Newer
Older
barebox / drivers / ddr / fsl / ctrl_regs.c
// SPDX-License-Identifier: GPL-2.0+
/*
 * Copyright 2008-2016 Freescale Semiconductor, Inc.
 * Copyright 2017-2018 NXP Semiconductor
 */

/*
 * Generic driver for Freescale DDR/DDR2/DDR3/DDR4 memory controller.
 * Based on code from spd_sdram.c
 * Author: James Yang [at freescale.com]
 */
#include <common.h>
#include <soc/fsl/fsl_ddr_sdram.h>
#include <soc/fsl/fsl_immap.h>
#include <io.h>
#include <soc/fsl/immap_lsch2.h>
#include <linux/log2.h>
#include "fsl_ddr.h"

/*
 * Determine Rtt value.
 *
 * This should likely be either board or controller specific.
 *
 * Rtt(nominal) - DDR2:
 *	0 = Rtt disabled
 *	1 = 75 ohm
 *	2 = 150 ohm
 *	3 = 50 ohm
 * Rtt(nominal) - DDR3:
 *	0 = Rtt disabled
 *	1 = 60 ohm
 *	2 = 120 ohm
 *	3 = 40 ohm
 *	4 = 20 ohm
 *	5 = 30 ohm
 *
 */
static inline int fsl_ddr_get_rtt(const memctl_options_t *popts)
{
	if (is_ddr2(popts))
		return 3;
	else
		return 0;
}

/*
 * compute CAS write latency according to DDR4 spec
 * CWL = 9 for <= 1600MT/s
 *       10 for <= 1866MT/s
 *       11 for <= 2133MT/s
 *       12 for <= 2400MT/s
 *       14 for <= 2667MT/s
 *       16 for <= 2933MT/s
 *       18 for higher
 */
static inline unsigned int compute_cas_write_latency_ddr4(struct fsl_ddr_controller *c)
{
	unsigned int cwl;
	const unsigned int mclk_ps = get_memory_clk_period_ps(c);
	if (mclk_ps >= 1250)
		cwl = 9;
	else if (mclk_ps >= 1070)
		cwl = 10;
	else if (mclk_ps >= 935)
		cwl = 11;
	else if (mclk_ps >= 833)
		cwl = 12;
	else if (mclk_ps >= 750)
		cwl = 14;
	else if (mclk_ps >= 681)
		cwl = 16;
	else
		cwl = 18;

	return cwl;
}

/*
 * compute the CAS write latency according to DDR3 spec
 * CWL = 5 if tCK >= 2.5ns
 *       6 if 2.5ns > tCK >= 1.875ns
 *       7 if 1.875ns > tCK >= 1.5ns
 *       8 if 1.5ns > tCK >= 1.25ns
 *       9 if 1.25ns > tCK >= 1.07ns
 *       10 if 1.07ns > tCK >= 0.935ns
 *       11 if 0.935ns > tCK >= 0.833ns
 *       12 if 0.833ns > tCK >= 0.75ns
 */
static inline unsigned int compute_cas_write_latency_ddr3(struct fsl_ddr_controller *c)
{
	unsigned int cwl;
	const unsigned int mclk_ps = get_memory_clk_period_ps(c);

	if (mclk_ps >= 2500)
		cwl = 5;
	else if (mclk_ps >= 1875)
		cwl = 6;
	else if (mclk_ps >= 1500)
		cwl = 7;
	else if (mclk_ps >= 1250)
		cwl = 8;
	else if (mclk_ps >= 1070)
		cwl = 9;
	else if (mclk_ps >= 935)
		cwl = 10;
	else if (mclk_ps >= 833)
		cwl = 11;
	else if (mclk_ps >= 750)
		cwl = 12;
	else {
		cwl = 12;
		printf("Warning: CWL is out of range\n");
	}
	return cwl;
}

/* Chip Select Configuration (CSn_CONFIG) */
static void set_csn_config(int dimm_number, int i, fsl_ddr_cfg_regs_t *ddr,
			       const memctl_options_t *popts,
			       const struct dimm_params *dimm_params)
{
	unsigned int cs_n_en = 0; /* Chip Select enable */
	unsigned int intlv_en = 0; /* Memory controller interleave enable */
	unsigned int intlv_ctl = 0; /* Interleaving control */
	unsigned int ap_n_en = 0; /* Chip select n auto-precharge enable */
	unsigned int odt_rd_cfg = 0; /* ODT for reads configuration */
	unsigned int odt_wr_cfg = 0; /* ODT for writes configuration */
	unsigned int ba_bits_cs_n = 0; /* Num of bank bits for SDRAM on CSn */
	unsigned int row_bits_cs_n = 0; /* Num of row bits for SDRAM on CSn */
	unsigned int col_bits_cs_n = 0; /* Num of ocl bits for SDRAM on CSn */
	int go_config = 0;
	unsigned int bg_bits_cs_n = 0; /* Num of bank group bits */
	unsigned int n_banks_per_sdram_device;

	/* Compute CS_CONFIG only for existing ranks of each DIMM.  */
	switch (i) {
	case 0:
		if (dimm_params[dimm_number].n_ranks > 0) {
			go_config = 1;
			/* These fields only available in CS0_CONFIG */
			if (!popts->memctl_interleaving)
				break;
			switch (popts->memctl_interleaving_mode) {
			case FSL_DDR_256B_INTERLEAVING:
			case FSL_DDR_CACHE_LINE_INTERLEAVING:
			case FSL_DDR_PAGE_INTERLEAVING:
			case FSL_DDR_BANK_INTERLEAVING:
			case FSL_DDR_SUPERBANK_INTERLEAVING:
				intlv_en = popts->memctl_interleaving;
				intlv_ctl = popts->memctl_interleaving_mode;
				break;
			default:
				break;
			}
		}
		break;
	case 1:
		if ((dimm_number == 0 && dimm_params[0].n_ranks > 1) || \
		    (dimm_number == 1 && dimm_params[1].n_ranks > 0))
			go_config = 1;
		break;
	case 2:
		if ((dimm_number == 0 && dimm_params[0].n_ranks > 2) || \
		   (dimm_number >= 1 && dimm_params[dimm_number].n_ranks > 0))
			go_config = 1;
		break;
	case 3:
		if ((dimm_number == 0 && dimm_params[0].n_ranks > 3) || \
		    (dimm_number == 1 && dimm_params[1].n_ranks > 1) || \
		    (dimm_number == 3 && dimm_params[3].n_ranks > 0))
			go_config = 1;
		break;
	default:
		break;
	}
	if (go_config) {
		cs_n_en = 1;
		ap_n_en = popts->cs_local_opts[i].auto_precharge;
		odt_rd_cfg = popts->cs_local_opts[i].odt_rd_cfg;
		odt_wr_cfg = popts->cs_local_opts[i].odt_wr_cfg;
		if (is_ddr4(popts)) {
			ba_bits_cs_n = dimm_params[dimm_number].bank_addr_bits;
			bg_bits_cs_n = dimm_params[dimm_number].bank_group_bits;
		} else {
			n_banks_per_sdram_device
				= dimm_params[dimm_number].n_banks_per_sdram_device;
			ba_bits_cs_n = ilog2(n_banks_per_sdram_device) - 2;
		}
		row_bits_cs_n = dimm_params[dimm_number].n_row_addr - 12;
		col_bits_cs_n = dimm_params[dimm_number].n_col_addr - 8;
	}
	ddr->cs[i].config = (0
		| ((cs_n_en & 0x1) << 31)
		| ((intlv_en & 0x3) << 29)
		| ((intlv_ctl & 0xf) << 24)
		| ((ap_n_en & 0x1) << 23)

		/* XXX: some implementation only have 1 bit starting at left */
		| ((odt_rd_cfg & 0x7) << 20)

		/* XXX: Some implementation only have 1 bit starting at left */
		| ((odt_wr_cfg & 0x7) << 16)

		| ((ba_bits_cs_n & 0x3) << 14)
		| ((row_bits_cs_n & 0x7) << 8)
		| ((bg_bits_cs_n & 0x3) << 4)
		| ((col_bits_cs_n & 0x7) << 0)
		);
	debug("FSLDDR: cs[%d]_config = 0x%08x\n", i,ddr->cs[i].config);
}

/* Chip Select Configuration 2 (CSn_CONFIG_2) */
/* FIXME: 8572 */
static void set_csn_config_2(int i, fsl_ddr_cfg_regs_t *ddr)
{
	unsigned int pasr_cfg = 0;	/* Partial array self refresh config */

	ddr->cs[i].config_2 = ((pasr_cfg & 7) << 24);
	debug("FSLDDR: cs[%d]_config_2 = 0x%08x\n", i, ddr->cs[i].config_2);
}

/* -3E = 667 CL5, -25 = CL6 800, -25E = CL5 800 */

/*
 * Check DIMM configuration, return 2 if quad-rank or two dual-rank
 * Return 1 if other two slots configuration. Return 0 if single slot.
 */
static inline int avoid_odt_overlap(struct fsl_ddr_controller *c,
				    const struct dimm_params *dimm_params)
{
	if (c->dimm_slots_per_ctrl == 1)
		if (dimm_params[0].n_ranks == 4)
			return 2;

	if (c->dimm_slots_per_ctrl == 2) {
		if ((dimm_params[0].n_ranks == 2) &&
			(dimm_params[1].n_ranks == 2))
			return 2;

		if ((dimm_params[0].n_ranks != 0) &&
			(dimm_params[2].n_ranks != 0))
			return 1;
	}

	return 0;
}

/*
 * DDR SDRAM Timing Configuration 0 (TIMING_CFG_0)
 *
 * Avoid writing for DDR I.  The new PQ38 DDR controller
 * dreams up non-zero default values to be backwards compatible.
 */
static void set_timing_cfg_0(struct fsl_ddr_controller *c)
{
	fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
	const memctl_options_t *popts = &c->memctl_opts;
	const struct dimm_params *dimm_params = c->dimm_params;
	unsigned char trwt_mclk = 0;   /* Read-to-write turnaround */
	unsigned char twrt_mclk = 0;   /* Write-to-read turnaround */
	/* 7.5 ns on -3E; 0 means WL - CL + BL/2 + 1 */
	unsigned char trrt_mclk = 0;   /* Read-to-read turnaround */
	unsigned char twwt_mclk = 0;   /* Write-to-write turnaround */

	/* Active powerdown exit timing (tXARD and tXARDS). */
	unsigned char act_pd_exit_mclk;
	/* Precharge powerdown exit timing (tXP). */
	unsigned char pre_pd_exit_mclk;
	/* ODT powerdown exit timing (tAXPD). */
	unsigned char taxpd_mclk = 0;
	/* Mode register set cycle time (tMRD). */
	unsigned char tmrd_mclk;
	const unsigned int mclk_ps = get_memory_clk_period_ps(c);

	if (is_ddr4(popts)) {
		/* tXP=max(4nCK, 6ns) */
		int txp = max((int)mclk_ps * 4, 6000); /* unit=ps */
		unsigned int data_rate = c->ddr_freq;

		/* for faster clock, need more time for data setup */
		trwt_mclk = (data_rate/1000000 > 1900) ? 3 : 2;

		/*
		 * for single quad-rank DIMM and two-slot DIMMs
		 * to avoid ODT overlap
		 */ 
		switch (avoid_odt_overlap(c, dimm_params)) {
		case 2:
			twrt_mclk = 2;
			twwt_mclk = 2;
			trrt_mclk = 2;
			break;
		default:
			twrt_mclk = 1;
			twwt_mclk = 1;
			trrt_mclk = 0;
			break;
		}

		act_pd_exit_mclk = picos_to_mclk(c, txp);
		pre_pd_exit_mclk = act_pd_exit_mclk;
		/*
		 * MRS_CYC = max(tMRD, tMOD)
		 * tMRD = 8nCK, tMOD = max(24nCK, 15ns)
		 */
		tmrd_mclk = max(24U, picos_to_mclk(c, 15000));
	} else if (is_ddr3(popts)) {
		unsigned int data_rate = c->ddr_freq;
		int txp;
		unsigned int ip_rev;
		int odt_overlap;
		/*
		 * (tXARD and tXARDS). Empirical?
		 * The DDR3 spec has not tXARD,
		 * we use the tXP instead of it.
		 * tXP=max(3nCK, 7.5ns) for DDR3-800, 1066
		 *     max(3nCK, 6ns) for DDR3-1333, 1600, 1866, 2133
		 * spec has not the tAXPD, we use
		 * tAXPD=1, need design to confirm.
		 */
		txp = max((int)mclk_ps * 3, (mclk_ps > 1540 ? 7500 : 6000));

		ip_rev = fsl_ddr_get_version(c);
		if (ip_rev >= 0x40700) {
			/*
			 * MRS_CYC = max(tMRD, tMOD)
			 * tMRD = 4nCK (8nCK for RDIMM)
			 * tMOD = max(12nCK, 15ns)
			 */
			tmrd_mclk = max((unsigned int)12, picos_to_mclk(c, 15000));
		} else {
			/*
			 * MRS_CYC = tMRD
			 * tMRD = 4nCK (8nCK for RDIMM)
			 */
			if (popts->registered_dimm_en)
				tmrd_mclk = 8;
			else
				tmrd_mclk = 4;
		}

