Newer
Older
mbed-os / hal / targets / cmsis / TARGET_STM / TARGET_STM32L1 / TARGET_NUCLEO_L152RE / system_stm32l1xx.c
/**
  ******************************************************************************
  * @file    system_stm32l1xx.c
  * @author  MCD Application Team
  * @version V2.2.0
  * @date    01-July-2016
  * @brief   CMSIS Cortex-M3 Device Peripheral Access Layer System Source File.
  *
  *   This file provides two functions and one global variable to be called from 
  *   user application:
  *      - SystemInit(): This function is called at startup just after reset and 
  *                      before branch to main program. This call is made inside
  *                      the "startup_stm32l1xx.s" file.
  *
  *      - SystemCoreClock variable: Contains the core clock (HCLK), it can be used
  *                                  by the user application to setup the SysTick 
  *                                  timer or configure other parameters.
  *                                     
  *      - SystemCoreClockUpdate(): Updates the variable SystemCoreClock and must
  *                                 be called whenever the core clock is changed
  *                                 during program execution.
  *
  * This file configures the system clock as follows:
  *-----------------------------------------------------------------------------
  * System clock source                | 1- PLL_HSE_EXTC        | 3- PLL_HSI
  *                                    | (external 8 MHz clock) | (internal 16 MHz)
  *                                    | 2- PLL_HSE_XTAL        |
  *                                    | (external 8 MHz xtal)  |
  *-----------------------------------------------------------------------------
  * SYSCLK(MHz)                        | 24                     | 32
  *-----------------------------------------------------------------------------
  * AHBCLK (MHz)                       | 24                     | 32
  *-----------------------------------------------------------------------------
  * APB1CLK (MHz)                      | 24                     | 32
  *-----------------------------------------------------------------------------
  * APB2CLK (MHz)                      | 24                     | 32
  *-----------------------------------------------------------------------------
  * USB capable (48 MHz precise clock) | YES                    | NO
  *-----------------------------------------------------------------------------
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
  *
  * Redistribution and use in source and binary forms, with or without modification,
  * are permitted provided that the following conditions are met:
  *   1. Redistributions of source code must retain the above copyright notice,
  *      this list of conditions and the following disclaimer.
  *   2. Redistributions in binary form must reproduce the above copyright notice,
  *      this list of conditions and the following disclaimer in the documentation
  *      and/or other materials provided with the distribution.
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
  *      may be used to endorse or promote products derived from this software
  *      without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *
  ******************************************************************************
  */

/** @addtogroup CMSIS
  * @{
  */

/** @addtogroup stm32l1xx_system
  * @{
  */  
  
/** @addtogroup STM32L1xx_System_Private_Includes
  * @{
  */

#include "stm32l1xx.h"
#include "hal_tick.h"

/**
  * @}
  */

/** @addtogroup STM32L1xx_System_Private_TypesDefinitions
  * @{
  */

/**
  * @}
  */

/** @addtogroup STM32L1xx_System_Private_Defines
  * @{
  */
#if !defined  (HSE_VALUE) 
  #define HSE_VALUE    ((uint32_t)8000000) /*!< Default value of the External oscillator in Hz.
                                                This value can be provided and adapted by the user application. */
#endif /* HSE_VALUE */

#if !defined  (HSI_VALUE)
  #define HSI_VALUE    ((uint32_t)16000000) /*!< Default value of the Internal oscillator in Hz.
                                                This value can be provided and adapted by the user application. */
#endif /* HSI_VALUE */

/*!< Uncomment the following line if you need to use external SRAM mounted
     on STM32L152D_EVAL board as data memory  */
/* #define DATA_IN_ExtSRAM */
  
/*!< Uncomment the following line if you need to relocate your vector Table in
     Internal SRAM. */ 
/* #define VECT_TAB_SRAM */
#define VECT_TAB_OFFSET  0x0 /*!< Vector Table base offset field. 
                                  This value must be a multiple of 0x200. */
/**
  * @}
  */

/** @addtogroup STM32L1xx_System_Private_Macros
  * @{
  */

/* Select the clock sources (other than HSI) to start with (0=OFF, 1=ON) */
#define USE_PLL_HSE_EXTC (1) /* Use external clock */
#define USE_PLL_HSE_XTAL (1) /* Use external xtal */

