Newer
Older
arm-trusted-firmware / plat / st / stm32mp1 / stm32mp1_private.c
@Yann Gautier Yann Gautier on 27 Dec 2020 7 KB stm32mp1: add low power management
/*
 * Copyright (c) 2015-2019, ARM Limited and Contributors. All rights reserved.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

#include <assert.h>

#include <libfdt.h>

#include <platform_def.h>

#include <arch_helpers.h>
#include <drivers/arm/gicv2.h>
#include <drivers/st/stm32_iwdg.h>
#include <lib/xlat_tables/xlat_tables_v2.h>
#include <plat/common/platform.h>

/* Internal layout of the 32bit OTP word board_id */
#define BOARD_ID_BOARD_NB_MASK		GENMASK(31, 16)
#define BOARD_ID_BOARD_NB_SHIFT		16
#define BOARD_ID_VARIANT_MASK		GENMASK(15, 12)
#define BOARD_ID_VARIANT_SHIFT		12
#define BOARD_ID_REVISION_MASK		GENMASK(11, 8)
#define BOARD_ID_REVISION_SHIFT		8
#define BOARD_ID_BOM_MASK		GENMASK(3, 0)

#define BOARD_ID2NB(_id)		(((_id) & BOARD_ID_BOARD_NB_MASK) >> \
					 BOARD_ID_BOARD_NB_SHIFT)
#define BOARD_ID2VAR(_id)		(((_id) & BOARD_ID_VARIANT_MASK) >> \
					 BOARD_ID_VARIANT_SHIFT)
#define BOARD_ID2REV(_id)		(((_id) & BOARD_ID_REVISION_MASK) >> \
					 BOARD_ID_REVISION_SHIFT)
#define BOARD_ID2BOM(_id)		((_id) & BOARD_ID_BOM_MASK)

#define MAP_SRAM	MAP_REGION_FLAT(STM32MP_SYSRAM_BASE, \
					STM32MP_SYSRAM_SIZE, \
					MT_MEMORY | \
					MT_RW | \
					MT_SECURE | \
					MT_EXECUTE_NEVER)

#define MAP_DEVICE1	MAP_REGION_FLAT(STM32MP1_DEVICE1_BASE, \
					STM32MP1_DEVICE1_SIZE, \
					MT_DEVICE | \
					MT_RW | \
					MT_SECURE | \
					MT_EXECUTE_NEVER)

#define MAP_DEVICE2	MAP_REGION_FLAT(STM32MP1_DEVICE2_BASE, \
					STM32MP1_DEVICE2_SIZE, \
					MT_DEVICE | \
					MT_RW | \
					MT_SECURE | \
					MT_EXECUTE_NEVER)

#if defined(IMAGE_BL2)
static const mmap_region_t stm32mp1_mmap[] = {
	MAP_SRAM,
	MAP_DEVICE1,
	MAP_DEVICE2,
	{0}
};
#endif
#if defined(IMAGE_BL32)
static const mmap_region_t stm32mp1_mmap[] = {
	MAP_SRAM,
	MAP_DEVICE1,
	MAP_DEVICE2,
	{0}
};
#endif

void configure_mmu(void)
{
	mmap_add(stm32mp1_mmap);
	init_xlat_tables();

	enable_mmu_svc_mon(0);
}

#define ARM_CNTXCTL_IMASK	BIT(1)

void stm32mp_mask_timer(void)
{
	/* Mask timer interrupts */
	write_cntp_ctl(read_cntp_ctl() | ARM_CNTXCTL_IMASK);
	write_cntv_ctl(read_cntv_ctl() | ARM_CNTXCTL_IMASK);
}

void __dead2 stm32mp_wait_cpu_reset(void)
{
	uint32_t id;

	dcsw_op_all(DC_OP_CISW);
	write_sctlr(read_sctlr() & ~SCTLR_C_BIT);
	dcsw_op_all(DC_OP_CISW);
	__asm__("clrex");

	dsb();
	isb();

	for ( ; ; ) {
		do {
			id = plat_ic_get_pending_interrupt_id();

			if (id <= MAX_SPI_ID) {
				gicv2_end_of_interrupt(id);