		/* set the turnaround time */

		/*
		 * for single quad-rank DIMM and two-slot DIMMs
		 * to avoid ODT overlap
		 */
		odt_overlap = avoid_odt_overlap(c, dimm_params);
		switch (odt_overlap) {
		case 2:
			twwt_mclk = 2;
			trrt_mclk = 1;
			break;
		case 1:
			twwt_mclk = 1;
			trrt_mclk = 0;
			break;
		default:
			break;
		}

		/* for faster clock, need more time for data setup */
		trwt_mclk = (data_rate/1000000 > 1800) ? 2 : 1;

		if ((data_rate/1000000 > 1150) || (popts->memctl_interleaving))
			twrt_mclk = 1;

		if (popts->dynamic_power == 0) {	/* powerdown is not used */
			act_pd_exit_mclk = 1;
			pre_pd_exit_mclk = 1;
			taxpd_mclk = 1;
		} else {
			/* act_pd_exit_mclk = tXARD, see above */
			act_pd_exit_mclk = picos_to_mclk(c, txp);
			/* Mode register MR0[A12] is '1' - fast exit */
			pre_pd_exit_mclk = act_pd_exit_mclk;
			taxpd_mclk = 1;
		}
	} else if (is_ddr2(popts)) {
		/*
		 * (tXARD and tXARDS). Empirical?
		 * tXARD = 2 for DDR2
		 * tXP=2
		 * tAXPD=8
		 */
		act_pd_exit_mclk = 2;
		pre_pd_exit_mclk = 2;
		taxpd_mclk = 8;
		tmrd_mclk = 2;
	} else {
		return;
	}

	if (popts->trwt_override)
		trwt_mclk = popts->trwt;

	ddr->timing_cfg_0 = (0
		| ((trwt_mclk & 0x3) << 30)	/* RWT */
		| ((twrt_mclk & 0x3) << 28)	/* WRT */
		| ((trrt_mclk & 0x3) << 26)	/* RRT */
		| ((twwt_mclk & 0x3) << 24)	/* WWT */
		| ((act_pd_exit_mclk & 0xf) << 20)  /* ACT_PD_EXIT */
		| ((pre_pd_exit_mclk & 0xF) << 16)  /* PRE_PD_EXIT */
		| ((taxpd_mclk & 0xf) << 8)	/* ODT_PD_EXIT */
		| ((tmrd_mclk & 0x1f) << 0)	/* MRS_CYC */
		);
	debug("FSLDDR: timing_cfg_0 = 0x%08x\n", ddr->timing_cfg_0);
}

/* DDR SDRAM Timing Configuration 3 (TIMING_CFG_3) */
static void set_timing_cfg_3(struct fsl_ddr_controller *c,
			     unsigned int cas_latency,
			     unsigned int additive_latency)
{
	fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
	const memctl_options_t *popts = &c->memctl_opts;
	const struct common_timing_params *common_dimm = &c->common_timing_params;
	/* Extended precharge to activate interval (tRP) */
	unsigned int ext_pretoact = 0;
	/* Extended Activate to precharge interval (tRAS) */
	unsigned int ext_acttopre = 0;
	/* Extended activate to read/write interval (tRCD) */
	unsigned int ext_acttorw = 0;
	/* Extended refresh recovery time (tRFC) */
	unsigned int ext_refrec;
	/* Extended MCAS latency from READ cmd */
	unsigned int ext_caslat = 0;
	/* Extended additive latency */
	unsigned int ext_add_lat = 0;
	/* Extended last data to precharge interval (tWR) */
	unsigned int ext_wrrec = 0;
	/* Control Adjust */
	unsigned int cntl_adj = 0;

	ext_pretoact = picos_to_mclk(c, common_dimm->trp_ps) >> 4;
	ext_acttopre = picos_to_mclk(c, common_dimm->tras_ps) >> 4;
	ext_acttorw = picos_to_mclk(c, common_dimm->trcd_ps) >> 4;
	ext_caslat = (2 * cas_latency - 1) >> 4;
	ext_add_lat = additive_latency >> 4;

	if (is_ddr4(popts))
		ext_refrec = (picos_to_mclk(c, common_dimm->trfc1_ps) - 8) >> 4;
	else
		ext_refrec = (picos_to_mclk(c, common_dimm->trfc_ps) - 8) >> 4;
	/* ext_wrrec only deals with 16 clock and above, or 14 with OTF */

	ext_wrrec = (picos_to_mclk(c, common_dimm->twr_ps) +
		(popts->otf_burst_chop_en ? 2 : 0)) >> 4;

	ddr->timing_cfg_3 = (0
		| ((ext_pretoact & 0x1) << 28)
		| ((ext_acttopre & 0x3) << 24)
		| ((ext_acttorw & 0x1) << 22)
		| ((ext_refrec & 0x3F) << 16)
		| ((ext_caslat & 0x3) << 12)
		| ((ext_add_lat & 0x1) << 10)
		| ((ext_wrrec & 0x1) << 8)
		| ((cntl_adj & 0x7) << 0)
		);
	debug("FSLDDR: timing_cfg_3 = 0x%08x\n", ddr->timing_cfg_3);
}

/* DDR SDRAM Timing Configuration 1 (TIMING_CFG_1) */
static void set_timing_cfg_1(struct fsl_ddr_controller *c, unsigned int cas_latency)
{
	fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
	const memctl_options_t *popts = &c->memctl_opts;
	const struct common_timing_params *common_dimm = &c->common_timing_params;
	/* Precharge-to-activate interval (tRP) */
	unsigned char pretoact_mclk;
	/* Activate to precharge interval (tRAS) */
	unsigned char acttopre_mclk;
	/*  Activate to read/write interval (tRCD) */
	unsigned char acttorw_mclk;
	/* CASLAT */
	unsigned char caslat_ctrl;
	/*  Refresh recovery time (tRFC) ; trfc_low */
	unsigned char refrec_ctrl;
	/* Last data to precharge minimum interval (tWR) */
	unsigned char wrrec_mclk;
	/* Activate-to-activate interval (tRRD) */
	unsigned char acttoact_mclk;
	/* Last write data pair to read command issue interval (tWTR) */
	unsigned char wrtord_mclk;

	pretoact_mclk = picos_to_mclk(c, common_dimm->trp_ps);
	acttopre_mclk = picos_to_mclk(c, common_dimm->tras_ps);
	acttorw_mclk = picos_to_mclk(c, common_dimm->trcd_ps);

	/*
	 * Translate CAS Latency to a DDR controller field value:
	 *
	 *      CAS Lat DDR I   DDR II  Ctrl
	 *      Clocks  SPD Bit SPD Bit Value
	 *      ------- ------- ------- -----
	 *      1.0     0               0001
	 *      1.5     1               0010
	 *      2.0     2       2       0011
	 *      2.5     3               0100
	 *      3.0     4       3       0101
	 *      3.5     5               0110
	 *      4.0             4       0111
	 *      4.5                     1000
	 *      5.0             5       1001
	 */
	if (is_ddr1(popts)) {
		caslat_ctrl = (cas_latency + 1) & 0x07;
	} else if (is_ddr2(popts)) {
		caslat_ctrl = 2 * cas_latency - 1;
	} else {
		/*
		 * if the CAS latency more than 8 cycle,
		 * we need set extend bit for it at
		 * TIMING_CFG_3[EXT_CASLAT]
		 */
		if (fsl_ddr_get_version(c) <= 0x40400)
			caslat_ctrl = 2 * cas_latency - 1;
		else
			caslat_ctrl = (cas_latency - 1) << 1;
	}

	if (is_ddr4(popts)) {
		/* DDR4 supports 10, 12, 14, 16, 18, 20, 24 */
		static const u8 wrrec_table[] = {
			10, 10, 10, 10, 10,
			10, 10, 10, 10, 10,
			12, 12, 14, 14, 16,
			16, 18, 18, 20, 20,
			24, 24, 24, 24
		};

		refrec_ctrl = picos_to_mclk(c, common_dimm->trfc1_ps) - 8;
		wrrec_mclk = picos_to_mclk(c, common_dimm->twr_ps);
		acttoact_mclk = max(picos_to_mclk(c, common_dimm->trrds_ps), 4U);
		wrtord_mclk = max(2U, picos_to_mclk(c, 2500));
		if ((wrrec_mclk < 1) || (wrrec_mclk > 24))
			printf("Error: WRREC doesn't support %d clocks\n", wrrec_mclk);
		else
			wrrec_mclk = wrrec_table[wrrec_mclk - 1];
	} else {
		/* DDR_SDRAM_MODE doesn't support 9,11,13,15 */
		static const u8 wrrec_table[] = {
			1, 2, 3, 4, 5, 6, 7, 8, 10, 10, 12, 12, 14, 14, 0, 0
		};

		refrec_ctrl = picos_to_mclk(c, common_dimm->trfc_ps) - 8;
		wrrec_mclk = picos_to_mclk(c, common_dimm->twr_ps);
		acttoact_mclk = picos_to_mclk(c, common_dimm->trrd_ps);
		wrtord_mclk = picos_to_mclk(c, common_dimm->twtr_ps);
		if ((wrrec_mclk < 1) || (wrrec_mclk > 16))
			printf("Error: WRREC doesn't support %d clocks\n", wrrec_mclk);
		else
			wrrec_mclk = wrrec_table[wrrec_mclk - 1];
	}

	if (popts->otf_burst_chop_en)
		wrrec_mclk += 2;

	/*
	 * JEDEC has min requirement for tRRD
	 */
	if (is_ddr3(popts) && acttoact_mclk < 4)
		acttoact_mclk = 4;

	/*
	 * JEDEC has some min requirements for tWTR
	 */
	if (is_ddr2(popts) && wrtord_mclk < 2)
		wrtord_mclk = 2;

	if (is_ddr3(popts) && wrtord_mclk < 4)
		wrtord_mclk = 4;

	if (popts->otf_burst_chop_en)
		wrtord_mclk += 2;

	ddr->timing_cfg_1 = (0
		| ((pretoact_mclk & 0x0F) << 28)
		| ((acttopre_mclk & 0x0F) << 24)
		| ((acttorw_mclk & 0xF) << 20)
		| ((caslat_ctrl & 0xF) << 16)
		| ((refrec_ctrl & 0xF) << 12)
		| ((wrrec_mclk & 0x0F) << 8)
		| ((acttoact_mclk & 0x0F) << 4)
		| ((wrtord_mclk & 0x0F) << 0)
		);
	debug("FSLDDR: timing_cfg_1 = 0x%08x\n", ddr->timing_cfg_1);
}

/* DDR SDRAM Timing Configuration 2 (TIMING_CFG_2) */
static void set_timing_cfg_2(struct fsl_ddr_controller *c,
			     unsigned int cas_latency,
			     unsigned int additive_latency)
{
	fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
	const memctl_options_t *popts = &c->memctl_opts;
	const struct common_timing_params *common_dimm = &c->common_timing_params;
	/* Additive latency */
	unsigned char add_lat_mclk;
	/* CAS-to-preamble override */
	unsigned short cpo;
	/* Write latency */
	unsigned char wr_lat;
	/*  Read to precharge (tRTP) */
	unsigned char rd_to_pre;
	/* Write command to write data strobe timing adjustment */
	unsigned char wr_data_delay;
	/* Minimum CKE pulse width (tCKE) */
	unsigned char cke_pls;
	/* Window for four activates (tFAW) */
	unsigned short four_act;
	unsigned int mclk_ps;

	/* FIXME add check that this must be less than acttorw_mclk */
	add_lat_mclk = additive_latency;
	cpo = popts->cpo_override;

	if (is_ddr1(popts)) {
		/*
		 * This is a lie.  It should really be 1, but if it is
		 * set to 1, bits overlap into the old controller's
		 * otherwise unused ACSM field.  If we leave it 0, then
		 * the HW will magically treat it as 1 for DDR 1.  Oh Yea.
		 */
		wr_lat = 0;
	} else if (is_ddr2(popts)) {
		wr_lat = cas_latency - 1;
	} else if (is_ddr3(popts)) {
		wr_lat = compute_cas_write_latency_ddr3(c);
	} else {
		wr_lat = compute_cas_write_latency_ddr4(c);
	}

	if (is_ddr4(popts))
		rd_to_pre = picos_to_mclk(c, 7500);
	else
		rd_to_pre = picos_to_mclk(c, common_dimm->trtp_ps);

