Newer
Older
mbed-os / hal / targets / cmsis / TARGET_STM / TARGET_STM32L0 / stm32l0xx_hal_usart.c
@Mihail Stoyanov Mihail Stoyanov on 23 May 2016 55 KB Simplify layout:
/**
  ******************************************************************************
  * @file    stm32l0xx_hal_usart.c
  * @author  MCD Application Team
  * @version V1.5.0
  * @date    8-January-2016
  * @brief   USART HAL module driver.
  *
  *          This file provides firmware functions to manage the following 
  *          functionalities of the Universal Synchronous/Asynchronous Receiver Transmitter
  *          Peripheral (USART).
  *           + Initialization and de-initialization functions
  *           + IO operation functions
  *           + Peripheral Control functions
  *           
  @verbatim       
 ===============================================================================
                        ##### How to use this driver #####
 ===============================================================================
    [..]
      The USART HAL driver can be used as follows:

      (#) Declare a USART_HandleTypeDef handle structure.
      (#) Initialize the USART low level resources by implement the HAL_USART_MspInit ()API:
          (##) Enable the USARTx interface clock.
          (##) USART pins configuration:
              (+++) Enable the clock for the USART GPIOs.
              (+++) Configure these USART pins as alternate function pull-up.
          (##) NVIC configuration if you need to use interrupt process (HAL_USART_Transmit_IT(),
                HAL_USART_Receive_IT() and HAL_USART_TransmitReceive_IT() APIs):
              (+++) Configure the USARTx interrupt priority.
              (+++) Enable the NVIC USART IRQ handle.
              (@) The specific USART interrupts (Transmission complete interrupt, 
                  RXNE interrupt and Error Interrupts) will be managed using the macros
                  __HAL_USART_ENABLE_IT() and __HAL_USART_DISABLE_IT() inside the transmit and receive process.
          (##) DMA Configuration if you need to use DMA process (HAL_USART_Transmit_DMA()
               HAL_USART_Receive_IT() and HAL_USART_TransmitReceive_IT() APIs):
              (+++) Declare a DMA handle structure for the Tx/Rx stream.
              (+++) Enable the DMAx interface clock.
              (+++) Configure the declared DMA handle structure with the required Tx/Rx parameters.
              (+++) Configure the DMA Tx/Rx Stream.
              (+++) Associate the initilalized DMA handle to the USART DMA Tx/Rx handle.
              (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the DMA Tx/Rx Stream.

      (#) Program the Baud Rate, Word Length, Stop Bit, Parity, Hardware 
          flow control and Mode(Receiver/Transmitter) in the husart Init structure.

      (#) Initialize the USART registers by calling the HAL_USART_Init() API:
          (+) These API's configures also the low level Hardware GPIO, CLOCK, CORTEX...etc)
              by calling the customed HAL_USART_MspInit(&husart) API.

  @endverbatim
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
  *
  * Redistribution and use in source and binary forms, with or without modification,
  * are permitted provided that the following conditions are met:
  *   1. Redistributions of source code must retain the above copyright notice,
  *      this list of conditions and the following disclaimer.
  *   2. Redistributions in binary form must reproduce the above copyright notice,
  *      this list of conditions and the following disclaimer in the documentation
  *      and/or other materials provided with the distribution.
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
  *      may be used to endorse or promote products derived from this software
  *      without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *
  ******************************************************************************  
  */

/* Includes ------------------------------------------------------------------*/
#include "stm32l0xx_hal.h"

/** @addtogroup STM32L0xx_HAL_Driver
  * @{
  */

#ifdef HAL_USART_MODULE_ENABLED

/** @addtogroup USART
  * @brief USART Synchronous module driver
  * @{
  */

/** @addtogroup USART_Private
  * @{
  */

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
#define DUMMY_DATA                             ((uint16_t) 0xFFFF)
#define TEACK_REACK_TIMEOUT                    ((uint32_t) 1000)
#define HAL_USART_TXDMA_TIMEOUTVALUE           ((uint32_t) 22000)


#define USART_CR1_FIELDS        ((uint32_t)(USART_CR1_M | USART_CR1_PCE | \
                                 USART_CR1_PS | USART_CR1_TE | USART_CR1_RE | USART_CR1_OVER8))
#define USART_CR2_FIELDS       ((uint32_t)(USART_CR2_CPHA | USART_CR2_CPOL | \
                            USART_CR2_CLKEN | USART_CR2_LBCL | USART_CR2_STOP))
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
static void USART_DMATransmitCplt(DMA_HandleTypeDef *hdma);
static void USART_DMATxHalfCplt(DMA_HandleTypeDef *hdma);
static void USART_DMAReceiveCplt(DMA_HandleTypeDef *hdma);
static void USART_DMARxHalfCplt(DMA_HandleTypeDef *hdma);
static void USART_DMAError(DMA_HandleTypeDef *hdma); 
static HAL_StatusTypeDef USART_WaitOnFlagUntilTimeout(USART_HandleTypeDef *husart, uint32_t Flag, FlagStatus Status, uint32_t Timeout);
static HAL_StatusTypeDef USART_SetConfig (USART_HandleTypeDef *husart);
static HAL_StatusTypeDef USART_CheckIdleState(USART_HandleTypeDef *husart);
static HAL_StatusTypeDef USART_Transmit_IT(USART_HandleTypeDef *husart);
static HAL_StatusTypeDef USART_EndTransmit_IT(USART_HandleTypeDef *husart);
static HAL_StatusTypeDef USART_Receive_IT(USART_HandleTypeDef *husart);
static HAL_StatusTypeDef USART_TransmitReceive_IT(USART_HandleTypeDef *husart);

/**
  * @}
  */


/** @addtogroup USART_Exported_Functions
  * @{
  */

/** @addtogroup USART_Exported_Functions_Group1
  *  @brief    Initialization and Configuration functions 
  *
@verbatim
 ===============================================================================
            ##### Initialization and Configuration functions #####
 ===============================================================================
    [..]
    This subsection provides a set of functions allowing to initialize the USART 
    in asynchronous and in synchronous modes.
      (+) For the asynchronous mode only these parameters can be configured: 
        (++) Baud Rate
        (++) Word Length 
        (++) Stop Bit
        (++) Parity: If the parity is enabled, then the MSB bit of the data written
             in the data register is transmitted but is changed by the parity bit.
             Depending on the frame length defined by the M bit (8-bits or 9-bits),
             the possible USART frame formats are as listed in the following table:
   +-------------------------------------------------------------+
   |  M0 bit |  PCE bit  |            USART frame                |
   |---------------------|---------------------------------------|
   |    0    |    0      |    | SB | 8 bit data | STB |          |
   |---------|-----------|---------------------------------------|
   |    0    |    1      |    | SB | 7 bit data | PB | STB |     |
   |---------|-----------|---------------------------------------|
   |    1    |    0      |    | SB | 9 bit data | STB |          |
   |---------|-----------|---------------------------------------|
   |    1    |    1      |    | SB | 8 bit data | PB | STB |     |
   +-------------------------------------------------------------+
        (++) USART polarity
        (++) USART phase
        (++) USART LastBit
        (++) Receiver/transmitter modes

    [..]
    The HAL_USART_Init() function follows the USART  synchronous configuration 
    procedure (details for the procedure are available in reference manual (RM0329)).