				plat_ic_disable_interrupt(id);
			}
		} while (id <= MAX_SPI_ID);

		wfi();
	}
}

unsigned long stm32_get_gpio_bank_clock(unsigned int bank)
{
	if (bank == GPIO_BANK_Z) {
		return GPIOZ;
	}

	assert(GPIO_BANK_A == 0 && bank <= GPIO_BANK_K);

	return GPIOA + (bank - GPIO_BANK_A);
}

static int get_part_number(uint32_t *part_nb)
{
	uint32_t part_number;
	uint32_t dev_id;

	if (stm32mp1_dbgmcu_get_chip_dev_id(&dev_id) < 0) {
		return -1;
	}

	if (bsec_shadow_read_otp(&part_number, PART_NUMBER_OTP) != BSEC_OK) {
		ERROR("BSEC: PART_NUMBER_OTP Error\n");
		return -1;
	}

	part_number = (part_number & PART_NUMBER_OTP_PART_MASK) >>
		PART_NUMBER_OTP_PART_SHIFT;

	*part_nb = part_number | (dev_id << 16);

	return 0;
}

static int get_cpu_package(uint32_t *cpu_package)
{
	uint32_t package;

	if (bsec_shadow_read_otp(&package, PACKAGE_OTP) != BSEC_OK) {
		ERROR("BSEC: PACKAGE_OTP Error\n");
		return -1;
	}

	*cpu_package = (package & PACKAGE_OTP_PKG_MASK) >>
		PACKAGE_OTP_PKG_SHIFT;

	return 0;
}

void stm32mp_print_cpuinfo(void)
{
	const char *cpu_s, *cpu_r, *pkg;
	uint32_t part_number;
	uint32_t cpu_package;
	uint32_t chip_dev_id;
	int ret;

	/* MPUs Part Numbers */
	ret = get_part_number(&part_number);
	if (ret < 0) {
		WARN("Cannot get part number\n");
		return;
	}

	switch (part_number) {
	case STM32MP157C_PART_NB:
		cpu_s = "157C";
		break;
	case STM32MP157A_PART_NB:
		cpu_s = "157A";
		break;
	case STM32MP153C_PART_NB:
		cpu_s = "153C";
		break;
	case STM32MP153A_PART_NB:
		cpu_s = "153A";
		break;
	case STM32MP151C_PART_NB:
		cpu_s = "151C";
		break;
	case STM32MP151A_PART_NB:
		cpu_s = "151A";
		break;
	default:
		cpu_s = "????";
		break;
	}

	/* Package */
	ret = get_cpu_package(&cpu_package);
	if (ret < 0) {
		WARN("Cannot get CPU package\n");
		return;
	}

	switch (cpu_package) {
	case PKG_AA_LFBGA448:
		pkg = "AA";
		break;
	case PKG_AB_LFBGA354:
		pkg = "AB";
		break;
	case PKG_AC_TFBGA361:
		pkg = "AC";
		break;
	case PKG_AD_TFBGA257:
		pkg = "AD";
		break;
	default:
		pkg = "??";
		break;
	}

	/* REVISION */
	ret = stm32mp1_dbgmcu_get_chip_version(&chip_dev_id);
	if (ret < 0) {
		WARN("Cannot get CPU version\n");
		return;
	}

	switch (chip_dev_id) {
	case STM32MP1_REV_B:
		cpu_r = "B";
		break;
	default:
		cpu_r = "?";
		break;
	}

	NOTICE("CPU: STM32MP%s%s Rev.%s\n", cpu_s, pkg, cpu_r);
}

void stm32mp_print_boardinfo(void)
{
	uint32_t board_id;
	uint32_t board_otp;
	int bsec_node, bsec_board_id_node;
	void *fdt;
	const fdt32_t *cuint;

	if (fdt_get_address(&fdt) == 0) {
		panic();
	}

	bsec_node = fdt_node_offset_by_compatible(fdt, -1, DT_BSEC_COMPAT);
	if (bsec_node < 0) {
		return;
	}

	bsec_board_id_node = fdt_subnode_offset(fdt, bsec_node, "board_id");
	if (bsec_board_id_node <= 0) {
		return;
	}