/**
  * @}
  */

/** @addtogroup STM32L1xx_System_Private_Variables
  * @{
  */
  /* This variable is updated in three ways:
      1) by calling CMSIS function SystemCoreClockUpdate()
      2) by calling HAL API function HAL_RCC_GetHCLKFreq()
      3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency
         Note: If you use this function to configure the system clock; then there
               is no need to call the 2 first functions listed above, since SystemCoreClock
               variable is updated automatically.
  */
uint32_t SystemCoreClock = 32000000; /* Default with HSI. Will be updated if HSE is used */
const uint8_t PLLMulTable[9] = {3, 4, 6, 8, 12, 16, 24, 32, 48};
const uint8_t AHBPrescTable[16] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9};
const uint8_t APBPrescTable[8]  = {0, 0, 0, 0, 1, 2, 3, 4};

/**
  * @}
  */

/** @addtogroup STM32L1xx_System_Private_FunctionPrototypes
  * @{
  */

#if defined (STM32L151xD) || defined (STM32L152xD) || defined (STM32L162xD)
#ifdef DATA_IN_ExtSRAM
  static void SystemInit_ExtMemCtl(void); 
#endif /* DATA_IN_ExtSRAM */
#endif /* STM32L151xD || STM32L152xD || STM32L162xD */

#if (USE_PLL_HSE_XTAL != 0) || (USE_PLL_HSE_EXTC != 0)
uint8_t SetSysClock_PLL_HSE(uint8_t bypass);
#endif

uint8_t SetSysClock_PLL_HSI(void);

/**
  * @}
  */

/** @addtogroup STM32L1xx_System_Private_Functions
  * @{
  */

/**
  * @brief  Setup the microcontroller system.
  *         Initialize the Embedded Flash Interface, the PLL and update the 
  *         SystemCoreClock variable.
  * @param  None
  * @retval None
  */
void SystemInit (void)
{
  /*!< Set MSION bit */
  RCC->CR |= (uint32_t)0x00000100;

  /*!< Reset SW[1:0], HPRE[3:0], PPRE1[2:0], PPRE2[2:0], MCOSEL[2:0] and MCOPRE[2:0] bits */
  RCC->CFGR &= (uint32_t)0x88FFC00C;
  
  /*!< Reset HSION, HSEON, CSSON and PLLON bits */
  RCC->CR &= (uint32_t)0xEEFEFFFE;

  /*!< Reset HSEBYP bit */
  RCC->CR &= (uint32_t)0xFFFBFFFF;

  /*!< Reset PLLSRC, PLLMUL[3:0] and PLLDIV[1:0] bits */
  RCC->CFGR &= (uint32_t)0xFF02FFFF;

  /*!< Disable all interrupts */
  RCC->CIR = 0x00000000;

#ifdef DATA_IN_ExtSRAM
  SystemInit_ExtMemCtl(); 
#endif /* DATA_IN_ExtSRAM */
    
#ifdef VECT_TAB_SRAM
  SCB->VTOR = SRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM. */
#else
  SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH. */
#endif

  /* Configure the Cube driver */
  SystemCoreClock = 16000000; // At this stage the HSI is used as system clock
  HAL_Init();

  /* Configure the System clock source, PLL Multiplier and Divider factors,
     AHB/APBx prescalers and Flash settings */
  SetSysClock();
  
  /* Reset the timer to avoid issues after the RAM initialization */
  TIM_MST_RESET_ON;
  TIM_MST_RESET_OFF;
}

/**
  * @brief  Update SystemCoreClock according to Clock Register Values
  *         The SystemCoreClock variable contains the core clock (HCLK), it can
  *         be used by the user application to setup the SysTick timer or configure
  *         other parameters.
  *           
  * @note   Each time the core clock (HCLK) changes, this function must be called
  *         to update SystemCoreClock variable value. Otherwise, any configuration
  *         based on this variable will be incorrect.         
  *     
  * @note   - The system frequency computed by this function is not the real 
  *           frequency in the chip. It is calculated based on the predefined 
  *           constant and the selected clock source:
  *             
  *           - If SYSCLK source is MSI, SystemCoreClock will contain the MSI 
  *             value as defined by the MSI range.
  *                                   
  *           - If SYSCLK source is HSI, SystemCoreClock will contain the HSI_VALUE(*)
  *                                              
  *           - If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(**)
  *                          
  *           - If SYSCLK source is PLL, SystemCoreClock will contain the HSE_VALUE(**)
  *             or HSI_VALUE(*) multiplied/divided by the PLL factors.
  *         
  *         (*) HSI_VALUE is a constant defined in stm32l1xx.h file (default value
  *             16 MHz) but the real value may vary depending on the variations
  *             in voltage and temperature.   
  *    
  *         (**) HSE_VALUE is a constant defined in stm32l1xx.h file (default value
  *              8 MHz), user has to ensure that HSE_VALUE is same as the real
  *              frequency of the crystal used. Otherwise, this function may
  *              have wrong result.
  *                
  *         - The result of this function could be not correct when using fractional
  *           value for HSE crystal.
  * @param  None
  * @retval None
  */
void SystemCoreClockUpdate (void)
{
  uint32_t tmp = 0, pllmul = 0, plldiv = 0, pllsource = 0, msirange = 0;