@endverbatim
  * @{
  */

/**
  * @brief  Initializes the USART mode according to the specified
  *         parameters in the USART_InitTypeDef and create the associated handle.
  * @param  husart: USART handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_USART_Init(USART_HandleTypeDef *husart)
{
  /* Check the USART handle allocation */
  if(husart == NULL)
  {
    return HAL_ERROR;
  }

  /* Check the parameters */
  assert_param(IS_USART_INSTANCE(husart->Instance));

  if(husart->State == HAL_USART_STATE_RESET)
  {
    /* Allocate lock resource and initialize it */
    husart->Lock = HAL_UNLOCKED;

    /* Init the low level hardware : GPIO, CLOCK, CORTEX */
    HAL_USART_MspInit(husart);
  }
  
  husart->State = HAL_USART_STATE_BUSY;
  
  /* Disable the Peripheral */
  __HAL_USART_DISABLE(husart);
  
  /* Set the Usart Communication parameters */
  if (USART_SetConfig(husart) == HAL_ERROR)
  {
    return HAL_ERROR;
  }
  
  /* In Synchronous mode, the following bits must be kept cleared: 
  - LINEN bit in the USART_CR2 register
  - HDSEL, SCEN and IREN bits in the USART_CR3 register.*/
  husart->Instance->CR2 &= ~USART_CR2_LINEN;
  husart->Instance->CR3 &= ~(USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN);
  
  /* Enable the Peripharal */
  __HAL_USART_ENABLE(husart);
  
  /* TEACK and/or REACK to check before moving husart->State to Ready */
  return (USART_CheckIdleState(husart));
}

/**
  * @brief  DeInitializes the USART peripheral.
  * @param  husart: USART handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_USART_DeInit(USART_HandleTypeDef *husart)
{
   /* Check the USART handle allocation */
  if(husart == NULL)
  {
    return HAL_ERROR;
  }

  /* Check the parameters */
  assert_param(IS_USART_INSTANCE(husart->Instance));

  husart->State = HAL_USART_STATE_BUSY;
  
  husart->Instance->CR1 = 0x0;
  husart->Instance->CR2 = 0x0;
  husart->Instance->CR3 = 0x0;
  
  /* DeInit the low level hardware */
  HAL_USART_MspDeInit(husart);

  husart->ErrorCode = HAL_USART_ERROR_NONE;
  husart->State = HAL_USART_STATE_RESET;
  
  /* Release Lock */
  __HAL_UNLOCK(husart);
  
  return HAL_OK;
}

/**
  * @brief  USART MSP Init.
  * @param  husart: USART handle
  * @retval None
  */
 __weak void HAL_USART_MspInit(USART_HandleTypeDef *husart)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(husart);

  /* NOTE: This function Should not be modified, when the callback is needed,
           the HAL_USART_MspInit could be implenetd in the user file
   */ 
}

/**
  * @brief  USART MSP DeInit.
  * @param  husart: USART handle
  * @retval None
  */
 __weak void HAL_USART_MspDeInit(USART_HandleTypeDef *husart)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(husart);

  /* NOTE: This function Should not be modified, when the callback is needed,
           the HAL_USART_MspDeInit could be implenetd in the user file
   */ 
}

/**
  * @}
  */

/** @addtogroup USART_Exported_Functions_Group2
  *  @brief   USART Transmit and Receive functions 
  *
@verbatim
 ===============================================================================
                      ##### IO operation functions #####
 ===============================================================================
  [..]
    This subsection provides a set of functions allowing to manage the USART synchronous
    data transfers.
      
    [..] The USART supports master mode only: it cannot receive or send data related to an input
         clock (SCLK is always an output).

    (#) There are two modes of transfer:
       (++) Blocking mode: The communication is performed in polling mode. 
            The HAL status of all data processing is returned by the same function 
            after finishing transfer.  
       (++) No-Blocking mode: The communication is performed using Interrupts 
           or DMA, These API's return the HAL status.
           The end of the data processing will be indicated through the 
           dedicated USART IRQ when using Interrupt mode or the DMA IRQ when 
           using DMA mode.
           The HAL_USART_TxCpltCallback(), HAL_USART_RxCpltCallback() and HAL_USART_TxRxCpltCallback() user callbacks 
           will be executed respectivelly at the end of the transmit or Receive process
           The HAL_USART_ErrorCallback()user callback will be executed when a communication error is detected.

    (#) Blocking mode API's are :
        (++) HAL_USART_Transmit()in simplex mode
        (++) HAL_USART_Receive() in full duplex receive only
        (++) HAL_USART_TransmitReceive() in full duplex mode
        
    (#) Non-Blocking mode API's with Interrupt are :
        (++) HAL_USART_Transmit_IT()in simplex mode
        (++) HAL_USART_Receive_IT() in full duplex receive only
        (++) HAL_USART_TransmitReceive_IT()in full duplex mode
        (++) HAL_USART_IRQHandler()

    (#) No-Blocking mode functions with DMA are :
        (++) HAL_USART_Transmit_DMA()in simplex mode
        (++) HAL_USART_Receive_DMA() in full duplex receive only
        (++) HAL_USART_TransmitReceive_DMA() in full duplex mode
        (++) HAL_USART_DMAPause()
        (++) HAL_USART_DMAResume()
        (++) HAL_USART_DMAStop()

    (#) A set of Transfer Complete Callbacks are provided in No_Blocking mode:
        (++) HAL_USART_TxCpltCallback()
        (++) HAL_USART_RxCpltCallback()
        (++) HAL_USART_TxHalfCpltCallback()
        (++) HAL_USART_RxHalfCpltCallback()
        (++) HAL_USART_ErrorCallback()
        (++) HAL_USART_TxRxCpltCallback()

@endverbatim
  * @{
  */

/**
  * @brief  Simplex Send an amount of data in blocking mode  
  * @param  husart: USART handle
  * @param  pTxData: Pointer to data buffer
  * @param  Size: Amount of data to be sent
  * @param Timeout : Timeout duration
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_USART_Transmit(USART_HandleTypeDef *husart, uint8_t *pTxData, uint16_t Size, uint32_t Timeout)
{
  uint16_t* tmp;

  if(husart->State == HAL_USART_STATE_READY)
  {
    if((pTxData == NULL) || (Size == 0)) 
    {
      return  HAL_ERROR;
    }

    /* Process Locked */
    __HAL_LOCK(husart);

    husart->ErrorCode = HAL_USART_ERROR_NONE;
    husart->State = HAL_USART_STATE_BUSY_TX;

    husart->TxXferSize = Size;
    husart->TxXferCount = Size;
    
    /* Check the remaining data to be sent */
    while(husart->TxXferCount > 0)
    {
      husart->TxXferCount--;
      if(USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_TXE, RESET, Timeout) != HAL_OK)
        {
          return HAL_TIMEOUT;
        }
      if((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE))
      {
        tmp = (uint16_t*) pTxData;
        husart->Instance->TDR = (*tmp & (uint16_t)0x01FF);
        pTxData += 2;
      } 
      else
      {
        husart->Instance->TDR = (*pTxData++ & (uint8_t)0xFF);
      }
    }

    if(USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_TC, RESET, Timeout) != HAL_OK)
    { 
      return HAL_TIMEOUT;
    }

    husart->State = HAL_USART_STATE_READY;

    /* Process Unlocked */
    __HAL_UNLOCK(husart);