	/*
	 * JEDEC has some min requirements for tRTP
	 */
	if (is_ddr2(popts) && rd_to_pre < 2)
		rd_to_pre  = 2;

	if (is_ddr3_4(popts) && rd_to_pre < 4)
		rd_to_pre = 4;

	if (popts->otf_burst_chop_en)
		rd_to_pre += 2; /* according to UM */

	wr_data_delay = popts->write_data_delay;

	if (is_ddr4(popts)) {
		cpo = 0;
		cke_pls = max(3U, picos_to_mclk(c, 5000));
	} else if (is_ddr3(popts)) {
		mclk_ps = get_memory_clk_period_ps(c);

		/*
		 * cke pulse = max(3nCK, 7.5ns) for DDR3-800
		 *             max(3nCK, 5.625ns) for DDR3-1066, 1333
		 *             max(3nCK, 5ns) for DDR3-1600, 1866, 2133
		 */
		cke_pls = max(3U, picos_to_mclk(c, mclk_ps > 1870 ? 7500 :
			  (mclk_ps > 1245 ? 5625 : 5000)));
	} else if (is_ddr2(popts)) {
		cke_pls = FSL_DDR_MIN_TCKE_PULSE_WIDTH_DDR2;
	} else {
		cke_pls = FSL_DDR_MIN_TCKE_PULSE_WIDTH_DDR1;
	}

	four_act = picos_to_mclk(c, popts->tfaw_window_four_activates_ps);

	ddr->timing_cfg_2 = (0
		| ((add_lat_mclk & 0xf) << 28)
		| ((cpo & 0x1f) << 23)
		| ((wr_lat & 0xf) << 19)
		| (((wr_lat & 0x10) >> 4) << 18)
		| ((rd_to_pre & RD_TO_PRE_MASK) << RD_TO_PRE_SHIFT)
		| ((wr_data_delay & WR_DATA_DELAY_MASK) << WR_DATA_DELAY_SHIFT)
		| ((cke_pls & 0x7) << 6)
		| ((four_act & 0x3f) << 0)
		);
	debug("FSLDDR: timing_cfg_2 = 0x%08x\n", ddr->timing_cfg_2);
}

/* DDR SDRAM Register Control Word */
static void set_ddr_sdram_rcw(struct fsl_ddr_controller *c)
{
	fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
	const memctl_options_t *popts = &c->memctl_opts;
	const struct common_timing_params *common_dimm = &c->common_timing_params;
	unsigned int ddr_freq = c->ddr_freq / 1000000;
	unsigned int rc0a, rc0f;

	if (common_dimm->all_dimms_registered &&
	    !common_dimm->all_dimms_unbuffered)	{
		if (popts->rcw_override) {
			ddr->ddr_sdram_rcw_1 = popts->rcw_1;
			ddr->ddr_sdram_rcw_2 = popts->rcw_2;
			ddr->ddr_sdram_rcw_3 = popts->rcw_3;
		} else {
			rc0a = ddr_freq > 3200 ? 0x7 :
			       (ddr_freq > 2933 ? 0x6 :
				(ddr_freq > 2666 ? 0x5 :
				 (ddr_freq > 2400 ? 0x4 :
				  (ddr_freq > 2133 ? 0x3 :
				   (ddr_freq > 1866 ? 0x2 :
				    (ddr_freq > 1600 ? 1 : 0))))));
			rc0f = ddr_freq > 3200 ? 0x3 :
			       (ddr_freq > 2400 ? 0x2 :
				(ddr_freq > 2133 ? 0x1 : 0));
			ddr->ddr_sdram_rcw_1 =
				common_dimm->rcw[0] << 28 | \
				common_dimm->rcw[1] << 24 | \
				common_dimm->rcw[2] << 20 | \
				common_dimm->rcw[3] << 16 | \
				common_dimm->rcw[4] << 12 | \
				common_dimm->rcw[5] << 8 | \
				common_dimm->rcw[6] << 4 | \
				common_dimm->rcw[7];
			ddr->ddr_sdram_rcw_2 =
				common_dimm->rcw[8] << 28 | \
				common_dimm->rcw[9] << 24 | \
				rc0a << 20 | \
				common_dimm->rcw[11] << 16 | \
				common_dimm->rcw[12] << 12 | \
				common_dimm->rcw[13] << 8 | \
				common_dimm->rcw[14] << 4 | \
				rc0f;
			ddr->ddr_sdram_rcw_3 =
				((ddr_freq - 1260 + 19) / 20) << 8;
		}
		debug("FSLDDR: ddr_sdram_rcw_1 = 0x%08x\n",
		      ddr->ddr_sdram_rcw_1);
		debug("FSLDDR: ddr_sdram_rcw_2 = 0x%08x\n",
		      ddr->ddr_sdram_rcw_2);
		debug("FSLDDR: ddr_sdram_rcw_3 = 0x%08x\n",
		      ddr->ddr_sdram_rcw_3);
	}
}

/* DDR SDRAM control configuration (DDR_SDRAM_CFG) */
static void set_ddr_sdram_cfg(struct fsl_ddr_controller *c)
{
	fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
	const memctl_options_t *popts = &c->memctl_opts;
	const struct common_timing_params *common_dimm = &c->common_timing_params;
	unsigned int mem_en;		/* DDR SDRAM interface logic enable */
	unsigned int sren;		/* Self refresh enable (during sleep) */
	unsigned int ecc_en = 0;	/* ECC enable. */
	unsigned int rd_en;		/* Registered DIMM enable */
	unsigned int sdram_type;	/* Type of SDRAM */
	unsigned int dyn_pwr;		/* Dynamic power management mode */
	unsigned int dbw;		/* DRAM dta bus width */
	unsigned int eight_be = 0;	/* 8-beat burst enable, DDR2 is zero */
	unsigned int ncap = 0;		/* Non-concurrent auto-precharge */
	unsigned int threet_en;		/* Enable 3T timing */
	unsigned int twot_en;		/* Enable 2T timing */
	unsigned int ba_intlv_ctl;	/* Bank (CS) interleaving control */
	unsigned int x32_en = 0;	/* x32 enable */
	unsigned int pchb8 = 0;		/* precharge bit 8 enable */
	unsigned int hse;		/* Global half strength override */
	unsigned int acc_ecc_en = 0;	/* Accumulated ECC enable */
	unsigned int mem_halt = 0;	/* memory controller halt */
	unsigned int bi = 0;		/* Bypass initialization */

	mem_en = 1;
	sren = popts->self_refresh_in_sleep;
	if (common_dimm->all_dimms_ecc_capable)
		ecc_en = 1;

	if (common_dimm->all_dimms_registered &&
	    !common_dimm->all_dimms_unbuffered)	{
		rd_en = 1;
		twot_en = 0;
	} else {
		rd_en = 0;
		twot_en = popts->twot_en;
	}

	sdram_type = popts->ddrtype;

	dyn_pwr = popts->dynamic_power;
	dbw = popts->data_bus_width;
	/* 8-beat burst enable DDR-III case
	 * we must clear it when use the on-the-fly mode,
	 * must set it when use the 32-bits bus mode.
	 */
	if (is_ddr3_4(popts)) {
		if (popts->burst_length == DDR_BL8)
			eight_be = 1;
		if (popts->burst_length == DDR_OTF)
			eight_be = 0;
		if (dbw == 0x1)
			eight_be = 1;
	}

	threet_en = popts->threet_en;
	ba_intlv_ctl = popts->ba_intlv_ctl;
	hse = popts->half_strength_driver_enable;

	/* set when ddr bus width < 64 */
	acc_ecc_en = (dbw != 0 && ecc_en == 1) ? 1 : 0;

	ddr->ddr_sdram_cfg = (0
			| ((mem_en & 0x1) << 31)
			| ((sren & 0x1) << 30)
			| ((ecc_en & 0x1) << 29)
			| ((rd_en & 0x1) << 28)
			| ((sdram_type & 0x7) << 24)
			| ((dyn_pwr & 0x1) << 21)
			| ((dbw & 0x3) << 19)
			| ((eight_be & 0x1) << 18)
			| ((ncap & 0x1) << 17)
			| ((threet_en & 0x1) << 16)
			| ((twot_en & 0x1) << 15)
			| ((ba_intlv_ctl & 0x7F) << 8)
			| ((x32_en & 0x1) << 5)
			| ((pchb8 & 0x1) << 4)
			| ((hse & 0x1) << 3)
			| ((acc_ecc_en & 0x1) << 2)
			| ((mem_halt & 0x1) << 1)
			| ((bi & 0x1) << 0)
			);
	debug("FSLDDR: ddr_sdram_cfg = 0x%08x\n", ddr->ddr_sdram_cfg);
}

/* DDR SDRAM control configuration 2 (DDR_SDRAM_CFG_2) */
static void set_ddr_sdram_cfg_2(struct fsl_ddr_controller *c,
			       const unsigned int unq_mrs_en)
{
	fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
	const memctl_options_t *popts = &c->memctl_opts;
	const struct common_timing_params *common_dimm = &c->common_timing_params;
	unsigned int frc_sr = 0;	/* Force self refresh */
	unsigned int sr_ie = 0;		/* Self-refresh interrupt enable */
	unsigned int odt_cfg = 0;	/* ODT configuration */
	unsigned int num_pr;		/* Number of posted refreshes */
	unsigned int slow = 0;		/* DDR will be run less than 1250 */
	unsigned int x4_en = 0;		/* x4 DRAM enable */
	unsigned int obc_cfg;		/* On-The-Fly Burst Chop Cfg */
	unsigned int ap_en;		/* Address Parity Enable */
	unsigned int d_init;		/* DRAM data initialization */
	unsigned int rcw_en = 0;	/* Register Control Word Enable */
	unsigned int md_en = 0;		/* Mirrored DIMM Enable */
	unsigned int qd_en = 0;		/* quad-rank DIMM Enable */
	int i;
	unsigned int dll_rst_dis;	/* DLL reset disable */
	unsigned int dqs_cfg;		/* DQS configuration */

	if (is_ddr4(popts)) {
		dll_rst_dis = 0;
		dqs_cfg = 0;
	} else {
		dqs_cfg = popts->dqs_config;
		dll_rst_dis = 1;
	}

	for (i = 0; i < c->chip_selects_per_ctrl; i++) {
		if (popts->cs_local_opts[i].odt_rd_cfg
			|| popts->cs_local_opts[i].odt_wr_cfg) {
			odt_cfg = SDRAM_CFG2_ODT_ONLY_READ;
			break;
		}
	}
	sr_ie = popts->self_refresh_interrupt_en;
	num_pr = popts->package_3ds + 1;

	/*
	 * 8572 manual says
	 *     {TIMING_CFG_1[PRETOACT]
	 *      + [DDR_SDRAM_CFG_2[NUM_PR]
	 *        * ({EXT_REFREC || REFREC} + 8 + 2)]}
	 *      << DDR_SDRAM_INTERVAL[REFINT]
	 */
	if (is_ddr3_4(popts))
		obc_cfg = popts->otf_burst_chop_en;
	else
		obc_cfg = 0;

	slow = c->ddr_freq < 1249000000;

	if (popts->registered_dimm_en)
		rcw_en = 1;

	/* DDR4 can have address parity for UDIMM and discrete */
	if (!is_ddr4(popts) && !popts->registered_dimm_en) {
		ap_en = 0;
	} else {
		ap_en = popts->ap_en;
	}

	x4_en = popts->x4_en ? 1 : 0;

	/* Use the DDR controller to auto initialize memory. */
	d_init = common_dimm->all_dimms_ecc_capable ? 1 : 0;;
	ddr->ddr_data_init = 0xdeadbeef;

	if (is_ddr3_4(popts))
		md_en = popts->mirrored_dimm;

	qd_en = popts->quad_rank_present ? 1 : 0;
	ddr->ddr_sdram_cfg_2 = (0
		| ((frc_sr & 0x1) << 31)
		| ((sr_ie & 0x1) << 30)
		| ((dll_rst_dis & 0x1) << 29)
		| ((dqs_cfg & 0x3) << 26)
		| ((odt_cfg & 0x3) << 21)
		| ((num_pr & 0xf) << 12)
		| ((slow & 1) << 11)
		| (x4_en << 10)
		| (qd_en << 9)
		| (unq_mrs_en << 8)
		| ((obc_cfg & 0x1) << 6)
		| ((ap_en & 0x1) << 5)
		| ((d_init & 0x1) << 4)
		| ((rcw_en & 0x1) << 2)
		| ((md_en & 0x1) << 0)
		);
	debug("FSLDDR: ddr_sdram_cfg_2 = 0x%08x\n", ddr->ddr_sdram_cfg_2);
}

