GIC_HIGHEST_SEC_PRIORITY,	\
					   grp, GIC_INTR_CFG_LEVEL),	\
	INTR_PROP_DESC(QEMU_IRQ_SEC_SGI_1, GIC_HIGHEST_SEC_PRIORITY,	\
					   grp, GIC_INTR_CFG_LEVEL),	\
	INTR_PROP_DESC(QEMU_IRQ_SEC_SGI_2, GIC_HIGHEST_SEC_PRIORITY,	\
					   grp, GIC_INTR_CFG_LEVEL),	\
	INTR_PROP_DESC(QEMU_IRQ_SEC_SGI_3, GIC_HIGHEST_SEC_PRIORITY,	\
					   grp, GIC_INTR_CFG_LEVEL),	\
	INTR_PROP_DESC(QEMU_IRQ_SEC_SGI_4, GIC_HIGHEST_SEC_PRIORITY,	\
					   grp, GIC_INTR_CFG_LEVEL),	\
	INTR_PROP_DESC(QEMU_IRQ_SEC_SGI_5, GIC_HIGHEST_SEC_PRIORITY,	\
					   grp, GIC_INTR_CFG_LEVEL),	\
	INTR_PROP_DESC(QEMU_IRQ_SEC_SGI_6, GIC_HIGHEST_SEC_PRIORITY,	\
					   grp, GIC_INTR_CFG_LEVEL),	\
	INTR_PROP_DESC(QEMU_IRQ_SEC_SGI_7, GIC_HIGHEST_SEC_PRIORITY,	\
					   grp, GIC_INTR_CFG_LEVEL)

#define PLATFORM_G0_PROPS(grp)

static const interrupt_prop_t stih410_interrupt_props[] = {
	PLATFORM_G1S_PROPS(GICV2_INTR_GROUP0),
	PLATFORM_G0_PROPS(GICV2_INTR_GROUP0)
};

static unsigned int target_mask_array[PLATFORM_CORE_COUNT];

static const struct gicv2_driver_data plat_gicv2_driver_data = {
	.gicd_base = GICD_BASE,
	.gicc_base = GICC_BASE,
	.interrupt_props = stih410_interrupt_props,
	.interrupt_props_num = ARRAY_SIZE(stih410_interrupt_props),
	.target_masks = target_mask_array,
	.target_masks_num = ARRAY_SIZE(target_mask_array),
};

/*******************************************************************************
 * Return a pointer to the 'entry_point_info' structure of the next image for
 * the security state specified. BL33 corresponds to the non-secure image type
 * while BL32 corresponds to the secure image type. A NULL pointer is returned
 * if the image does not exist.
 ******************************************************************************/
entry_point_info_t *sp_min_plat_get_bl33_ep_info(void)
{
	entry_point_info_t *next_image_info = &bl33_image_ep_info;

	/*
	 * None of the images on the ARM development platforms can have 0x0
	 * as the entrypoint
	 */
	if (next_image_info->pc)
		return next_image_info;
	else
		return NULL;
}

void sp_min_early_platform_setup2(u_register_t arg0, u_register_t arg1,
		u_register_t arg2, u_register_t arg3)
{
	bl_params_t *params_from_bl2 = (bl_params_t *)arg0;

	/* Initialize the console to provide early debug support */
	console_init(PLAT_QEMU_BOOT_UART_BASE, PLAT_QEMU_BOOT_UART_CLK_IN_HZ,
			PLAT_QEMU_CONSOLE_BAUDRATE);

	ERROR("qemu sp_min, console init\n");
	/*
	 * Check params passed from BL2
	 */
	assert(params_from_bl2);
	assert(params_from_bl2->h.type == PARAM_BL_PARAMS);
	assert(params_from_bl2->h.version >= VERSION_2);

	bl_params_node_t *bl_params = params_from_bl2->head;

	/*
	 * Copy BL33 entry point information from BL2's address space.
	 */
	while (bl_params) {
		if (bl_params->image_id == BL33_IMAGE_ID)
			bl33_image_ep_info = *bl_params->ep_info;

		bl_params = bl_params->next_params_info;
	}

	if (!bl33_image_ep_info.pc)
		panic();
}

void sp_min_plat_arch_setup(void)
{
	qemu_configure_mmu_svc_mon(BL32_RO_BASE, BL32_END - BL32_RO_BASE,
				  BL32_RO_BASE, BL32_RO_LIMIT,
				  BL_COHERENT_RAM_BASE, BL_COHERENT_RAM_END);

}

void sp_min_platform_setup(void)
{
	/* Initialize the gic cpu and distributor interfaces */
	gicv2_driver_init(&plat_gicv2_driver_data);
	gicv2_distif_init();
	gicv2_pcpu_distif_init();
	gicv2_cpuif_enable();
}

unsigned int plat_get_syscnt_freq2(void)
{
	return SYS_COUNTER_FREQ_IN_TICKS;
}

void sp_min_plat_fiq_handler(uint32_t id)
{
	VERBOSE("[sp_min] interrupt #%d\n", id);
}