    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief Receive an amount of data in blocking mode 
  *        To receive synchronous data, dummy data are simultaneously transmitted  
  * @param husart: USART handle
  * @param pRxData: pointer to data buffer
  * @param Size: amount of data to be received
  * @param Timeout : Timeout duration
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_USART_Receive(USART_HandleTypeDef *husart, uint8_t *pRxData, uint16_t Size, uint32_t Timeout)
{
  uint16_t* tmp;
  uint16_t uhMask;
  
  if(husart->State == HAL_USART_STATE_READY)
  {
    if((pRxData == NULL) || (Size == 0)) 
    {
      return  HAL_ERROR;
    }
    /* Process Locked */
    __HAL_LOCK(husart);

    husart->ErrorCode = HAL_USART_ERROR_NONE;
    husart->State = HAL_USART_STATE_BUSY_RX;

    husart->RxXferSize = Size;
    husart->RxXferCount = Size;
    
    /* Computation of USART mask to apply to RDR register */
    USART_MASK_COMPUTATION(husart);
    uhMask = husart->Mask;
    
    /* as long as data have to be received */
    while(husart->RxXferCount > 0)
    {
      husart->RxXferCount--;
      
      /* Wait until TXE flag is set to send dummy byte in order to generate the 
      * clock for the slave to send data.
       * Whatever the frame length (7, 8 or 9-bit long), the same dummy value 
       * can be written for all the cases. */
      if(USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_TXE, RESET, Timeout) != HAL_OK)
      {            
        return HAL_TIMEOUT;  
      }
      husart->Instance->TDR = (DUMMY_DATA & (uint16_t)0x0FF);         
        
      /* Wait for RXNE Flag */
      if(USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_RXNE, RESET, Timeout) != HAL_OK)
      {            
        return HAL_TIMEOUT;
      }
      
      if((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE))
      {
        tmp = (uint16_t*) pRxData ;
        *tmp = (uint16_t)(husart->Instance->RDR & uhMask);
        pRxData +=2;        
      } 
      else
      {
        *pRxData++ = (uint8_t)(husart->Instance->RDR & (uint8_t)uhMask);  
      }
    }

    husart->State = HAL_USART_STATE_READY;

    /* Process Unlocked */
    __HAL_UNLOCK(husart);

    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief Full-Duplex Send and Receive an amount of data in blocking mode 
  * @param husart: USART handle
  * @param pTxData: pointer to TX data buffer
  * @param pRxData: pointer to RX data buffer
  * @param Size: amount of data to be sent (same amount to be received)
  * @param Timeout : Timeout duration
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_USART_TransmitReceive(USART_HandleTypeDef *husart, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size, uint32_t Timeout)
{
  uint16_t* tmp;
  uint16_t uhMask;
  
  if(husart->State == HAL_USART_STATE_READY)
  {
    if((pTxData == NULL) || (pRxData == NULL) || (Size == 0)) 
    {
      return  HAL_ERROR;
    }
    /* Process Locked */
    __HAL_LOCK(husart);
    
    husart->ErrorCode = HAL_USART_ERROR_NONE;
    husart->State = HAL_USART_STATE_BUSY_RX;
    
    husart->RxXferSize = Size;
    husart->TxXferSize = Size;
    husart->TxXferCount = Size;
    husart->RxXferCount = Size;
    
    /* Computation of USART mask to apply to RDR register */
    USART_MASK_COMPUTATION(husart);
    uhMask = husart->Mask;
    
    /* Check the remain data to be sent */
    while(husart->TxXferCount > 0)
    {
      husart->TxXferCount--;
      husart->RxXferCount--;
      
      /* Wait until TXE flag is set to send data */
      if(USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_TXE, RESET, Timeout) != HAL_OK)
      {            
        return HAL_TIMEOUT;
      }
      if((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE))
      {
        tmp = (uint16_t*) pTxData;
        husart->Instance->TDR = (*tmp & uhMask);
        pTxData += 2;
      }
      else
      {
        husart->Instance->TDR = (*pTxData++ & (uint8_t)uhMask);         
      }   
      
      /* Wait for RXNE Flag */
      if(USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_RXNE, RESET, Timeout) != HAL_OK)
      {            
        return HAL_TIMEOUT;
      }
      
      if((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE))
      {
        tmp = (uint16_t*) pRxData ;
        *tmp = (uint16_t)(husart->Instance->RDR & uhMask);
        pRxData +=2;        
      } 
      else
      {
        *pRxData++ = (uint8_t)(husart->Instance->RDR & (uint8_t)uhMask);  
      }
    }
    
    husart->State = HAL_USART_STATE_READY;
    
    /* Process Unlocked */
    __HAL_UNLOCK(husart);
    
    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief  Send an amount of data in interrupt mode 
  * @param  husart: USART handle
  * @param  pTxData: Pointer to data buffer
  * @param  Size: Amount of data to be sent
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_USART_Transmit_IT(USART_HandleTypeDef *husart, uint8_t *pTxData, uint16_t Size)
{
  if(husart->State == HAL_USART_STATE_READY)
  {
    if((pTxData == NULL ) || (Size == 0)) 
    {
      return HAL_ERROR;
    }

    /* Process Locked */
    __HAL_LOCK(husart);

    husart->pTxBuffPtr = pTxData;
    husart->TxXferSize = Size;
    husart->TxXferCount = Size;

    husart->ErrorCode = HAL_USART_ERROR_NONE;
    husart->State = HAL_USART_STATE_BUSY_TX;

    /* The USART Error Interrupts: (Frame error, noise error, overrun error) 
    are not managed by the USART Transmit Process to avoid the overrun interrupt
    when the usart mode is configured for transmit and receive "USART_MODE_TX_RX"
    to benefit for the frame error and noise interrupts the usart mode should be 
    configured only for transmit "USART_MODE_TX" */
    
    /* Process Unlocked */
    __HAL_UNLOCK(husart);

    /* Enable the USART Transmit Complete Interrupt */
    __HAL_USART_ENABLE_IT(husart, USART_IT_TXE);

    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief Receive an amount of data in blocking mode 
  *        To receive synchronous data, dummy data are simultaneously transmitted  
  * @param husart: usart handle
  * @param pRxData: pointer to data buffer
  * @param Size: amount of data to be received
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_USART_Receive_IT(USART_HandleTypeDef *husart, uint8_t *pRxData, uint16_t Size)
{
  if(husart->State == HAL_USART_STATE_READY)
  {
    if((pRxData == NULL ) || (Size == 0)) 
    {
      return HAL_ERROR;
    }
    /* Process Locked */
    __HAL_LOCK(husart);

    husart->pRxBuffPtr = pRxData;
    husart->RxXferSize = Size;
    husart->RxXferCount = Size;

    USART_MASK_COMPUTATION(husart);
    
    husart->ErrorCode = HAL_USART_ERROR_NONE;
    husart->State = HAL_USART_STATE_BUSY_RX;
    
    /* Enable the USART Parity Error Interrupt */
    __HAL_USART_ENABLE_IT(husart, USART_IT_PE);

    /* Enable the USART Error Interrupt: (Frame error, noise error, overrun error) */
    __HAL_USART_ENABLE_IT(husart, USART_IT_ERR);

    /* Enable the USART Data Register not empty Interrupt */
    __HAL_USART_ENABLE_IT(husart, USART_IT_RXNE); 
    
    /* Process Unlocked */
    __HAL_UNLOCK(husart);

    /* Send dummy byte in order to generate the clock for the Slave to send the next data */
    if(husart->Init.WordLength == USART_WORDLENGTH_9B)
    {
      husart->Instance->TDR = (DUMMY_DATA & (uint16_t)0x01FF); 
    } 
    else
    {
      husart->Instance->TDR = (DUMMY_DATA & (uint16_t)0x00FF);
    }
    