/* DDR SDRAM Mode configuration 2 (DDR_SDRAM_MODE_2) */
static void set_ddr4_sdram_mode_2(struct fsl_ddr_controller *c,
				const unsigned int unq_mrs_en)
{
	fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
	const memctl_options_t *popts = &c->memctl_opts;
	const struct common_timing_params *common_dimm = &c->common_timing_params;
	unsigned short esdmode2 = 0;	/* Extended SDRAM mode 2 */
	unsigned short esdmode3 = 0;	/* Extended SDRAM mode 3 */
	int i;
	unsigned int wr_crc = 0;	/* Disable */
	unsigned int rtt_wr = 0;	/* Rtt_WR - dynamic ODT off */
	unsigned int srt = 0;	/* self-refresh temerature, normal range */
	unsigned int cwl = compute_cas_write_latency_ddr4(c) - 9;
	unsigned int mpr = 0;	/* serial */
	unsigned int wc_lat;
	const unsigned int mclk_ps = get_memory_clk_period_ps(c);

	if (popts->rtt_override)
		rtt_wr = popts->rtt_wr_override_value;
	else
		rtt_wr = popts->cs_local_opts[0].odt_rtt_wr;

	if (common_dimm->extended_op_srt)
		srt = common_dimm->extended_op_srt;

	esdmode2 = (0
		| ((wr_crc & 0x1) << 12)
		| ((rtt_wr & 0x3) << 9)
		| ((srt & 0x3) << 6)
		| ((cwl & 0x7) << 3));

	if (mclk_ps >= 1250)
		wc_lat = 0;
	else if (mclk_ps >= 833)
		wc_lat = 1;
	else
		wc_lat = 2;

	esdmode3 = (0
		| ((mpr & 0x3) << 11)
		| ((wc_lat & 0x3) << 9));

	ddr->ddr_sdram_mode_2 = (0
				 | ((esdmode2 & 0xFFFF) << 16)
				 | ((esdmode3 & 0xFFFF) << 0)
				 );
	debug("FSLDDR: ddr_sdram_mode_2 = 0x%08x\n", ddr->ddr_sdram_mode_2);

	if (unq_mrs_en) {	/* unique mode registers are supported */
		for (i = 1; i < c->chip_selects_per_ctrl; i++) {
			if (popts->rtt_override)
				rtt_wr = popts->rtt_wr_override_value;
			else
				rtt_wr = popts->cs_local_opts[i].odt_rtt_wr;

			esdmode2 &= 0xF9FF;	/* clear bit 10, 9 */
			esdmode2 |= (rtt_wr & 0x3) << 9;
			switch (i) {
			case 1:
				ddr->ddr_sdram_mode_4 = (0
					| ((esdmode2 & 0xFFFF) << 16)
					| ((esdmode3 & 0xFFFF) << 0)
					);
				break;
			case 2:
				ddr->ddr_sdram_mode_6 = (0
					| ((esdmode2 & 0xFFFF) << 16)
					| ((esdmode3 & 0xFFFF) << 0)
					);
				break;
			case 3:
				ddr->ddr_sdram_mode_8 = (0
					| ((esdmode2 & 0xFFFF) << 16)
					| ((esdmode3 & 0xFFFF) << 0)
					);
				break;
			}
		}
		debug("FSLDDR: ddr_sdram_mode_4 = 0x%08x\n",
		      ddr->ddr_sdram_mode_4);
		debug("FSLDDR: ddr_sdram_mode_6 = 0x%08x\n",
		      ddr->ddr_sdram_mode_6);
		debug("FSLDDR: ddr_sdram_mode_8 = 0x%08x\n",
		      ddr->ddr_sdram_mode_8);
	}
}

/* DDR SDRAM Mode configuration 2 (DDR_SDRAM_MODE_2) */
static void set_ddr3_sdram_mode_2(struct fsl_ddr_controller *c,
				const unsigned int unq_mrs_en)
{
	fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
	const memctl_options_t *popts = &c->memctl_opts;
	const struct common_timing_params *common_dimm = &c->common_timing_params;
	unsigned short esdmode2 = 0;	/* Extended SDRAM mode 2 */
	unsigned short esdmode3 = 0;	/* Extended SDRAM mode 3 */
	int i;
	unsigned int rtt_wr = 0;	/* Rtt_WR - dynamic ODT off */
	unsigned int srt = 0;	/* self-refresh temerature, normal range */
	unsigned int asr = 0;	/* auto self-refresh disable */
	unsigned int cwl = compute_cas_write_latency_ddr3(c) - 5;
	unsigned int pasr = 0;	/* partial array self refresh disable */

	if (popts->rtt_override)
		rtt_wr = popts->rtt_wr_override_value;
	else
		rtt_wr = popts->cs_local_opts[0].odt_rtt_wr;

	if (common_dimm->extended_op_srt)
		srt = common_dimm->extended_op_srt;

	esdmode2 = (0
		| ((rtt_wr & 0x3) << 9)
		| ((srt & 0x1) << 7)
		| ((asr & 0x1) << 6)
		| ((cwl & 0x7) << 3)
		| ((pasr & 0x7) << 0));
	ddr->ddr_sdram_mode_2 = (0
				 | ((esdmode2 & 0xFFFF) << 16)
				 | ((esdmode3 & 0xFFFF) << 0)
				 );
	debug("FSLDDR: ddr_sdram_mode_2 = 0x%08x\n", ddr->ddr_sdram_mode_2);

	if (unq_mrs_en) {	/* unique mode registers are supported */
		for (i = 1; i < c->chip_selects_per_ctrl; i++) {
			if (popts->rtt_override)
				rtt_wr = popts->rtt_wr_override_value;
			else
				rtt_wr = popts->cs_local_opts[i].odt_rtt_wr;

			esdmode2 &= 0xF9FF;	/* clear bit 10, 9 */
			esdmode2 |= (rtt_wr & 0x3) << 9;
			switch (i) {
			case 1:
				ddr->ddr_sdram_mode_4 = (0
					| ((esdmode2 & 0xFFFF) << 16)
					| ((esdmode3 & 0xFFFF) << 0)
					);
				break;
			case 2:
				ddr->ddr_sdram_mode_6 = (0
					| ((esdmode2 & 0xFFFF) << 16)
					| ((esdmode3 & 0xFFFF) << 0)
					);
				break;
			case 3:
				ddr->ddr_sdram_mode_8 = (0
					| ((esdmode2 & 0xFFFF) << 16)
					| ((esdmode3 & 0xFFFF) << 0)
					);
				break;
			}
		}
		debug("FSLDDR: ddr_sdram_mode_4 = 0x%08x\n",
			ddr->ddr_sdram_mode_4);
		debug("FSLDDR: ddr_sdram_mode_6 = 0x%08x\n",
			ddr->ddr_sdram_mode_6);
		debug("FSLDDR: ddr_sdram_mode_8 = 0x%08x\n",
			ddr->ddr_sdram_mode_8);
	}
}

/* DDR SDRAM Mode configuration 2 (DDR_SDRAM_MODE_2) */
static void set_ddr1_2_sdram_mode_2(struct fsl_ddr_controller *c,
				const unsigned int unq_mrs_en)
{
	fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
	unsigned short esdmode2 = 0;	/* Extended SDRAM mode 2 */
	unsigned short esdmode3 = 0;	/* Extended SDRAM mode 3 */

	ddr->ddr_sdram_mode_2 = (0
				 | ((esdmode2 & 0xFFFF) << 16)
				 | ((esdmode3 & 0xFFFF) << 0)
				 );
	debug("FSLDDR: ddr_sdram_mode_2 = 0x%08x\n", ddr->ddr_sdram_mode_2);
}

/* DDR SDRAM Mode configuration 9 (DDR_SDRAM_MODE_9) */
static void set_ddr_sdram_mode_9(struct fsl_ddr_controller *c,
				const unsigned int unq_mrs_en)
{
	fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
	const memctl_options_t *popts = &c->memctl_opts;
	int i;
	unsigned short esdmode4 = 0;	/* Extended SDRAM mode 4 */
	unsigned short esdmode5;	/* Extended SDRAM mode 5 */
	int rtt_park = 0;
	bool four_cs = false;
	const unsigned int mclk_ps = get_memory_clk_period_ps(c);

	if ((ddr->cs[0].config & SDRAM_CS_CONFIG_EN) &&
	    (ddr->cs[1].config & SDRAM_CS_CONFIG_EN) &&
	    (ddr->cs[2].config & SDRAM_CS_CONFIG_EN) &&
	    (ddr->cs[3].config & SDRAM_CS_CONFIG_EN))
		four_cs = true;

	if (ddr->cs[0].config & SDRAM_CS_CONFIG_EN) {
		esdmode5 = 0x00000500;	/* Data mask enable, RTT_PARK CS0 */
		rtt_park = four_cs ? 0 : 1;
	} else {
		esdmode5 = 0x00000400;	/* Data mask enabled */
	}

	/*
	 * For DDR3, set C/A latency if address parity is enabled.
	 * For DDR4, set C/A latency for UDIMM only. For RDIMM the delay is
	 * handled by register chip and RCW settings.
	 */
	if ((ddr->ddr_sdram_cfg_2 & SDRAM_CFG2_AP_EN) &&
	    (!is_ddr4(popts) || !popts->registered_dimm_en)) {
		if (mclk_ps >= 935) {
			/* for DDR4-1600/1866/2133 */
			esdmode5 |= DDR_MR5_CA_PARITY_LAT_4_CLK;
		} else if (mclk_ps >= 833) {
			/* for DDR4-2400 */
			esdmode5 |= DDR_MR5_CA_PARITY_LAT_5_CLK;
		} else {
			printf("parity: mclk_ps = %d not supported\n", mclk_ps);
		}
	}

	ddr->ddr_sdram_mode_9 = (0
				 | ((esdmode4 & 0xffff) << 16)
				 | ((esdmode5 & 0xffff) << 0)
				);

	/* Normally only the first enabled CS use 0x500, others use 0x400
	 * But when four chip-selects are all enabled, all mode registers
	 * need 0x500 to park.
	 */

	debug("FSLDDR: ddr_sdram_mode_9 = 0x%08x\n", ddr->ddr_sdram_mode_9);
	if (unq_mrs_en) {	/* unique mode registers are supported */
		for (i = 1; i < c->chip_selects_per_ctrl; i++) {
			if (!rtt_park &&
			    (ddr->cs[i].config & SDRAM_CS_CONFIG_EN)) {
				esdmode5 |= 0x00000500;	/* RTT_PARK */
				rtt_park = four_cs ? 0 : 1;
			} else {
				esdmode5 = 0x00000400;
			}

			if ((ddr->ddr_sdram_cfg_2 & SDRAM_CFG2_AP_EN) &&
			    (!is_ddr4(popts) || !popts->registered_dimm_en)) {
				if (mclk_ps >= 935) {
					/* for DDR4-1600/1866/2133 */
					esdmode5 |= DDR_MR5_CA_PARITY_LAT_4_CLK;
				} else if (mclk_ps >= 833) {
					/* for DDR4-2400 */
					esdmode5 |= DDR_MR5_CA_PARITY_LAT_5_CLK;
				} else {
					printf("parity: mclk_ps = %d not supported\n",
					       mclk_ps);
				}
			}

			switch (i) {
			case 1:
				ddr->ddr_sdram_mode_11 = (0
					| ((esdmode4 & 0xFFFF) << 16)
					| ((esdmode5 & 0xFFFF) << 0)
					);
				break;
			case 2:
				ddr->ddr_sdram_mode_13 = (0
					| ((esdmode4 & 0xFFFF) << 16)
					| ((esdmode5 & 0xFFFF) << 0)
					);
				break;
			case 3:
				ddr->ddr_sdram_mode_15 = (0
					| ((esdmode4 & 0xFFFF) << 16)
					| ((esdmode5 & 0xFFFF) << 0)
					);
				break;
			}
		}
		debug("FSLDDR: ddr_sdram_mode_11 = 0x%08x\n",
		      ddr->ddr_sdram_mode_11);
		debug("FSLDDR: ddr_sdram_mode_13 = 0x%08x\n",
		      ddr->ddr_sdram_mode_13);
		debug("FSLDDR: ddr_sdram_mode_15 = 0x%08x\n",
		      ddr->ddr_sdram_mode_15);
	}
}