	cuint = fdt_getprop(fdt, bsec_board_id_node, "reg", NULL);
	if (cuint == NULL) {
		panic();
	}

	board_otp = fdt32_to_cpu(*cuint) / sizeof(uint32_t);

	if (bsec_shadow_read_otp(&board_id, board_otp) != BSEC_OK) {
		ERROR("BSEC: PART_NUMBER_OTP Error\n");
		return;
	}

	if (board_id != 0U) {
		char rev[2];

		rev[0] = BOARD_ID2REV(board_id) - 1 + 'A';
		rev[1] = '\0';
		NOTICE("Board: MB%04x Var%d Rev.%s-%02d\n",
		       BOARD_ID2NB(board_id),
		       BOARD_ID2VAR(board_id),
		       rev,
		       BOARD_ID2BOM(board_id));
	}
}

/* Return true when SoC provides a single Cortex-A7 core, and false otherwise */
bool stm32mp_is_single_core(void)
{
	uint32_t part_number;
	bool ret = false;

	if (get_part_number(&part_number) < 0) {
		ERROR("Invalid part number, assume single core chip");
		return true;
	}

	switch (part_number) {
	case STM32MP151A_PART_NB:
	case STM32MP151C_PART_NB:
		ret = true;
		break;

	default:
		break;
	}

	return ret;
}

/* Return true when device is in closed state */
bool stm32mp_is_closed_device(void)
{
	uint32_t value;

	if ((bsec_shadow_register(DATA0_OTP) != BSEC_OK) ||
	    (bsec_read_otp(&value, DATA0_OTP) != BSEC_OK)) {
		return true;
	}

	return (value & DATA0_OTP_SECURED) == DATA0_OTP_SECURED;
}

uint32_t stm32_iwdg_get_instance(uintptr_t base)
{
	switch (base) {
	case IWDG1_BASE:
		return IWDG1_INST;
	case IWDG2_BASE:
		return IWDG2_INST;
	default:
		panic();
	}
}

uint32_t stm32_iwdg_get_otp_config(uint32_t iwdg_inst)
{
	uint32_t iwdg_cfg = 0U;
	uint32_t otp_value;

#if defined(IMAGE_BL2)
	if (bsec_shadow_register(HW2_OTP) != BSEC_OK) {
		panic();
	}
#endif

	if (bsec_read_otp(&otp_value, HW2_OTP) != BSEC_OK) {
		panic();
	}

	if ((otp_value & BIT(iwdg_inst + HW2_OTP_IWDG_HW_POS)) != 0U) {
		iwdg_cfg |= IWDG_HW_ENABLED;
	}

	if ((otp_value & BIT(iwdg_inst + HW2_OTP_IWDG_FZ_STOP_POS)) != 0U) {
		iwdg_cfg |= IWDG_DISABLE_ON_STOP;
	}

	if ((otp_value & BIT(iwdg_inst + HW2_OTP_IWDG_FZ_STANDBY_POS)) != 0U) {
		iwdg_cfg |= IWDG_DISABLE_ON_STANDBY;
	}

	return iwdg_cfg;
}

#if defined(IMAGE_BL2)
uint32_t stm32_iwdg_shadow_update(uint32_t iwdg_inst, uint32_t flags)
{
	uint32_t otp;
	uint32_t result;

	if (bsec_shadow_read_otp(&otp, HW2_OTP) != BSEC_OK) {
		panic();
	}

	if ((flags & IWDG_DISABLE_ON_STOP) != 0U) {
		otp |= BIT(iwdg_inst + HW2_OTP_IWDG_FZ_STOP_POS);
	}

	if ((flags & IWDG_DISABLE_ON_STANDBY) != 0U) {
		otp |= BIT(iwdg_inst + HW2_OTP_IWDG_FZ_STANDBY_POS);
	}

	result = bsec_write_otp(otp, HW2_OTP);
	if (result != BSEC_OK) {
		return result;
	}

	/* Sticky lock OTP_IWDG (read and write) */
	if (!bsec_write_sr_lock(HW2_OTP, 1U) ||
	    !bsec_write_sw_lock(HW2_OTP, 1U)) {
		return BSEC_LOCK_FAIL;
	}

	return BSEC_OK;
}
#endif