    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief Full-Duplex Send and Receive an amount of data in interrupt mode 
  * @param husart: USART handle
  * @param pTxData: pointer to TX data buffer
  * @param pRxData: pointer to RX data buffer
  * @param Size: amount of data to be sent (same amount to be received)   
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_USART_TransmitReceive_IT(USART_HandleTypeDef *husart, uint8_t *pTxData, uint8_t *pRxData,  uint16_t Size)
{
  if(husart->State == HAL_USART_STATE_READY)
  {
    if((pTxData == NULL) || (pRxData == NULL) || (Size == 0)) 
    {
      return HAL_ERROR;
    }
    /* Process Locked */
    __HAL_LOCK(husart);

    husart->pRxBuffPtr = pRxData;
    husart->RxXferSize = Size;
    husart->RxXferCount = Size;
    husart->pTxBuffPtr = pTxData;
    husart->TxXferSize = Size;
    husart->TxXferCount = Size;
    
    /* Computation of USART mask to apply to RDR register */
    USART_MASK_COMPUTATION(husart);

    husart->ErrorCode = HAL_USART_ERROR_NONE;
    husart->State = HAL_USART_STATE_BUSY_TX_RX;

    /* Enable the USART Data Register not empty Interrupt */
    __HAL_USART_ENABLE_IT(husart, USART_IT_RXNE); 

    /* Enable the USART Parity Error Interrupt */
    __HAL_USART_ENABLE_IT(husart, USART_IT_PE);

    /* Enable the USART Error Interrupt: (Frame error, noise error, overrun error) */
    __HAL_USART_ENABLE_IT(husart, USART_IT_ERR);

    /* Process Unlocked */
    __HAL_UNLOCK(husart);

    /* Enable the USART Transmit Complete Interrupt */
    __HAL_USART_ENABLE_IT(husart, USART_IT_TXE);

    return HAL_OK;
  }
  else
  {
    return HAL_BUSY; 
  }
}

/**
  * @brief Send an amount of data in DMA mode 
  * @param husart: USART handle
  * @param pTxData: pointer to data buffer
  * @param Size: amount of data to be sent
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_USART_Transmit_DMA(USART_HandleTypeDef *husart, uint8_t *pTxData, uint16_t Size)
{
  uint32_t *tmp;
  
  if(husart->State == HAL_USART_STATE_READY)
  {
    if((pTxData == NULL ) || (Size == 0)) 
    {
      return HAL_ERROR;
    }
    /* Process Locked */
    __HAL_LOCK(husart);  

    husart->pTxBuffPtr = pTxData;
    husart->TxXferSize = Size;
    husart->TxXferCount = Size;

    husart->ErrorCode = HAL_USART_ERROR_NONE;
    husart->State = HAL_USART_STATE_BUSY_TX;

    /* Set the USART DMA transfer complete callback */
    husart->hdmatx->XferCpltCallback = USART_DMATransmitCplt;

    /* Set the USART DMA Half transfer complete callback */
    husart->hdmatx->XferHalfCpltCallback = USART_DMATxHalfCplt;

    /* Set the DMA error callback */
    husart->hdmatx->XferErrorCallback = USART_DMAError;

    /* Enable the USART transmit DMA channel */
    tmp = (uint32_t*)&pTxData;
    HAL_DMA_Start_IT(husart->hdmatx, *(uint32_t*)tmp, (uint32_t)&husart->Instance->TDR, Size);

    /* Clear the TC flag in the SR register by writing 0 to it */
    __HAL_USART_CLEAR_FLAG(husart, USART_FLAG_TC);

    /* Enable the DMA transfer for transmit request by setting the DMAT bit
       in the USART CR3 register */
    husart->Instance->CR3 |= USART_CR3_DMAT;

    /* Process Unlocked */
    __HAL_UNLOCK(husart);

    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief Receive an amount of data in DMA mode 
  * @param husart: USART handle
  * @param pRxData: pointer to data buffer
  * @param Size: amount of data to be received
  * @note   When the USART parity is enabled (PCE = 1), the received data contain 
  *         the parity bit (MSB position)
  * @retval HAL status
  * @note The USART DMA transmit stream must be configured in order to generate the clock for the slave.
  */
HAL_StatusTypeDef HAL_USART_Receive_DMA(USART_HandleTypeDef *husart, uint8_t *pRxData, uint16_t Size)
{
  uint32_t *tmp;
  
  if(husart->State == HAL_USART_STATE_READY)
  {
    if((pRxData == NULL ) || (Size == 0)) 
    {
      return HAL_ERROR;
    }

    /* Process Locked */
    __HAL_LOCK(husart);

    husart->pRxBuffPtr = pRxData;
    husart->RxXferSize = Size;
    husart->pTxBuffPtr = pRxData;
    husart->TxXferSize = Size;

    husart->ErrorCode = HAL_USART_ERROR_NONE;
    husart->State = HAL_USART_STATE_BUSY_RX;

    /* Set the USART DMA Rx transfer complete callback */
    husart->hdmarx->XferCpltCallback = USART_DMAReceiveCplt;

    /* Set the USART DMA Half transfer complete callback */
    husart->hdmarx->XferHalfCpltCallback = USART_DMARxHalfCplt;

    /* Set the USART DMA Rx transfer error callback */
    husart->hdmarx->XferErrorCallback = USART_DMAError;

    /* Enable the USART receive DMA Stream */
    tmp = (uint32_t*)&pRxData;
    HAL_DMA_Start_IT(husart->hdmarx, (uint32_t)&husart->Instance->RDR, *(uint32_t*)tmp, Size);

    /* Enable the USART transmit DMA channel: the transmit channel is used in order
       to generate in the non-blocking mode the clock to the slave device, 
       this mode isn't a simplex receive mode but a full-duplex receive mode */
    tmp = (uint32_t*)&pRxData;
    HAL_DMA_Start_IT(husart->hdmatx, *(uint32_t*)tmp, (uint32_t)&husart->Instance->TDR, Size);
    
    /* Clear the Overrun flag just before enabling the DMA Rx request: mandatory for the second transfer
    when using the USART in circular mode */
    __HAL_USART_CLEAR_IT(husart, USART_CLEAR_OREF);
    
    /* Enable the DMA transfer for the receiver request by setting the DMAR bit 
       in the USART CR3 register */
    husart->Instance->CR3 |= USART_CR3_DMAR;

    /* Enable the DMA transfer for transmit request by setting the DMAT bit
       in the USART CR3 register */
    husart->Instance->CR3 |= USART_CR3_DMAT;

    /* Process Unlocked */
    __HAL_UNLOCK(husart);

    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief Full-Duplex Transmit Receive an amount of data in non blocking mode 
  * @param husart: usart handle
  * @param pTxData: pointer to TX data buffer
  * @param pRxData: pointer to RX data buffer
  * @param Size: amount of data to be received/sent
  * @note   When the USART parity is enabled (PCE = 1) the data received contain the parity bit.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_USART_TransmitReceive_DMA(USART_HandleTypeDef *husart, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size)
{
  uint32_t *tmp;
  
  if(husart->State == HAL_USART_STATE_READY)
  {
    if((pTxData == NULL) || (pRxData == NULL) || (Size == 0)) 
    {
      return HAL_ERROR;
    }
    /* Process Locked */
    __HAL_LOCK(husart);

    husart->pRxBuffPtr = pRxData;
    husart->RxXferSize = Size;
    husart->pTxBuffPtr = pTxData;
    husart->TxXferSize = Size;

    husart->ErrorCode = HAL_USART_ERROR_NONE;
    husart->State = HAL_USART_STATE_BUSY_TX_RX;

    /* Set the USART DMA Rx transfer complete callback */
    husart->hdmarx->XferCpltCallback = USART_DMAReceiveCplt;