/* DDR SDRAM Mode configuration 10 (DDR_SDRAM_MODE_10) */
static void set_ddr_sdram_mode_10(struct fsl_ddr_controller *c,
				const unsigned int unq_mrs_en)
{
	fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
	const memctl_options_t *popts = &c->memctl_opts;
	const struct common_timing_params *common_dimm = &c->common_timing_params;
	int i;
	unsigned short esdmode6 = 0;	/* Extended SDRAM mode 6 */
	unsigned short esdmode7 = 0;	/* Extended SDRAM mode 7 */
	unsigned int tccdl_min = picos_to_mclk(c, common_dimm->tccdl_ps);

	esdmode6 = ((tccdl_min - 4) & 0x7) << 10;

	if (popts->ddr_cdr2 & DDR_CDR2_VREF_RANGE_2)
		esdmode6 |= 1 << 6;	/* Range 2 */

	ddr->ddr_sdram_mode_10 = (0
				 | ((esdmode6 & 0xffff) << 16)
				 | ((esdmode7 & 0xffff) << 0)
				);
	debug("FSLDDR: ddr_sdram_mode_10 = 0x%08x\n", ddr->ddr_sdram_mode_10);
	if (unq_mrs_en) {	/* unique mode registers are supported */
		for (i = 1; i < c->chip_selects_per_ctrl; i++) {
			switch (i) {
			case 1:
				ddr->ddr_sdram_mode_12 = (0
					| ((esdmode6 & 0xFFFF) << 16)
					| ((esdmode7 & 0xFFFF) << 0)
					);
				break;
			case 2:
				ddr->ddr_sdram_mode_14 = (0
					| ((esdmode6 & 0xFFFF) << 16)
					| ((esdmode7 & 0xFFFF) << 0)
					);
				break;
			case 3:
				ddr->ddr_sdram_mode_16 = (0
					| ((esdmode6 & 0xFFFF) << 16)
					| ((esdmode7 & 0xFFFF) << 0)
					);
				break;
			}
		}
		debug("FSLDDR: ddr_sdram_mode_12 = 0x%08x\n",
		      ddr->ddr_sdram_mode_12);
		debug("FSLDDR: ddr_sdram_mode_14 = 0x%08x\n",
		      ddr->ddr_sdram_mode_14);
		debug("FSLDDR: ddr_sdram_mode_16 = 0x%08x\n",
		      ddr->ddr_sdram_mode_16);
	}
}

/* DDR SDRAM Interval Configuration (DDR_SDRAM_INTERVAL) */
static void set_ddr_sdram_interval(struct fsl_ddr_controller *c)
{
	fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
	const memctl_options_t *popts = &c->memctl_opts;
	const struct common_timing_params *common_dimm = &c->common_timing_params;
	unsigned int refint;	/* Refresh interval */
	unsigned int bstopre;	/* Precharge interval */

	refint = picos_to_mclk(c, common_dimm->refresh_rate_ps);

	bstopre = popts->bstopre;

	/* refint field used 0x3FFF in earlier controllers */
	ddr->ddr_sdram_interval = (0
				   | ((refint & 0xFFFF) << 16)
				   | ((bstopre & 0x3FFF) << 0)
				   );
	debug("FSLDDR: ddr_sdram_interval = 0x%08x\n", ddr->ddr_sdram_interval);
}

/* DDR SDRAM Mode configuration set (DDR_SDRAM_MODE) */
static void set_ddr_sdram_mode_ddr4(struct fsl_ddr_controller *c,
			       unsigned int cas_latency,
			       unsigned int additive_latency,
			       const unsigned int unq_mrs_en)
{
	fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
	const memctl_options_t *popts = &c->memctl_opts;
	const struct common_timing_params *common_dimm = &c->common_timing_params;
	int i;
	unsigned short esdmode;		/* Extended SDRAM mode */
	unsigned short sdmode;		/* SDRAM mode */

	/* Mode Register - MR1 */
	unsigned int qoff = 0;		/* Output buffer enable 0=yes, 1=no */
	unsigned int tdqs_en = 0;	/* TDQS Enable: 0=no, 1=yes */
	unsigned int rtt;
	unsigned int wrlvl_en = 0;	/* Write level enable: 0=no, 1=yes */
	unsigned int al = 0;		/* Posted CAS# additive latency (AL) */
	unsigned int dic = 0;		/* Output driver impedance, 40ohm */
	unsigned int dll_en = 1;	/* DLL Enable  1=Enable (Normal),
						       0=Disable (Test/Debug) */

	/* Mode Register - MR0 */
	unsigned int wr = 0;	/* Write Recovery */
	unsigned int dll_rst;	/* DLL Reset */
	unsigned int mode;	/* Normal=0 or Test=1 */
	unsigned int caslat = 4;/* CAS# latency, default set as 6 cycles */
	/* BT: Burst Type (0=Nibble Sequential, 1=Interleaved) */
	unsigned int bt;
	unsigned int bl;	/* BL: Burst Length */

	unsigned int wr_mclk;
	/* DDR4 support WR 10, 12, 14, 16, 18, 20, 24 */
	static const u8 wr_table[] = {
		0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 6, 6};
	/* DDR4 support CAS 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22, 24 */
	static const u8 cas_latency_table[] = {
		0, 1, 2, 3, 4, 5, 6, 7, 8, 8,
		9, 9, 10, 10, 11, 11};

	if (popts->rtt_override)
		rtt = popts->rtt_override_value;
	else
		rtt = popts->cs_local_opts[0].odt_rtt_norm;

	if (additive_latency == (cas_latency - 1))
		al = 1;
	if (additive_latency == (cas_latency - 2))
		al = 2;

	if (popts->quad_rank_present)
		dic = 1;	/* output driver impedance 240/7 ohm */

	/*
	 * The esdmode value will also be used for writing
	 * MR1 during write leveling for DDR3, although the
	 * bits specifically related to the write leveling
	 * scheme will be handled automatically by the DDR
	 * controller. so we set the wrlvl_en = 0 here.
	 */
	esdmode = (0
		| ((qoff & 0x1) << 12)
		| ((tdqs_en & 0x1) << 11)
		| ((rtt & 0x7) << 8)
		| ((wrlvl_en & 0x1) << 7)
		| ((al & 0x3) << 3)
		| ((dic & 0x3) << 1)   /* DIC field is split */
		| ((dll_en & 0x1) << 0)
		);

	/*
	 * DLL control for precharge PD
	 * 0=slow exit DLL off (tXPDLL)
	 * 1=fast exit DLL on (tXP)
	 */

	wr_mclk = picos_to_mclk(c, common_dimm->twr_ps);
	if (wr_mclk <= 24) {
		wr = wr_table[wr_mclk - 10];
	} else {
		printf("Error: unsupported write recovery for mode register wr_mclk = %d\n",
		       wr_mclk);
	}

	dll_rst = 0;	/* dll no reset */
	mode = 0;	/* normal mode */

	/* look up table to get the cas latency bits */
	if (cas_latency >= 9 && cas_latency <= 24)
		caslat = cas_latency_table[cas_latency - 9];
	else
		printf("Error: unsupported cas latency for mode register\n");

	bt = 0;	/* Nibble sequential */

	switch (popts->burst_length) {
	case DDR_BL8:
		bl = 0;
		break;
	case DDR_OTF:
		bl = 1;
		break;
	case DDR_BC4:
		bl = 2;
		break;
	default:
		printf("Error: invalid burst length of %u specified. ",
		       popts->burst_length);
		printf("Defaulting to on-the-fly BC4 or BL8 beats.\n");
		bl = 1;
		break;
	}

	sdmode = (0
		  | ((wr & 0x7) << 9)
		  | ((dll_rst & 0x1) << 8)
		  | ((mode & 0x1) << 7)
		  | (((caslat >> 1) & 0x7) << 4)
		  | ((bt & 0x1) << 3)
		  | ((caslat & 1) << 2)
		  | ((bl & 0x3) << 0)
		  );

	ddr->ddr_sdram_mode = (0
			       | ((esdmode & 0xFFFF) << 16)
			       | ((sdmode & 0xFFFF) << 0)
			       );

	debug("FSLDDR: ddr_sdram_mode = 0x%08x\n", ddr->ddr_sdram_mode);

	if (unq_mrs_en) {	/* unique mode registers are supported */
		for (i = 1; i < c->chip_selects_per_ctrl; i++) {
			if (popts->rtt_override)
				rtt = popts->rtt_override_value;
			else
				rtt = popts->cs_local_opts[i].odt_rtt_norm;

			esdmode &= 0xF8FF;	/* clear bit 10,9,8 for rtt */
			esdmode |= (rtt & 0x7) << 8;
			switch (i) {
			case 1:
				ddr->ddr_sdram_mode_3 = (0
				       | ((esdmode & 0xFFFF) << 16)
				       | ((sdmode & 0xFFFF) << 0)
				       );
				break;
			case 2:
				ddr->ddr_sdram_mode_5 = (0
				       | ((esdmode & 0xFFFF) << 16)
				       | ((sdmode & 0xFFFF) << 0)
				       );
				break;
			case 3:
				ddr->ddr_sdram_mode_7 = (0
				       | ((esdmode & 0xFFFF) << 16)
				       | ((sdmode & 0xFFFF) << 0)
				       );
				break;
			}
		}
		debug("FSLDDR: ddr_sdram_mode_3 = 0x%08x\n",
		      ddr->ddr_sdram_mode_3);
		debug("FSLDDR: ddr_sdram_mode_5 = 0x%08x\n",
		      ddr->ddr_sdram_mode_5);
		debug("FSLDDR: ddr_sdram_mode_5 = 0x%08x\n",
		      ddr->ddr_sdram_mode_5);
	}
}

/* DDR SDRAM Mode configuration set (DDR_SDRAM_MODE) */
static void set_ddr_sdram_mode_ddr3(struct fsl_ddr_controller *c,
			       unsigned int cas_latency,
			       unsigned int additive_latency,
			       const unsigned int unq_mrs_en)
{
	fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
	const memctl_options_t *popts = &c->memctl_opts;
	const struct common_timing_params *common_dimm = &c->common_timing_params;
	int i;
	unsigned short esdmode;		/* Extended SDRAM mode */
	unsigned short sdmode;		/* SDRAM mode */

	/* Mode Register - MR1 */
	unsigned int qoff = 0;		/* Output buffer enable 0=yes, 1=no */
	unsigned int tdqs_en = 0;	/* TDQS Enable: 0=no, 1=yes */
	unsigned int rtt;
	unsigned int wrlvl_en = 0;	/* Write level enable: 0=no, 1=yes */
	unsigned int al = 0;		/* Posted CAS# additive latency (AL) */
	unsigned int dic = 0;		/* Output driver impedance, 40ohm */
	unsigned int dll_en = 0;	/* DLL Enable  0=Enable (Normal),
						       1=Disable (Test/Debug) */

	/* Mode Register - MR0 */
	unsigned int dll_on;	/* DLL control for precharge PD, 0=off, 1=on */
	unsigned int wr = 0;	/* Write Recovery */
	unsigned int dll_rst;	/* DLL Reset */
	unsigned int mode;	/* Normal=0 or Test=1 */
	unsigned int caslat = 4;/* CAS# latency, default set as 6 cycles */
	/* BT: Burst Type (0=Nibble Sequential, 1=Interleaved) */
	unsigned int bt;
	unsigned int bl;	/* BL: Burst Length */

	unsigned int wr_mclk;
	/*
	 * DDR_SDRAM_MODE doesn't support 9,11,13,15
	 * Please refer JEDEC Standard No. 79-3E for Mode Register MR0
	 * for this table
	 */
	static const u8 wr_table[] = {1, 2, 3, 4, 5, 5, 6, 6, 7, 7, 0, 0};

	if (popts->rtt_override)
		rtt = popts->rtt_override_value;
	else
		rtt = popts->cs_local_opts[0].odt_rtt_norm;

	if (additive_latency == (cas_latency - 1))
		al = 1;
	if (additive_latency == (cas_latency - 2))
		al = 2;

	if (popts->quad_rank_present)
		dic = 1;	/* output driver impedance 240/7 ohm */

	/*
	 * The esdmode value will also be used for writing
	 * MR1 during write leveling for DDR3, although the
	 * bits specifically related to the write leveling
	 * scheme will be handled automatically by the DDR
	 * controller. so we set the wrlvl_en = 0 here.
	 */
	esdmode = (0
		| ((qoff & 0x1) << 12)
		| ((tdqs_en & 0x1) << 11)
		| ((rtt & 0x4) << 7)   /* rtt field is split */
		| ((wrlvl_en & 0x1) << 7)
		| ((rtt & 0x2) << 5)   /* rtt field is split */
		| ((dic & 0x2) << 4)   /* DIC field is split */
		| ((al & 0x3) << 3)
		| ((rtt & 0x1) << 2)  /* rtt field is split */
		| ((dic & 0x1) << 1)   /* DIC field is split */
		| ((dll_en & 0x1) << 0)
		);