  /* Get SYSCLK source -------------------------------------------------------*/
  tmp = RCC->CFGR & RCC_CFGR_SWS;
  
  switch (tmp)
  {
    case 0x00:  /* MSI used as system clock */
      msirange = (RCC->ICSCR & RCC_ICSCR_MSIRANGE) >> 13;
      SystemCoreClock = (32768 * (1 << (msirange + 1)));
      break;
    case 0x04:  /* HSI used as system clock */
      SystemCoreClock = HSI_VALUE;
      break;
    case 0x08:  /* HSE used as system clock */
      SystemCoreClock = HSE_VALUE;
      break;
    case 0x0C:  /* PLL used as system clock */
      /* Get PLL clock source and multiplication factor ----------------------*/
      pllmul = RCC->CFGR & RCC_CFGR_PLLMUL;
      plldiv = RCC->CFGR & RCC_CFGR_PLLDIV;
      pllmul = PLLMulTable[(pllmul >> 18)];
      plldiv = (plldiv >> 22) + 1;
      
      pllsource = RCC->CFGR & RCC_CFGR_PLLSRC;

      if (pllsource == 0x00)
      {
        /* HSI oscillator clock selected as PLL clock entry */
        SystemCoreClock = (((HSI_VALUE) * pllmul) / plldiv);
      }
      else
      {
        /* HSE selected as PLL clock entry */
        SystemCoreClock = (((HSE_VALUE) * pllmul) / plldiv);
      }
      break;
    default: /* MSI used as system clock */
      msirange = (RCC->ICSCR & RCC_ICSCR_MSIRANGE) >> 13;
      SystemCoreClock = (32768 * (1 << (msirange + 1)));
      break;
  }
  /* Compute HCLK clock frequency --------------------------------------------*/
  /* Get HCLK prescaler */
  tmp = AHBPrescTable[((RCC->CFGR & RCC_CFGR_HPRE) >> 4)];
  /* HCLK clock frequency */
  SystemCoreClock >>= tmp;
}

#if defined (STM32L151xD) || defined (STM32L152xD) || defined (STM32L162xD)
#ifdef DATA_IN_ExtSRAM
/**
  * @brief  Setup the external memory controller.
  *         Called in SystemInit() function before jump to main.
  *         This function configures the external SRAM mounted on STM32L152D_EVAL board
  *         This SRAM will be used as program data memory (including heap and stack).
  * @param  None
  * @retval None
  */
void SystemInit_ExtMemCtl(void)
{
  __IO uint32_t tmpreg = 0;

  /* Flash 1 wait state */
  FLASH->ACR |= FLASH_ACR_LATENCY;
  
  /* Power enable */
  RCC->APB1ENR |= RCC_APB1ENR_PWREN;
  
  /* Delay after an RCC peripheral clock enabling */
  tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_PWREN);

  /* Select the Voltage Range 1 (1.8 V) */
  PWR->CR = PWR_CR_VOS_0;
  
  /* Wait Until the Voltage Regulator is ready */
  while((PWR->CSR & PWR_CSR_VOSF) != RESET)
  {
  }
  