    /* Set the USART DMA Half transfer complete callback */
    husart->hdmarx->XferHalfCpltCallback = USART_DMARxHalfCplt;

    /* Set the USART DMA Tx transfer complete callback */
    husart->hdmatx->XferCpltCallback = USART_DMATransmitCplt;

    /* Set the USART DMA Half transfer complete callback */
    husart->hdmatx->XferHalfCpltCallback = USART_DMATxHalfCplt;

    /* Set the USART DMA Tx transfer error callback */
    husart->hdmatx->XferErrorCallback = USART_DMAError;

    /* Set the USART DMA Rx transfer error callback */
    husart->hdmarx->XferErrorCallback = USART_DMAError;

    /* Enable the USART receive DMA Stream */
    tmp = (uint32_t*)&pRxData;
    HAL_DMA_Start_IT(husart->hdmarx, (uint32_t)&husart->Instance->RDR, *(uint32_t*)tmp, Size);

    /* Enable the USART transmit DMA Stream */
    tmp = (uint32_t*)&pTxData;
    HAL_DMA_Start_IT(husart->hdmatx, *(uint32_t*)tmp, (uint32_t)&husart->Instance->TDR, Size);
    
   /* Clear the Overrun flag: mandatory for the second transfer in circular mode */
    __HAL_USART_CLEAR_IT(husart, USART_CLEAR_OREF);
    
    /* Clear the TC flag in the SR register by writing 0 to it */
    __HAL_USART_CLEAR_FLAG(husart, USART_FLAG_TC);

    /* Enable the DMA transfer for the receiver request by setting the DMAR bit 
       in the USART CR3 register */
    husart->Instance->CR3 |= USART_CR3_DMAR;

    /* Enable the DMA transfer for transmit request by setting the DMAT bit
       in the USART CR3 register */
    husart->Instance->CR3 |= USART_CR3_DMAT;

    /* Process Unlocked */
    __HAL_UNLOCK(husart);

    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief Pauses the DMA Transfer.
  * @param husart: USART handle
  * @retval None
  */
HAL_StatusTypeDef HAL_USART_DMAPause(USART_HandleTypeDef *husart)
{
  /* Process Locked */
  __HAL_LOCK(husart);

  /* Disable the USART DMA Tx request */
  husart->Instance->CR3 &= (uint32_t)(~USART_CR3_DMAT);

  /* Process Unlocked */
  __HAL_UNLOCK(husart);

  return HAL_OK; 
}

/**
  * @brief Resumes the DMA Transfer.
  * @param husart: USART handle
  * @retval None
  */
HAL_StatusTypeDef HAL_USART_DMAResume(USART_HandleTypeDef *husart)
{
  /* Process Locked */
  __HAL_LOCK(husart);
 
  /* Enable the USART DMA Tx request */
   husart->Instance->CR3 |= USART_CR3_DMAT;

  /* Process Unlocked */
  __HAL_UNLOCK(husart);

  return HAL_OK;
}

/**
  * @brief Stops the DMA Transfer.
  * @param husart: USART handle
  * @retval None
  */
HAL_StatusTypeDef HAL_USART_DMAStop(USART_HandleTypeDef *husart)
{
 /* The Lock is not implemented on this API to allow the user application
     to call the HAL USART API under callbacks HAL_USART_TxCpltCallback() / HAL_USART_RxCpltCallback():
     when calling HAL_DMA_Abort() API the DMA TX/RX Transfer complete interrupt is generated
     and the correspond call back is executed HAL_USART_TxCpltCallback() / HAL_USART_RxCpltCallback()
     */

  /* Abort the USART DMA tx Stream */
  if(husart->hdmatx != NULL)
  {
    HAL_DMA_Abort(husart->hdmatx);
  }
  /* Abort the USART DMA rx Stream */
  if(husart->hdmarx != NULL)
  {
    HAL_DMA_Abort(husart->hdmarx);
  }
  
  /* Disable the USART Tx/Rx DMA requests */
  husart->Instance->CR3 &= ~USART_CR3_DMAT;
  husart->Instance->CR3 &= ~USART_CR3_DMAR;

  husart->State = HAL_USART_STATE_READY;

  return HAL_OK;
}

/**
  * @brief  This function handles USART interrupt request.
  * @param  husart: USART handle
  * @retval None
  */
void HAL_USART_IRQHandler(USART_HandleTypeDef *husart)
{
  
  /* USART parity error interrupt occured ------------------------------------*/
  if((__HAL_USART_GET_IT(husart, USART_IT_PE) != RESET) && (__HAL_USART_GET_IT_SOURCE(husart, USART_IT_PE) != RESET))
  { 
    __HAL_USART_CLEAR_PEFLAG(husart);
    husart->ErrorCode |= HAL_USART_ERROR_PE;
    /* Set the USART state ready to be able to start again the process */
    husart->State = HAL_USART_STATE_READY;
  }
  
  /* USART frame error interrupt occured -------------------------------------*/
  if((__HAL_USART_GET_IT(husart, USART_IT_FE) != RESET) && (__HAL_USART_GET_IT_SOURCE(husart, USART_IT_ERR) != RESET))
  { 
    __HAL_USART_CLEAR_FEFLAG(husart);
    husart->ErrorCode |= HAL_USART_ERROR_FE;
    /* Set the USART state ready to be able to start again the process */
    husart->State = HAL_USART_STATE_READY;
  }
  
  /* USART noise error interrupt occured -------------------------------------*/
  if((__HAL_USART_GET_IT(husart, USART_IT_NE) != RESET) && (__HAL_USART_GET_IT_SOURCE(husart, USART_IT_ERR) != RESET))
  { 
    __HAL_USART_CLEAR_NEFLAG(husart);
    husart->ErrorCode |= HAL_USART_ERROR_NE;
    /* Set the USART state ready to be able to start again the process */
    husart->State = HAL_USART_STATE_READY;
  }
  
  /* USART Over-Run interrupt occured ----------------------------------------*/
  if((__HAL_USART_GET_IT(husart, USART_IT_ORE) != RESET) && (__HAL_USART_GET_IT_SOURCE(husart, USART_IT_ERR) != RESET))
  { 
    __HAL_USART_CLEAR_OREFLAG(husart);
    husart->ErrorCode |= HAL_USART_ERROR_ORE;
    /* Set the USART state ready to be able to start again the process */
    husart->State = HAL_USART_STATE_READY;
  }
 
   /* Call USART Error Call back function if need be --------------------------*/
  if(husart->ErrorCode != HAL_USART_ERROR_NONE)
  {
    HAL_USART_ErrorCallback(husart);
  }  
 
  /* USART in mode Receiver --------------------------------------------------*/
  if((__HAL_USART_GET_IT(husart, USART_IT_RXNE) != RESET) && (__HAL_USART_GET_IT_SOURCE(husart, USART_IT_RXNE) != RESET))
  {
    if(husart->State == HAL_USART_STATE_BUSY_RX)
    {
      USART_Receive_IT(husart);
    }
    else
    {
      USART_TransmitReceive_IT(husart);
    }
  }
  
  /* USART in mode Transmitter -----------------------------------------------*/
  if((__HAL_USART_GET_IT(husart, USART_IT_TXE) != RESET) &&(__HAL_USART_GET_IT_SOURCE(husart, USART_IT_TXE) != RESET))
  {    
    if(husart->State == HAL_USART_STATE_BUSY_TX)
    {
      USART_Transmit_IT(husart);
    }
    else
    {
      USART_TransmitReceive_IT(husart);
    }
  }
  