	/*
	 * DLL control for precharge PD
	 * 0=slow exit DLL off (tXPDLL)
	 * 1=fast exit DLL on (tXP)
	 */
	dll_on = 1;

	wr_mclk = picos_to_mclk(c, common_dimm->twr_ps);
	if (wr_mclk <= 16) {
		wr = wr_table[wr_mclk - 5];
	} else {
		printf("Error: unsupported write recovery for mode register "
		       "wr_mclk = %d\n", wr_mclk);
	}

	dll_rst = 0;	/* dll no reset */
	mode = 0;	/* normal mode */

	/* look up table to get the cas latency bits */
	if (cas_latency >= 5 && cas_latency <= 16) {
		unsigned char cas_latency_table[] = {
			0x2,	/* 5 clocks */
			0x4,	/* 6 clocks */
			0x6,	/* 7 clocks */
			0x8,	/* 8 clocks */
			0xa,	/* 9 clocks */
			0xc,	/* 10 clocks */
			0xe,	/* 11 clocks */
			0x1,	/* 12 clocks */
			0x3,	/* 13 clocks */
			0x5,	/* 14 clocks */
			0x7,	/* 15 clocks */
			0x9,	/* 16 clocks */
		};
		caslat = cas_latency_table[cas_latency - 5];
	} else {
		printf("Error: unsupported cas latency for mode register\n");
	}

	bt = 0;	/* Nibble sequential */

	switch (popts->burst_length) {
	case DDR_BL8:
		bl = 0;
		break;
	case DDR_OTF:
		bl = 1;
		break;
	case DDR_BC4:
		bl = 2;
		break;
	default:
		printf("Error: invalid burst length of %u specified. "
			" Defaulting to on-the-fly BC4 or BL8 beats.\n",
			popts->burst_length);
		bl = 1;
		break;
	}

	sdmode = (0
		  | ((dll_on & 0x1) << 12)
		  | ((wr & 0x7) << 9)
		  | ((dll_rst & 0x1) << 8)
		  | ((mode & 0x1) << 7)
		  | (((caslat >> 1) & 0x7) << 4)
		  | ((bt & 0x1) << 3)
		  | ((caslat & 1) << 2)
		  | ((bl & 0x3) << 0)
		  );

	ddr->ddr_sdram_mode = (0
			       | ((esdmode & 0xFFFF) << 16)
			       | ((sdmode & 0xFFFF) << 0)
			       );

	debug("FSLDDR: ddr_sdram_mode = 0x%08x\n", ddr->ddr_sdram_mode);

	if (unq_mrs_en) {	/* unique mode registers are supported */
		for (i = 1; i < c->chip_selects_per_ctrl; i++) {
			if (popts->rtt_override)
				rtt = popts->rtt_override_value;
			else
				rtt = popts->cs_local_opts[i].odt_rtt_norm;

			esdmode &= 0xFDBB;	/* clear bit 9,6,2 */
			esdmode |= (0
				| ((rtt & 0x4) << 7)   /* rtt field is split */
				| ((rtt & 0x2) << 5)   /* rtt field is split */
				| ((rtt & 0x1) << 2)  /* rtt field is split */
				);
			switch (i) {
			case 1:
				ddr->ddr_sdram_mode_3 = (0
				       | ((esdmode & 0xFFFF) << 16)
				       | ((sdmode & 0xFFFF) << 0)
				       );
				break;
			case 2:
				ddr->ddr_sdram_mode_5 = (0
				       | ((esdmode & 0xFFFF) << 16)
				       | ((sdmode & 0xFFFF) << 0)
				       );
				break;
			case 3:
				ddr->ddr_sdram_mode_7 = (0
				       | ((esdmode & 0xFFFF) << 16)
				       | ((sdmode & 0xFFFF) << 0)
				       );
				break;
			}
		}
		debug("FSLDDR: ddr_sdram_mode_3 = 0x%08x\n",
			ddr->ddr_sdram_mode_3);
		debug("FSLDDR: ddr_sdram_mode_5 = 0x%08x\n",
			ddr->ddr_sdram_mode_5);
		debug("FSLDDR: ddr_sdram_mode_5 = 0x%08x\n",
			ddr->ddr_sdram_mode_5);
	}
}

static void set_ddr_sdram_mode_ddr12(struct fsl_ddr_controller *c,
			       unsigned int cas_latency,
			       unsigned int additive_latency,
			       const unsigned int unq_mrs_en)
{
	fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
	const memctl_options_t *popts = &c->memctl_opts;
	const struct common_timing_params *common_dimm = &c->common_timing_params;
	unsigned short esdmode;		/* Extended SDRAM mode */
	unsigned short sdmode;		/* SDRAM mode */

	/*
	 * FIXME: This ought to be pre-calculated in a
	 * technology-specific routine,
	 * e.g. compute_DDR2_mode_register(), and then the
	 * sdmode and esdmode passed in as part of common_dimm.
	 */

	/* Extended Mode Register */
	unsigned int mrs = 0;		/* Mode Register Set */
	unsigned int outputs = 0;	/* 0=Enabled, 1=Disabled */
	unsigned int rdqs_en = 0;	/* RDQS Enable: 0=no, 1=yes */
	unsigned int dqs_en = 0;	/* DQS# Enable: 0=enable, 1=disable */
	unsigned int ocd = 0;		/* 0x0=OCD not supported,
					   0x7=OCD default state */
	unsigned int rtt;
	unsigned int al;		/* Posted CAS# additive latency (AL) */
	unsigned int ods = 0;		/* Output Drive Strength:
						0 = Full strength (18ohm)
						1 = Reduced strength (4ohm) */
	unsigned int dll_en = 0;	/* DLL Enable  0=Enable (Normal),
						       1=Disable (Test/Debug) */

	/* Mode Register (MR) */
	unsigned int mr;	/* Mode Register Definition */
	unsigned int pd;	/* Power-Down Mode */
	unsigned int wr;	/* Write Recovery */
	unsigned int dll_res;	/* DLL Reset */
	unsigned int mode;	/* Normal=0 or Test=1 */
	unsigned int caslat = 0;/* CAS# latency */
	/* BT: Burst Type (0=Sequential, 1=Interleaved) */
	unsigned int bt;
	unsigned int bl;	/* BL: Burst Length */

	dqs_en = !popts->dqs_config;
	rtt = fsl_ddr_get_rtt(popts);

	al = additive_latency;

	esdmode = (0
		| ((mrs & 0x3) << 14)
		| ((outputs & 0x1) << 12)
		| ((rdqs_en & 0x1) << 11)
		| ((dqs_en & 0x1) << 10)
		| ((ocd & 0x7) << 7)
		| ((rtt & 0x2) << 5)   /* rtt field is split */
		| ((al & 0x7) << 3)
		| ((rtt & 0x1) << 2)   /* rtt field is split */
		| ((ods & 0x1) << 1)
		| ((dll_en & 0x1) << 0)
		);

	mr = 0;		 /* FIXME: CHECKME */

	/*
	 * 0 = Fast Exit (Normal)
	 * 1 = Slow Exit (Low Power)
	 */
	pd = 0;

	if (is_ddr1(popts))
		wr = 0;       /* Historical */
	else
		wr = picos_to_mclk(c, common_dimm->twr_ps);

	dll_res = 0;
	mode = 0;

	if (is_ddr1(popts)) {
		if (1 <= cas_latency && cas_latency <= 4) {
			unsigned char mode_caslat_table[4] = {
				0x5,	/* 1.5 clocks */
				0x2,	/* 2.0 clocks */
				0x6,	/* 2.5 clocks */
				0x3	/* 3.0 clocks */
			};
			caslat = mode_caslat_table[cas_latency - 1];
		} else {
			printf("Warning: unknown cas_latency %d\n", cas_latency);
		}
	} else if (is_ddr2(popts)) {
		caslat = cas_latency;
	}

	bt = 0;

	switch (popts->burst_length) {
	case DDR_BL4:
		bl = 2;
		break;
	case DDR_BL8:
		bl = 3;
		break;
	default:
		printf("Error: invalid burst length of %u specified. "
			" Defaulting to 4 beats.\n",
			popts->burst_length);
		bl = 2;
		break;
	}

	sdmode = (0
		  | ((mr & 0x3) << 14)
		  | ((pd & 0x1) << 12)
		  | ((wr & 0x7) << 9)
		  | ((dll_res & 0x1) << 8)
		  | ((mode & 0x1) << 7)
		  | ((caslat & 0x7) << 4)
		  | ((bt & 0x1) << 3)
		  | ((bl & 0x7) << 0)
		  );

	ddr->ddr_sdram_mode = (0
			       | ((esdmode & 0xFFFF) << 16)
			       | ((sdmode & 0xFFFF) << 0)
			       );
	debug("FSLDDR: ddr_sdram_mode = 0x%08x\n", ddr->ddr_sdram_mode);
}

/*
 * DDR SDRAM Clock Control (DDR_SDRAM_CLK_CNTL)
 * The old controller on the 8540/60 doesn't have this register.
 * Hope it's OK to set it (to 0) anyway.
 */
static void set_ddr_sdram_clk_cntl(struct fsl_ddr_controller *c)
{
	fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
	const memctl_options_t *popts = &c->memctl_opts;
	unsigned int clk_adjust;	/* Clock adjust */
	unsigned int ss_en = 0;		/* Source synchronous enable */

	if (fsl_ddr_get_version(c) >= 0x40701) {
		/* clk_adjust in 5-bits on T-series and LS-series */
		clk_adjust = (popts->clk_adjust & 0x1F) << 22;
	} else {
		/* clk_adjust in 4-bits on earlier MPC85xx and P-series */
		clk_adjust = (popts->clk_adjust & 0xF) << 23;
	}

	ddr->ddr_sdram_clk_cntl = (0
				   | ((ss_en & 0x1) << 31)
				   | clk_adjust
				   );
	debug("FSLDDR: clk_cntl = 0x%08x\n", ddr->ddr_sdram_clk_cntl);
}

/* DDR Initialization Address (DDR_INIT_ADDR) */
static void set_ddr_init_addr(struct fsl_ddr_controller *c)
{
	fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
	unsigned int init_addr = 0;	/* Initialization address */

	ddr->ddr_init_addr = init_addr;
}

/* DDR Initialization Address (DDR_INIT_EXT_ADDR) */
static void set_ddr_init_ext_addr(struct fsl_ddr_controller *c)
{
	fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
	unsigned int uia = 0;	/* Use initialization address */
	unsigned int init_ext_addr = 0;	/* Initialization address */

	ddr->ddr_init_ext_addr = (0
				  | ((uia & 0x1) << 31)
				  | (init_ext_addr & 0xF)
				  );
}

/* DDR SDRAM Timing Configuration 4 (TIMING_CFG_4) */
static void set_timing_cfg_4(struct fsl_ddr_controller *c)
{
	fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
	const memctl_options_t *popts = &c->memctl_opts;
	unsigned int rwt = 0; /* Read-to-write turnaround for same CS */
	unsigned int wrt = 0; /* Write-to-read turnaround for same CS */
	unsigned int rrt = 0; /* Read-to-read turnaround for same CS */
	unsigned int wwt = 0; /* Write-to-write turnaround for same CS */
	unsigned int trwt_mclk = 0;	/* ext_rwt */
	unsigned int dll_lock = 0; /* DDR SDRAM DLL Lock Time */

	if (is_ddr3_4(popts)) {
		if (popts->burst_length == DDR_BL8) {
			/* We set BL/2 for fixed BL8 */
			rrt = 0;	/* BL/2 clocks */
			wwt = 0;	/* BL/2 clocks */
		} else {
			/* We need to set BL/2 + 2 to BC4 and OTF */
			rrt = 2;	/* BL/2 + 2 clocks */
			wwt = 2;	/* BL/2 + 2 clocks */
		}
	}

	if (is_ddr4(popts))
		dll_lock = 2;	/* tDLLK = 1024 clocks */
	else if (is_ddr3(popts))
		dll_lock = 1;	/* tDLLK = 512 clocks from spec */

	if (popts->trwt_override)
		trwt_mclk = popts->trwt;

	ddr->timing_cfg_4 = (0
			     | ((rwt & 0xf) << 28)
			     | ((wrt & 0xf) << 24)
			     | ((rrt & 0xf) << 20)
			     | ((wwt & 0xf) << 16)
			     | ((trwt_mclk & 0xc) << 12)
			     | (dll_lock & 0x3)
			     );
	debug("FSLDDR: timing_cfg_4 = 0x%08x\n", ddr->timing_cfg_4);
}