   /* USART in mode Transmitter (transmission end) -----------------------------*/
  if((__HAL_USART_GET_IT(husart, USART_IT_TC) != RESET) &&(__HAL_USART_GET_IT_SOURCE(husart, USART_IT_TC) != RESET))
  {
    USART_EndTransmit_IT(husart);
  } 
}

/**
  * @brief  Tx Transfer completed callbacks.
  * @param  husart: USART handle
  * @retval None
  */
 __weak void HAL_USART_TxCpltCallback(USART_HandleTypeDef *husart)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(husart);

  /* NOTE: This function Should not be modified, when the callback is needed,
           the HAL_USART_TxCpltCallback could be implemented in the user file
   */
}

/**
  * @brief  Tx Half Transfer completed callbacks.
  * @param  husart: USART handle
  * @retval None
  */
 __weak void HAL_USART_TxHalfCpltCallback(USART_HandleTypeDef *husart)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(husart);

  /* NOTE: This function Should not be modified, when the callback is needed,
           the HAL_USART_TxCpltCallback could be implemented in the user file
   */
}

/**
  * @brief  Rx Transfer completed callbacks.
  * @param  husart: USART handle
  * @retval None
  */
__weak void HAL_USART_RxCpltCallback(USART_HandleTypeDef *husart)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(husart);

  /* NOTE: This function Should not be modified, when the callback is needed,
           the HAL_USART_TxCpltCallback could be implemented in the user file
   */
}

/**
  * @brief  Rx Half Transfer completed callbacks.
  * @param  husart: USART handle
  * @retval None
  */
__weak void HAL_USART_RxHalfCpltCallback(USART_HandleTypeDef *husart)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(husart);

  /* NOTE: This function Should not be modified, when the callback is needed,
           the HAL_USART_TxCpltCallback could be implemented in the user file
   */
}

/**
  * @brief  Tx/Rx Transfers completed callback for the non-blocking process.
  * @param  husart: USART handle
  * @retval None
  */
__weak void HAL_USART_TxRxCpltCallback(USART_HandleTypeDef *husart)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(husart);

  /* NOTE: This function Should not be modified, when the callback is needed,
           the HAL_USART_TxCpltCallback could be implemented in the user file
   */
}

/**
  * @brief  USART error callbacks.
  * @param  husart: USART handle
  * @retval None
  */
 __weak void HAL_USART_ErrorCallback(USART_HandleTypeDef *husart)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(husart);

  /* NOTE: This function Should not be modified, when the callback is needed,
           the HAL_USART_ErrorCallback could be implemented in the user file
   */ 
}
  
/**
  * @}
  */

/** @addtogroup USART_Exported_Functions_Group3
  *  @brief   USART State functions 
  *
@verbatim   
 ===============================================================================
                      ##### Peripheral State functions #####
 ===============================================================================
    [..]
    This subsection provides a set of functions allowing to control the USART.
     (+) HAL_USART_GetState() API can be helpful to check in run-time the state of the USART peripheral. 
     (+) HAL_USART_GetError() API can be helpful to check in run-time the Error Code of the USART peripheral. 
     (+) USART_SetConfig() API is used to set the USART communication parameters.
     (+) USART_CheckIdleState() APi ensures that TEACK and/or REACK bits are set after initialization
      
@endverbatim
  * @{
  */

/**
  * @brief  Returns the USART state.
  * @param  husart: USART handle
  * @retval HAL state
  */
HAL_USART_StateTypeDef HAL_USART_GetState(USART_HandleTypeDef *husart)
{
  return husart->State;
}

/**
  * @brief  Return the USART error code
  * @param  husart : pointer to a USART_HandleTypeDef structure that contains
  *              the configuration information for the specified USART.
  * @retval USART Error Code
  */
uint32_t HAL_USART_GetError(USART_HandleTypeDef *husart)
{
  return husart->ErrorCode;
}

/**
  * @}
  */

/**
  * @}
  */

/** @addtogroup USART_Private
  * @{
  */
/**
  * @brief  This function handles USART Communication Timeout.
  * @param  husart: USART handle
  * @param  Flag: specifies the USART flag to check.
  * @param  Status: The new Flag status (SET or RESET).
  * @param  Timeout: Timeout duration
  * @retval HAL status
  */
static HAL_StatusTypeDef USART_WaitOnFlagUntilTimeout(USART_HandleTypeDef *husart, uint32_t Flag, FlagStatus Status, uint32_t Timeout)  
{
  uint32_t tickstart = 0x00;
  tickstart = HAL_GetTick();

  /* Wait until flag is set */
  if(Status == RESET)
  {
    while(__HAL_USART_GET_FLAG(husart, Flag) == RESET)
    {
      /* Check for the Timeout */
      if(Timeout != HAL_MAX_DELAY)
      {
        if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
        {
          /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */
          __HAL_USART_DISABLE_IT(husart, USART_IT_TXE);
          __HAL_USART_DISABLE_IT(husart, USART_IT_RXNE);
          __HAL_USART_DISABLE_IT(husart, USART_IT_PE);
          __HAL_USART_DISABLE_IT(husart, USART_IT_ERR);

          husart->State= HAL_USART_STATE_READY;

          /* Process Unlocked */
          __HAL_UNLOCK(husart);

          return HAL_TIMEOUT;
        }
      }
    }
  }
  else
  {
    while(__HAL_USART_GET_FLAG(husart, Flag) != RESET)
    {
      /* Check for the Timeout */
      if(Timeout != HAL_MAX_DELAY)
      {
        if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
        {
          /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */
          __HAL_USART_DISABLE_IT(husart, USART_IT_TXE);
          __HAL_USART_DISABLE_IT(husart, USART_IT_RXNE);
          __HAL_USART_DISABLE_IT(husart, USART_IT_PE);
          __HAL_USART_DISABLE_IT(husart, USART_IT_ERR);

          husart->State= HAL_USART_STATE_READY;

          /* Process Unlocked */
          __HAL_UNLOCK(husart);

          return HAL_TIMEOUT;
        }
      }
    }
  }
  return HAL_OK;
}

/**
  * @brief  DMA USART transmit process complete callback. 
  * @param  hdma: DMA handle
  * @retval None
  */
static void USART_DMATransmitCplt(DMA_HandleTypeDef *hdma)
{
  USART_HandleTypeDef* husart = ( USART_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;

  /* DMA Normal mode */
  if ( HAL_IS_BIT_CLR(hdma->Instance->CCR, DMA_CCR_CIRC) )
  {
    husart->TxXferCount = 0;

    if(husart->State == HAL_USART_STATE_BUSY_TX)
    {
      /* Disable the DMA transfer for transmit request by resetting the DMAT bit
         in the USART CR3 register */
      husart->Instance->CR3 &= ~(USART_CR3_DMAT);

      /* Enable the USART Transmit Complete Interrupt */
      __HAL_USART_ENABLE_IT(husart, USART_IT_TC);
    }
  }
  /* DMA Circular mode */
  else
  {
    if(husart->State == HAL_USART_STATE_BUSY_TX)
    {
    HAL_USART_TxCpltCallback(husart);
   }
 }
}

/**
  * @brief DMA USART transmit process half complete callback 
  * @param hdma : DMA handle
  * @retval None
  */
static void USART_DMATxHalfCplt(DMA_HandleTypeDef *hdma)
{
  USART_HandleTypeDef* husart = (USART_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;

  HAL_USART_TxHalfCpltCallback(husart);
}

/**
  * @brief  DMA USART receive process complete callback. 
  * @param  hdma: DMA handle
  * @retval None
  */
static void USART_DMAReceiveCplt(DMA_HandleTypeDef *hdma)   
{
  USART_HandleTypeDef* husart = ( USART_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
  /* DMA Normal mode */
  if((hdma->Instance->CCR & DMA_CCR_CIRC) == 0)
  {
    husart->RxXferCount = 0;

    if(husart->State == HAL_USART_STATE_BUSY_RX)
    {
      /* Disable the DMA transfer for the Transmit/receiver requests by setting the DMAT/DMAR bit 
         in the USART CR3 register */
      husart->Instance->CR3 &= ~(USART_CR3_DMAR);

      husart->State= HAL_USART_STATE_READY;
      HAL_USART_RxCpltCallback(husart);
    }
    /* the usart state is HAL_USART_STATE_BUSY_TX_RX*/
    else
    {
      /* Disable the DMA transfer for the Transmit/receiver requests by setting the DMAT/DMAR bit 
         in the USART CR3 register */
      husart->Instance->CR3 &= ~(USART_CR3_DMAR);
      husart->Instance->CR3 &= ~(USART_CR3_DMAT);

      husart->State= HAL_USART_STATE_READY;
      HAL_USART_TxRxCpltCallback(husart);
    }
  }
  /* DMA circular mode */
  else
  {
    if(husart->State == HAL_USART_STATE_BUSY_RX)
    {
      HAL_USART_RxCpltCallback(husart);
    }
    /* the usart state is HAL_USART_STATE_BUSY_TX_RX*/
    else
    {
      HAL_USART_TxRxCpltCallback(husart);
    }
  }
}

/**
  * @brief DMA USART receive process half complete callback 
  * @param hdma : DMA handle
  * @retval None
  */
static void USART_DMARxHalfCplt(DMA_HandleTypeDef *hdma)
{
  USART_HandleTypeDef* husart = (USART_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;

  HAL_USART_RxHalfCpltCallback(husart); 
}

/**
  * @brief  DMA USART communication error callback. 
  * @param  hdma: DMA handle
  * @retval None
  */
static void USART_DMAError(DMA_HandleTypeDef *hdma)   
{
  USART_HandleTypeDef* husart = ( USART_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;

  husart->RxXferCount = 0;
  husart->TxXferCount = 0;
  husart->ErrorCode |= HAL_USART_ERROR_DMA;
  husart->State= HAL_USART_STATE_READY;
  
  HAL_USART_ErrorCallback(husart);
}

/**
  * @brief  Simplex Send an amount of data in non-blocking mode.
  *         Function called under interruption only, once
  *         interruptions have been enabled by HAL_USART_Transmit_IT() 
  * @param  husart: USART handle
  * @retval HAL status
  * @note   The USART errors are not managed to avoid the overrun error.
  */
static HAL_StatusTypeDef USART_Transmit_IT(USART_HandleTypeDef *husart)
{
  uint16_t* tmp = 0;
 
  if(husart->State == HAL_USART_STATE_BUSY_TX)
  {
    if(husart->TxXferCount == 0)
    {
      /* Disable the USART Transmit Complete Interrupt */
      __HAL_USART_DISABLE_IT(husart, USART_IT_TXE);
     
      /* Enable the USART Transmit Complete Interrupt */    
      __HAL_USART_ENABLE_IT(husart, USART_IT_TC);
      
      return HAL_OK;
    }
    else
    {
      if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE))
      {
        tmp = (uint16_t*) husart->pTxBuffPtr;
        husart->Instance->TDR = (*tmp & (uint16_t)0x01FF);   
        husart->pTxBuffPtr += 2;
      }
      else
      { 
        husart->Instance->TDR = (uint8_t)(*husart->pTxBuffPtr++ & (uint8_t)0xFF); 
      }  

      husart->TxXferCount--;
    
      return HAL_OK;
    }
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief  Wraps up transmission in non blocking mode.
  * @param  husart: pointer to a USART_HandleTypeDef structure that contains
  *                the configuration information for the specified USART module.
  * @retval HAL status
  */
static HAL_StatusTypeDef USART_EndTransmit_IT(USART_HandleTypeDef *husart)
{
  /* Disable the USART Transmit Complete Interrupt */    
  __HAL_USART_DISABLE_IT(husart, USART_IT_TC);
  
  /* Disable the USART Error Interrupt: (Frame error, noise error, overrun error) */
  __HAL_USART_DISABLE_IT(husart, USART_IT_ERR);
    
  husart->State = HAL_USART_STATE_READY;
   
  HAL_USART_TxCpltCallback(husart);
  
  return HAL_OK;
}

/**
  * @brief  Simplex Receive an amount of data in non-blocking mode.
  *         Function called under interruption only, once
  *         interruptions have been enabled by HAL_USART_Receive_IT()    
  * @param  husart: USART handle
  * @retval HAL status
  */
static HAL_StatusTypeDef USART_Receive_IT(USART_HandleTypeDef *husart)
{
  uint16_t* tmp;
  uint16_t uhMask = husart->Mask; 

  if(husart->State == HAL_USART_STATE_BUSY_RX)
  {

    if((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE))
    {
      tmp = (uint16_t*) husart->pRxBuffPtr;
      *tmp = (uint16_t)(husart->Instance->RDR & uhMask);
      husart->pRxBuffPtr += 2;
    } 
    else
    {
      *husart->pRxBuffPtr++ = (uint8_t)(husart->Instance->RDR & (uint8_t)uhMask);       
    }
      /* Send dummy byte in order to generate the clock for the Slave to Send the next data */
      husart->Instance->TDR = (DUMMY_DATA & (uint16_t)0x00FF);       
    
    if(--husart->RxXferCount == 0)
    { 
      /* Wait for RXNE Flag */
      if(USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_RXNE, RESET, HAL_USART_TXDMA_TIMEOUTVALUE) != HAL_OK)
      {            
        return HAL_TIMEOUT;
      }

      __HAL_USART_DISABLE_IT(husart, USART_IT_RXNE);      

      /* Disable the USART Parity Error Interrupt */
      __HAL_USART_DISABLE_IT(husart, USART_IT_PE);
        
      /* Disable the USART Error Interrupt: (Frame error, noise error, overrun error) */
      __HAL_USART_DISABLE_IT(husart, USART_IT_ERR);
        
      husart->State = HAL_USART_STATE_READY;


      HAL_USART_RxCpltCallback(husart);
      
      return HAL_OK;
    }


    return HAL_OK;
  }
  else
  {
    return HAL_BUSY; 
  }
}

/**
  * @brief  Full-Duplex Send receive an amount of data in full-duplex mode (non-blocking).
  *         Function called under interruption only, once
  *         interruptions have been enabled by HAL_USART_TransmitReceive_IT()     
  * @param  husart: USART handle
  * @retval HAL status
  */
static HAL_StatusTypeDef USART_TransmitReceive_IT(USART_HandleTypeDef *husart)
{
  uint16_t* tmp;
  uint16_t uhMask = husart->Mask; 

  if(husart->State == HAL_USART_STATE_BUSY_TX_RX)
  {
    if(husart->TxXferCount != 0x00)
    {
      if(__HAL_USART_GET_FLAG(husart, USART_FLAG_TC) != RESET)
      {
        if((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE))
        {
          tmp = (uint16_t*) husart->pTxBuffPtr;
          husart->Instance->TDR = (uint16_t)(*tmp & uhMask);
          husart->pTxBuffPtr += 2;
        } 
        else
        {
          husart->Instance->TDR = (uint8_t)(*husart->pTxBuffPtr++ & (uint8_t)uhMask);
        }
        husart->TxXferCount--;