/* DDR SDRAM Timing Configuration 5 (TIMING_CFG_5) */
static void set_timing_cfg_5(struct fsl_ddr_controller *c, unsigned int cas_latency)
{
	fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
	const memctl_options_t *popts = &c->memctl_opts;
	unsigned int rodt_on = 0;	/* Read to ODT on */
	unsigned int rodt_off = 0;	/* Read to ODT off */
	unsigned int wodt_on = 0;	/* Write to ODT on */
	unsigned int wodt_off = 0;	/* Write to ODT off */

	if (is_ddr3_4(popts)) {
		unsigned int wr_lat = ((ddr->timing_cfg_2 & 0x00780000) >> 19) +
				      ((ddr->timing_cfg_2 & 0x00040000) >> 14);
		/* rodt_on = timing_cfg_1[caslat] - timing_cfg_2[wrlat] + 1 */
		if (cas_latency >= wr_lat)
			rodt_on = cas_latency - wr_lat + 1;
		rodt_off = 4;	/*  4 clocks */
		wodt_on = 1;	/*  1 clocks */
		wodt_off = 4;	/*  4 clocks */
	}

	ddr->timing_cfg_5 = (0
			     | ((rodt_on & 0x1f) << 24)
			     | ((rodt_off & 0x7) << 20)
			     | ((wodt_on & 0x1f) << 12)
			     | ((wodt_off & 0x7) << 8)
			     );
	debug("FSLDDR: timing_cfg_5 = 0x%08x\n", ddr->timing_cfg_5);
}

static void set_timing_cfg_6(struct fsl_ddr_controller *c)
{
	fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
	unsigned int hs_caslat = 0;
	unsigned int hs_wrlat = 0;
	unsigned int hs_wrrec = 0;
	unsigned int hs_clkadj = 0;
	unsigned int hs_wrlvl_start = 0;

	ddr->timing_cfg_6 = (0
			     | ((hs_caslat & 0x1f) << 24)
			     | ((hs_wrlat & 0x1f) << 19)
			     | ((hs_wrrec & 0x1f) << 12)
			     | ((hs_clkadj & 0x1f) << 6)
			     | ((hs_wrlvl_start & 0x1f) << 0)
			    );
	debug("FSLDDR: timing_cfg_6 = 0x%08x\n", ddr->timing_cfg_6);
}

static void set_timing_cfg_7(struct fsl_ddr_controller *c)
{
	fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
	const memctl_options_t *popts = &c->memctl_opts;
	const struct common_timing_params *common_dimm = &c->common_timing_params;
	unsigned int txpr, tcksre, tcksrx;
	unsigned int cke_rst, cksre, cksrx, par_lat = 0, cs_to_cmd;
	const unsigned int mclk_ps = get_memory_clk_period_ps(c);

	txpr = max(5U, picos_to_mclk(c, common_dimm->trfc1_ps + 10000));
	tcksre = max(5U, picos_to_mclk(c, 10000));
	tcksrx = max(5U, picos_to_mclk(c, 10000));

	if (ddr->ddr_sdram_cfg_2 & SDRAM_CFG2_AP_EN && is_ddr4(popts)) {
		/* for DDR4 only */
		par_lat = (ddr->ddr_sdram_rcw_2 & 0xf) + 1;
		debug("PAR_LAT = %u for mclk_ps = %d\n", par_lat, mclk_ps);
	}

	cs_to_cmd = 0;

	if (txpr <= 200)
		cke_rst = 0;
	else if (txpr <= 256)
		cke_rst = 1;
	else if (txpr <= 512)
		cke_rst = 2;
	else
		cke_rst = 3;

	if (tcksre <= 19)
		cksre = tcksre - 5;
	else
		cksre = 15;

	if (tcksrx <= 19)
		cksrx = tcksrx - 5;
	else
		cksrx = 15;

	ddr->timing_cfg_7 = (0
			     | ((cke_rst & 0x3) << 28)
			     | ((cksre & 0xf) << 24)
			     | ((cksrx & 0xf) << 20)
			     | ((par_lat & 0xf) << 16)
			     | ((cs_to_cmd & 0xf) << 4)
			    );
	debug("FSLDDR: timing_cfg_7 = 0x%08x\n", ddr->timing_cfg_7);
}

static void set_timing_cfg_8(struct fsl_ddr_controller *c, unsigned int cas_latency)
{
	fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
	const memctl_options_t *popts = &c->memctl_opts;
	const struct common_timing_params *common_dimm = &c->common_timing_params;
	int rwt_bg, wrt_bg, rrt_bg, wwt_bg;
	unsigned int acttoact_bg, wrtord_bg, pre_all_rec;
	int tccdl = picos_to_mclk(c, common_dimm->tccdl_ps);
	int wr_lat = ((ddr->timing_cfg_2 & 0x00780000) >> 19) +
		      ((ddr->timing_cfg_2 & 0x00040000) >> 14);

	rwt_bg = cas_latency + 2 + 4 - wr_lat;
	if (rwt_bg < tccdl)
		rwt_bg = tccdl - rwt_bg;
	else
		rwt_bg = 0;

	wrt_bg = wr_lat + 4 + 1 - cas_latency;
	if (wrt_bg < tccdl)
		wrt_bg = tccdl - wrt_bg;
	else
		wrt_bg = 0;

	if (popts->burst_length == DDR_BL8) {
		rrt_bg = tccdl - 4;
		wwt_bg = tccdl - 4;
	} else {
		rrt_bg = tccdl - 2;
		wwt_bg = tccdl - 2;
	}

	acttoact_bg = picos_to_mclk(c, common_dimm->trrdl_ps);
	wrtord_bg = max(4U, picos_to_mclk(c, 7500));
	if (popts->otf_burst_chop_en)
		wrtord_bg += 2;

	pre_all_rec = 0;

	ddr->timing_cfg_8 = (0
			     | ((rwt_bg & 0xf) << 28)
			     | ((wrt_bg & 0xf) << 24)
			     | ((rrt_bg & 0xf) << 20)
			     | ((wwt_bg & 0xf) << 16)
			     | ((acttoact_bg & 0xf) << 12)
			     | ((wrtord_bg & 0xf) << 8)
			     | ((pre_all_rec & 0x1f) << 0)
			    );

	debug("FSLDDR: timing_cfg_8 = 0x%08x\n", ddr->timing_cfg_8);
}

static void set_timing_cfg_9(struct fsl_ddr_controller *c)
{
	fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
	const memctl_options_t *popts = &c->memctl_opts;
	const struct common_timing_params *common_dimm = &c->common_timing_params;
	unsigned int refrec_cid_mclk = 0;
	unsigned int acttoact_cid_mclk = 0;

	if (popts->package_3ds) {
		refrec_cid_mclk =
			picos_to_mclk(c, common_dimm->trfc_slr_ps);
		acttoact_cid_mclk = 4U;	/* tRRDS_slr */
	}

	ddr->timing_cfg_9 = (refrec_cid_mclk & 0x3ff) << 16	|
			    (acttoact_cid_mclk & 0xf) << 8;

	debug("FSLDDR: timing_cfg_9 = 0x%08x\n", ddr->timing_cfg_9);
}

/* This function needs to be called after set_ddr_sdram_cfg() is called */
static void set_ddr_dq_mapping(struct fsl_ddr_controller *c)
{
	fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
	const struct dimm_params *dimm_params = c->dimm_params;
	unsigned int acc_ecc_en = (ddr->ddr_sdram_cfg >> 2) & 0x1;
	int i;

	for (i = 0; i < c->dimm_slots_per_ctrl; i++) {
		if (dimm_params[i].n_ranks)
			break;
	}
	if (i >= c->dimm_slots_per_ctrl) {
		printf("DDR error: no DIMM found!\n");
		return;
	}

	ddr->dq_map_0 = ((dimm_params[i].dq_mapping[0] & 0x3F) << 26) |
			((dimm_params[i].dq_mapping[1] & 0x3F) << 20) |
			((dimm_params[i].dq_mapping[2] & 0x3F) << 14) |
			((dimm_params[i].dq_mapping[3] & 0x3F) << 8) |
			((dimm_params[i].dq_mapping[4] & 0x3F) << 2);

	ddr->dq_map_1 = ((dimm_params[i].dq_mapping[5] & 0x3F) << 26) |
			((dimm_params[i].dq_mapping[6] & 0x3F) << 20) |
			((dimm_params[i].dq_mapping[7] & 0x3F) << 14) |
			((dimm_params[i].dq_mapping[10] & 0x3F) << 8) |
			((dimm_params[i].dq_mapping[11] & 0x3F) << 2);

	ddr->dq_map_2 = ((dimm_params[i].dq_mapping[12] & 0x3F) << 26) |
			((dimm_params[i].dq_mapping[13] & 0x3F) << 20) |
			((dimm_params[i].dq_mapping[14] & 0x3F) << 14) |
			((dimm_params[i].dq_mapping[15] & 0x3F) << 8) |
			((dimm_params[i].dq_mapping[16] & 0x3F) << 2);

	/* dq_map for ECC[4:7] is set to 0 if accumulated ECC is enabled */
	ddr->dq_map_3 = ((dimm_params[i].dq_mapping[17] & 0x3F) << 26) |
			((dimm_params[i].dq_mapping[8] & 0x3F) << 20) |
			(acc_ecc_en ? 0 :
			 (dimm_params[i].dq_mapping[9] & 0x3F) << 14) |
			dimm_params[i].dq_mapping_ors;

	debug("FSLDDR: dq_map_0 = 0x%08x\n", ddr->dq_map_0);
	debug("FSLDDR: dq_map_1 = 0x%08x\n", ddr->dq_map_1);
	debug("FSLDDR: dq_map_2 = 0x%08x\n", ddr->dq_map_2);
	debug("FSLDDR: dq_map_3 = 0x%08x\n", ddr->dq_map_3);
}
static void set_ddr_sdram_cfg_3(struct fsl_ddr_controller *c)
{
	fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
	const memctl_options_t *popts = &c->memctl_opts;
	int rd_pre;

	rd_pre = popts->quad_rank_present ? 1 : 0;

	ddr->ddr_sdram_cfg_3 = (rd_pre & 0x1) << 16;
	/* Disable MRS on parity error for RDIMMs */
	ddr->ddr_sdram_cfg_3 |= popts->registered_dimm_en ? 1 : 0;

	if (popts->package_3ds) {	/* only 2,4,8 are supported */
		if ((popts->package_3ds + 1) & 0x1) {
			printf("Error: Unsupported 3DS DIMM with %d die\n",
			       popts->package_3ds + 1);
		} else {
			ddr->ddr_sdram_cfg_3 |= ((popts->package_3ds + 1) >> 1)
						<< 4;
		}
	}

	debug("FSLDDR: ddr_sdram_cfg_3 = 0x%08x\n", ddr->ddr_sdram_cfg_3);
}

/* DDR ZQ Calibration Control (DDR_ZQ_CNTL) */
static void set_ddr_zq_cntl(struct fsl_ddr_controller *c,
			    unsigned int zq_en)
{
	fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
	const memctl_options_t *popts = &c->memctl_opts;
	unsigned int zqinit; /* POR ZQ Calibration Time (tZQinit) */
	unsigned int zqoper; /* Normal Operation Full Calibration Time (tZQoper) */
	unsigned int zqcs; /* Normal Operation Short Calibration Time (tZQCS) */
	unsigned int zqcs_init;

	if (!zq_en) {
		ddr->ddr_zq_cntl = 0;
		goto out;
	}

	if (is_ddr4(popts)) {
		zqinit = 10;	/* 1024 clocks */
		zqoper = 9;	/* 512 clocks */
		zqcs = 7;	/* 128 clocks */
		zqcs_init = 5;	/* 1024 refresh sequences */
	} else {
		zqinit = 9;	/* 512 clocks */
		zqoper = 8;	/* 256 clocks */
		zqcs = 6;	/* 64 clocks */
		zqcs_init = 0;
	}

	ddr->ddr_zq_cntl = ((zq_en & 0x1) << 31)
			    | ((zqinit & 0xF) << 24)
			    | ((zqoper & 0xF) << 16)
			    | ((zqcs & 0xF) << 8)
			    | (zqcs_init & 0xF);

out:
	debug("FSLDDR: zq_cntl = 0x%08x\n", ddr->ddr_zq_cntl);
}

/* DDR Write Leveling Control (DDR_WRLVL_CNTL) */
static void set_ddr_wrlvl_cntl(struct fsl_ddr_controller *c, unsigned int wrlvl_en)
{
	fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
	const memctl_options_t *popts = &c->memctl_opts;

	/*
	 * First DQS pulse rising edge after margining mode
	 * is programmed (tWL_MRD)
	 */
	unsigned int wrlvl_mrd = 0;
	/* ODT delay after margining mode is programmed (tWL_ODTEN) */
	unsigned int wrlvl_odten = 0;
	/* DQS/DQS_ delay after margining mode is programmed (tWL_DQSEN) */
	unsigned int wrlvl_dqsen = 0;
	/* WRLVL_SMPL: Write leveling sample time */
	unsigned int wrlvl_smpl = 0;
	/* WRLVL_WLR: Write leveling repeition time */
	unsigned int wrlvl_wlr = 0;
	/* WRLVL_START: Write leveling start time */
	unsigned int wrlvl_start = 0;