        /* Check the latest data transmitted */
        if(husart->TxXferCount == 0)
        {
           __HAL_USART_DISABLE_IT(husart, USART_IT_TXE);
        }
      }
    }

    if(husart->RxXferCount != 0x00)
    {
      if(__HAL_USART_GET_FLAG(husart, USART_FLAG_RXNE) != RESET)
      {
        if((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE))
        {
          tmp = (uint16_t*) husart->pRxBuffPtr;
          *tmp = (uint16_t)(husart->Instance->RDR & uhMask);
          husart->pRxBuffPtr += 2;          
        } 
        else
        {
          *husart->pRxBuffPtr++ = (uint8_t)(husart->Instance->RDR & (uint8_t)uhMask);
        }
        husart->RxXferCount--;
      }
    }

    /* Check the latest data received */
    if(husart->RxXferCount == 0)
    {
      __HAL_USART_DISABLE_IT(husart, USART_IT_RXNE);

      /* Disable the USART Parity Error Interrupt */
      __HAL_USART_DISABLE_IT(husart, USART_IT_PE);

      /* Disable the USART Error Interrupt: (Frame error, noise error, overrun error) */
      __HAL_USART_DISABLE_IT(husart, USART_IT_ERR);

      husart->State = HAL_USART_STATE_READY;

      HAL_USART_TxRxCpltCallback(husart);

      return HAL_OK;
    }

    /* Process Unlocked */
    __HAL_UNLOCK(husart);

    return HAL_OK;
  }
  else
  {
    return HAL_BUSY; 
  }
}

/**
  * @brief Configure the USART peripheral 
  * @param husart: USART handle
  * @retval HAL status
  */
static HAL_StatusTypeDef USART_SetConfig(USART_HandleTypeDef *husart)
{
  uint32_t tmpreg       = 0x0;
  uint32_t clocksource  = 0x0;
  HAL_StatusTypeDef ret = HAL_OK;
  uint16_t brrtemp      = 0x0000;
  uint16_t usartdiv     = 0x0000;

  
  /* Check the parameters */
  assert_param(IS_USART_INSTANCE(husart->Instance));
  assert_param(IS_USART_POLARITY(husart->Init.CLKPolarity));
  assert_param(IS_USART_PHASE(husart->Init.CLKPhase));
  assert_param(IS_USART_LASTBIT(husart->Init.CLKLastBit));
  assert_param(IS_USART_BAUDRATE(husart->Init.BaudRate));  
  assert_param(IS_USART_WORD_LENGTH(husart->Init.WordLength));
  assert_param(IS_USART_STOPBITS(husart->Init.StopBits));
  assert_param(IS_USART_PARITY(husart->Init.Parity));
  assert_param(IS_USART_MODE(husart->Init.Mode));

  /*-------------------------- USART CR1 Configuration -----------------------*/
   /* Clear M, PCE, PS, TE and RE bits and configure       
   *  the USART Word Length, Parity, Mode and oversampling: 
   *  set the M bits according to husart->Init.WordLength value 
   *  set PCE and PS bits according to husart->Init.Parity value
   *  set TE and RE bits according to husart->Init.Mode value
   *  Force OVER8 bit to 1 in order to reach the max USART frequencies */
  tmpreg = (uint32_t)husart->Init.WordLength | husart->Init.Parity | husart->Init.Mode | USART_CR1_OVER8;
  MODIFY_REG(husart->Instance->CR1, USART_CR1_FIELDS, tmpreg);
  
  /*---------------------------- USART CR2 Configuration ---------------------*/
  /* Clear and configure the USART Clock, CPOL, CPHA, LBCL and STOP bits:
   * set CPOL bit according to husart->Init.CLKPolarity value
   * set CPHA bit according to husart->Init.CLKPhase value
   * set LBCL bit according to husart->Init.CLKLastBit value
   * set STOP[13:12] bits according to husart->Init.StopBits value */
  tmpreg = (uint32_t)(USART_CLOCK_ENABLE);
  tmpreg |= (uint32_t)(husart->Init.CLKPolarity | husart->Init.CLKPhase);
  tmpreg |= (uint32_t)(husart->Init.CLKLastBit | husart->Init.StopBits);
  MODIFY_REG(husart->Instance->CR2, USART_CR2_FIELDS, tmpreg);

  /*-------------------------- USART CR3 Configuration -----------------------*/
  /* no CR3 register configuration                                            */

  /*-------------------------- USART BRR Configuration -----------------------*/
  /* BRR is filled-up according to OVER8 bit setting which is forced to 1     */
  USART_GETCLOCKSOURCE(husart, clocksource);
  switch (clocksource)
  {
    case USART_CLOCKSOURCE_PCLK1:
      usartdiv = (uint16_t)((2*HAL_RCC_GetPCLK1Freq()) / husart->Init.BaudRate);
      break;
    case USART_CLOCKSOURCE_PCLK2:
      usartdiv = (uint16_t)((2*HAL_RCC_GetPCLK2Freq()) / husart->Init.BaudRate);
      break;
    case USART_CLOCKSOURCE_HSI:
      usartdiv = (uint16_t)((2*HSI_VALUE) / husart->Init.BaudRate);
      break;
    case USART_CLOCKSOURCE_SYSCLK:
      usartdiv = (uint16_t)((2*HAL_RCC_GetSysClockFreq()) / husart->Init.BaudRate);
      break;
    case USART_CLOCKSOURCE_LSE:
      usartdiv = (uint16_t)((2*LSE_VALUE) / husart->Init.BaudRate);
      break;
    case USART_CLOCKSOURCE_UNDEFINED:
    default:
      ret = HAL_ERROR;
      break;
  }

  brrtemp = usartdiv & 0xFFF0;
  brrtemp |= (uint16_t)((usartdiv & (uint16_t)0x000F) >> 1U);
  husart->Instance->BRR = brrtemp;

    return ret;
}

/**
  * @brief Check the USART Idle State
  * @param husart: USART handle
  * @retval HAL status
  */
static HAL_StatusTypeDef USART_CheckIdleState(USART_HandleTypeDef *husart)
{
   /* Initialize the USART ErrorCode */
  husart->ErrorCode = HAL_USART_ERROR_NONE;
  
  /* Check if the Transmitter is enabled */
  if((husart->Instance->CR1 & USART_CR1_TE) == USART_CR1_TE)
  {
    /* Wait until TEACK flag is set */
    if(USART_WaitOnFlagUntilTimeout(husart, USART_ISR_TEACK, RESET, TEACK_REACK_TIMEOUT) != HAL_OK)  
    { 
      husart->State= HAL_USART_STATE_TIMEOUT;      
      return HAL_TIMEOUT;
    } 
  }
  /* Check if the Receiver is enabled */
  if((husart->Instance->CR1 & USART_CR1_RE) == USART_CR1_RE)
  {
    /* Wait until REACK flag is set */
    if(USART_WaitOnFlagUntilTimeout(husart, USART_ISR_REACK, RESET, TEACK_REACK_TIMEOUT) != HAL_OK)  
    { 
      husart->State= HAL_USART_STATE_TIMEOUT;       
      return HAL_TIMEOUT;
    }
  }
  
  /* Process Unlocked */
  __HAL_UNLOCK(husart);
        
  /* Initialize the USART state*/
  husart->State= HAL_USART_STATE_READY;
  
  return HAL_OK;  
}


/**
  * @}
  */

/**
  * @}
  */

#endif /* HAL_USART_MODULE_ENABLED */

/**
  * @}
  */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/