	/* suggest enable write leveling for DDR3 due to fly-by topology */
	if (wrlvl_en) {
		/* tWL_MRD min = 40 nCK, we set it 64 */
		wrlvl_mrd = 0x6;
		/* tWL_ODTEN 128 */
		wrlvl_odten = 0x7;
		/* tWL_DQSEN min = 25 nCK, we set it 32 */
		wrlvl_dqsen = 0x5;
		/*
		 * Write leveling sample time at least need 6 clocks
		 * higher than tWLO to allow enough time for progagation
		 * delay and sampling the prime data bits.
		 */
		wrlvl_smpl = 0xf;
		/*
		 * Write leveling repetition time
		 * at least tWLO + 6 clocks clocks
		 * we set it 64
		 */
		wrlvl_wlr = 0x6;
		/*
		 * Write leveling start time
		 * The value use for the DQS_ADJUST for the first sample
		 * when write leveling is enabled. It probably needs to be
		 * overridden per platform.
		 */
		wrlvl_start = 0x8;
		/*
		 * Override the write leveling sample and start time
		 * according to specific board
		 */
		if (popts->wrlvl_override) {
			wrlvl_smpl = popts->wrlvl_sample;
			wrlvl_start = popts->wrlvl_start;
		}
	}

	ddr->ddr_wrlvl_cntl = (0
			       | ((wrlvl_en & 0x1) << 31)
			       | ((wrlvl_mrd & 0x7) << 24)
			       | ((wrlvl_odten & 0x7) << 20)
			       | ((wrlvl_dqsen & 0x7) << 16)
			       | ((wrlvl_smpl & 0xf) << 12)
			       | ((wrlvl_wlr & 0x7) << 8)
			       | ((wrlvl_start & 0x1F) << 0)
			       );
	debug("FSLDDR: wrlvl_cntl = 0x%08x\n", ddr->ddr_wrlvl_cntl);
	ddr->ddr_wrlvl_cntl_2 = popts->wrlvl_ctl_2;
	debug("FSLDDR: wrlvl_cntl_2 = 0x%08x\n", ddr->ddr_wrlvl_cntl_2);
	ddr->ddr_wrlvl_cntl_3 = popts->wrlvl_ctl_3;
	debug("FSLDDR: wrlvl_cntl_3 = 0x%08x\n", ddr->ddr_wrlvl_cntl_3);

}

/* DDR Self Refresh Counter (DDR_SR_CNTR) */
static void set_ddr_sr_cntr(struct fsl_ddr_controller *c, unsigned int sr_it)
{
	fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;

	/* Self Refresh Idle Threshold */
	ddr->ddr_sr_cntr = (sr_it & 0xF) << 16;
}

static void set_ddr_eor(struct fsl_ddr_controller *c)
{
	fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
	const memctl_options_t *popts = &c->memctl_opts;

	if (popts->addr_hash) {
		ddr->ddr_eor = 0x40000000;	/* address hash enable */
		printf("Address hashing enabled.\n");
	}
}

static void set_ddr_cdr1(struct fsl_ddr_controller *c)
{
	fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
	const memctl_options_t *popts = &c->memctl_opts;

	ddr->ddr_cdr1 = popts->ddr_cdr1;
	debug("FSLDDR: ddr_cdr1 = 0x%08x\n", ddr->ddr_cdr1);
}

static void set_ddr_cdr2(struct fsl_ddr_controller *c)
{
	fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
	const memctl_options_t *popts = &c->memctl_opts;

	ddr->ddr_cdr2 = popts->ddr_cdr2;
	debug("FSLDDR: ddr_cdr2 = 0x%08x\n", ddr->ddr_cdr2);
}

static unsigned int
check_fsl_memctl_config_regs(struct fsl_ddr_controller *c)
{
	fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
	unsigned int res = 0;

	/*
	 * Check that DDR_SDRAM_CFG[RD_EN] and DDR_SDRAM_CFG[2T_EN] are
	 * not set at the same time.
	 */
	if (ddr->ddr_sdram_cfg & 0x10000000
	    && ddr->ddr_sdram_cfg & 0x00008000) {
		printf("Error: DDR_SDRAM_CFG[RD_EN] and DDR_SDRAM_CFG[2T_EN] "
				" should not be set at the same time.\n");
		res++;
	}

	return res;
}

unsigned int
compute_fsl_memctl_config_regs(struct fsl_ddr_controller *c)
{
	const memctl_options_t *popts = &c->memctl_opts;
	fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
	const struct common_timing_params *common_dimm = &c->common_timing_params;
	const struct dimm_params *dimm_params = c->dimm_params;
	unsigned int i;
	unsigned int cas_latency;
	unsigned int additive_latency;
	unsigned int sr_it;
	unsigned int wrlvl_en;
	unsigned int ip_rev = 0;
	unsigned int unq_mrs_en = 0;
	int cs_en = 1;
	unsigned int ddr_freq;
	struct ccsr_ddr __iomem *ddrc = c->base;

	memset(ddr, 0, sizeof(fsl_ddr_cfg_regs_t));

	if (common_dimm == NULL) {
		printf("Error: subset DIMM params struct null pointer\n");
		return 1;
	}

	/*
	 * Process overrides first.
	 *
	 * FIXME: somehow add dereated caslat to this
	 */
	cas_latency = (popts->cas_latency_override)
		? popts->cas_latency_override_value
		: common_dimm->lowest_common_spd_caslat;

	additive_latency = (popts->additive_latency_override)
		? popts->additive_latency_override_value
		: common_dimm->additive_latency;

	sr_it = (popts->auto_self_refresh_en)
		? popts->sr_it
		: 0;
	/* write leveling */
	wrlvl_en = (popts->wrlvl_en) ? 1 : 0;

	/* Chip Select Memory Bounds (CSn_BNDS) */
	for (i = 0; i < c->chip_selects_per_ctrl; i++) {
		unsigned long long ea, sa;
		unsigned int cs_per_dimm
			= c->chip_selects_per_ctrl / c->dimm_slots_per_ctrl;
		unsigned int dimm_number
			= i / cs_per_dimm;
		unsigned long long rank_density
			= dimm_params[dimm_number].rank_density >> c->dbw_capacity_adjust;

		if (dimm_params[dimm_number].n_ranks == 0) {
			debug("Skipping setup of CS%u "
				"because n_ranks on DIMM %u is 0\n", i, dimm_number);
			continue;
		}
		if (popts->memctl_interleaving) {
			switch (popts->ba_intlv_ctl & FSL_DDR_CS0_CS1_CS2_CS3) {
			case FSL_DDR_CS0_CS1_CS2_CS3:
				break;
			case FSL_DDR_CS0_CS1:
			case FSL_DDR_CS0_CS1_AND_CS2_CS3:
				if (i > 1)
					cs_en = 0;
				break;
			case FSL_DDR_CS2_CS3:
			default:
				if (i > 0)
					cs_en = 0;
				break;
			}
			sa = common_dimm->base_address;
			ea = sa + common_dimm->total_mem - 1;
		} else if (!popts->memctl_interleaving) {
			/*
			 * If memory interleaving between controllers is NOT
			 * enabled, the starting address for each memory
			 * controller is distinct.  However, because rank
			 * interleaving is enabled, the starting and ending
			 * addresses of the total memory on that memory
			 * controller needs to be programmed into its
			 * respective CS0_BNDS.
			 */
			switch (popts->ba_intlv_ctl & FSL_DDR_CS0_CS1_CS2_CS3) {
			case FSL_DDR_CS0_CS1_CS2_CS3:
				sa = common_dimm->base_address;
				ea = sa + common_dimm->total_mem - 1;
				break;
			case FSL_DDR_CS0_CS1_AND_CS2_CS3:
				if ((i >= 2) && (dimm_number == 0)) {
					sa = dimm_params[dimm_number].base_address +
					      2 * rank_density;
					ea = sa + 2 * rank_density - 1;
				} else {
					sa = dimm_params[dimm_number].base_address;
					ea = sa + 2 * rank_density - 1;
				}
				break;
			case FSL_DDR_CS0_CS1:
				if (dimm_params[dimm_number].n_ranks > (i % cs_per_dimm)) {
					sa = dimm_params[dimm_number].base_address;
					ea = sa + rank_density - 1;
					if (i != 1)
						sa += (i % cs_per_dimm) * rank_density;
					ea += (i % cs_per_dimm) * rank_density;
				} else {
					sa = 0;
					ea = 0;
				}
				if (i == 0)
					ea += rank_density;
				break;
			case FSL_DDR_CS2_CS3:
				if (dimm_params[dimm_number].n_ranks > (i % cs_per_dimm)) {
					sa = dimm_params[dimm_number].base_address;
					ea = sa + rank_density - 1;
					if (i != 3)
						sa += (i % cs_per_dimm) * rank_density;
					ea += (i % cs_per_dimm) * rank_density;
				} else {
					sa = 0;
					ea = 0;
				}
				if (i == 2)
					ea += (rank_density >> c->dbw_capacity_adjust);
				break;
			default:  /* No bank(chip-select) interleaving */
				sa = dimm_params[dimm_number].base_address;
				ea = sa + rank_density - 1;
				if (dimm_params[dimm_number].n_ranks > (i % cs_per_dimm)) {
					sa += (i % cs_per_dimm) * rank_density;
					ea += (i % cs_per_dimm) * rank_density;
				} else {
					sa = 0;
					ea = 0;
				}
				break;
			}
		}

		sa >>= 24;
		ea >>= 24;

		if (cs_en) {
			ddr->cs[i].bnds = (0
				| ((sa & 0xffff) << 16) /* starting address */
				| ((ea & 0xffff) << 0)	/* ending address */
				);
		} else {
			/* setting bnds to 0xffffffff for inactive CS */
			ddr->cs[i].bnds = 0xffffffff;
		}

		debug("FSLDDR: cs[%d]_bnds = 0x%08x\n", i, ddr->cs[i].bnds);
		set_csn_config(dimm_number, i, ddr, popts, dimm_params);
		set_csn_config_2(i, ddr);
	}

	set_ddr_eor(c);

	if (!is_ddr1(popts))
		set_timing_cfg_0(c);

	set_timing_cfg_3(c, cas_latency,
			 additive_latency);
	set_timing_cfg_1(c, cas_latency);
	set_timing_cfg_2(c, cas_latency, additive_latency);

	set_ddr_cdr1(c);
	set_ddr_cdr2(c);
	set_ddr_sdram_cfg(c);
	ip_rev = fsl_ddr_get_version(c);
	if (ip_rev > 0x40400)
		unq_mrs_en = 1;

	if ((ip_rev > 0x40700) && (popts->cswl_override != 0))
		ddr->debug[18] = popts->cswl_override;

	set_ddr_sdram_cfg_2(c, unq_mrs_en);
	if (is_ddr4(popts)) {
		set_ddr_sdram_mode_ddr4(c, cas_latency, additive_latency, unq_mrs_en);
		set_ddr4_sdram_mode_2(c, unq_mrs_en);
		set_ddr_sdram_mode_9(c, unq_mrs_en);
		set_ddr_sdram_mode_10(c, unq_mrs_en);
	} else if (is_ddr3(popts)) {
		set_ddr_sdram_mode_ddr3(c, cas_latency, additive_latency, unq_mrs_en);
		set_ddr3_sdram_mode_2(c, unq_mrs_en);
	} else {
		set_ddr_sdram_mode_ddr12(c, cas_latency, additive_latency, unq_mrs_en);
		set_ddr1_2_sdram_mode_2(c, unq_mrs_en);
	}

	set_ddr_sdram_rcw(c);

	set_ddr_sdram_interval(c);

	ddr->ddr_data_init = 0xdeadbeef;

	set_ddr_sdram_clk_cntl(c);
	set_ddr_init_addr(c);
	set_ddr_init_ext_addr(c);
	set_timing_cfg_4(c);
	set_timing_cfg_5(c, cas_latency);

	if (is_ddr4(popts)) {
		set_ddr_sdram_cfg_3(c);
		set_timing_cfg_6(c);
		set_timing_cfg_7(c);
		set_timing_cfg_8(c, cas_latency);
		set_timing_cfg_9(c);
		set_ddr_dq_mapping(c);
	}

	set_ddr_zq_cntl(c, popts->zq_en);
	set_ddr_wrlvl_cntl(c, wrlvl_en);

	set_ddr_sr_cntr(c, sr_it);

	if (c->erratum_A004508 && ip_rev >= 0x40000 && ip_rev < 0x40400)
		ddr->debug[2] |= 0x00000200;	/* set bit 22 */

	/* Erratum applies when accumulated ECC is used, or DBI is enabled */
#define IS_ACC_ECC_EN(v) ((v) & 0x4)
#define IS_DBI(v) ((((v) >> 12) & 0x3) == 0x2)
	if (c->erratum_A008378) {
		if (IS_ACC_ECC_EN(ddr->ddr_sdram_cfg) ||
		    IS_DBI(ddr->ddr_sdram_cfg_3)) {
			ddr->debug[28] = ddr_in32(&ddrc->debug[28]);
			ddr->debug[28] |= (0x9 << 20);
		}
	}

	if (c->erratum_A009942) {
		ddr_freq = c->ddr_freq / 1000000;
		ddr->debug[28] |= ddr_in32(&ddrc->debug[28]);
		ddr->debug[28] &= 0xff0fff00;
		if (ddr_freq <= 1333)
			ddr->debug[28] |= 0x0080006a;
		else if (ddr_freq <= 1600)
			ddr->debug[28] |= 0x0070006f;
		else if (ddr_freq <= 1867)
			ddr->debug[28] |= 0x00700076;
		else if (ddr_freq <= 2133)
			ddr->debug[28] |= 0x0060007b;
		if (popts->cpo_sample)
			ddr->debug[28] = (ddr->debug[28] & 0xffffff00) |
					popts->cpo_sample;
	}

	return check_fsl_memctl_config_regs(c);
}