/*-- GPIOs Configuration -----------------------------------------------------*/
/*
 +-------------------+--------------------+------------------+------------------+
 +                       SRAM pins assignment                                   +
 +-------------------+--------------------+------------------+------------------+
 | PD0  <-> FSMC_D2  | PE0  <-> FSMC_NBL0 | PF0  <-> FSMC_A0 | PG0 <-> FSMC_A10 |
 | PD1  <-> FSMC_D3  | PE1  <-> FSMC_NBL1 | PF1  <-> FSMC_A1 | PG1 <-> FSMC_A11 |
 | PD4  <-> FSMC_NOE | PE7  <-> FSMC_D4   | PF2  <-> FSMC_A2 | PG2 <-> FSMC_A12 |
 | PD5  <-> FSMC_NWE | PE8  <-> FSMC_D5   | PF3  <-> FSMC_A3 | PG3 <-> FSMC_A13 |
 | PD8  <-> FSMC_D13 | PE9  <-> FSMC_D6   | PF4  <-> FSMC_A4 | PG4 <-> FSMC_A14 |
 | PD9  <-> FSMC_D14 | PE10 <-> FSMC_D7   | PF5  <-> FSMC_A5 | PG5 <-> FSMC_A15 |
 | PD10 <-> FSMC_D15 | PE11 <-> FSMC_D8   | PF12 <-> FSMC_A6 | PG10<-> FSMC_NE2 |
 | PD11 <-> FSMC_A16 | PE12 <-> FSMC_D9   | PF13 <-> FSMC_A7 |------------------+
 | PD12 <-> FSMC_A17 | PE13 <-> FSMC_D10  | PF14 <-> FSMC_A8 | 
 | PD13 <-> FSMC_A18 | PE14 <-> FSMC_D11  | PF15 <-> FSMC_A9 | 
 | PD14 <-> FSMC_D0  | PE15 <-> FSMC_D12  |------------------+
 | PD15 <-> FSMC_D1  |--------------------+ 
 +-------------------+
*/

  /* Enable GPIOD, GPIOE, GPIOF and GPIOG interface clock */
  RCC->AHBENR   = 0x000080D8;
  
  /* Delay after an RCC peripheral clock enabling */
  tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_GPIODEN);
  
  /* Connect PDx pins to FSMC Alternate function */
  GPIOD->AFR[0]  = 0x00CC00CC;
  GPIOD->AFR[1]  = 0xCCCCCCCC;
  /* Configure PDx pins in Alternate function mode */  
  GPIOD->MODER   = 0xAAAA0A0A;
  /* Configure PDx pins speed to 40 MHz */  
  GPIOD->OSPEEDR = 0xFFFF0F0F;
  /* Configure PDx pins Output type to push-pull */  
  GPIOD->OTYPER  = 0x00000000;
  /* No pull-up, pull-down for PDx pins */ 
  GPIOD->PUPDR   = 0x00000000;

  /* Connect PEx pins to FSMC Alternate function */
  GPIOE->AFR[0]  = 0xC00000CC;
  GPIOE->AFR[1]  = 0xCCCCCCCC;
  /* Configure PEx pins in Alternate function mode */ 
  GPIOE->MODER   = 0xAAAA800A;
  /* Configure PEx pins speed to 40 MHz */ 
  GPIOE->OSPEEDR = 0xFFFFC00F;
  /* Configure PEx pins Output type to push-pull */  
  GPIOE->OTYPER  = 0x00000000;
  /* No pull-up, pull-down for PEx pins */ 
  GPIOE->PUPDR   = 0x00000000;

  /* Connect PFx pins to FSMC Alternate function */
  GPIOF->AFR[0]  = 0x00CCCCCC;
  GPIOF->AFR[1]  = 0xCCCC0000;
  /* Configure PFx pins in Alternate function mode */   
  GPIOF->MODER   = 0xAA000AAA;
  /* Configure PFx pins speed to 40 MHz */ 
  GPIOF->OSPEEDR = 0xFF000FFF;
  /* Configure PFx pins Output type to push-pull */  
  GPIOF->OTYPER  = 0x00000000;
  /* No pull-up, pull-down for PFx pins */ 
  GPIOF->PUPDR   = 0x00000000;

  /* Connect PGx pins to FSMC Alternate function */
  GPIOG->AFR[0]  = 0x00CCCCCC;
  GPIOG->AFR[1]  = 0x00000C00;
  /* Configure PGx pins in Alternate function mode */ 
  GPIOG->MODER   = 0x00200AAA;
  /* Configure PGx pins speed to 40 MHz */ 
  GPIOG->OSPEEDR = 0x00300FFF;
  /* Configure PGx pins Output type to push-pull */  
  GPIOG->OTYPER  = 0x00000000;
  /* No pull-up, pull-down for PGx pins */ 
  GPIOG->PUPDR   = 0x00000000;
  
/*-- FSMC Configuration ------------------------------------------------------*/
  /* Enable the FSMC interface clock */
  RCC->AHBENR    = 0x400080D8;

  /* Delay after an RCC peripheral clock enabling */
  tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_FSMCEN);
  
  (void)(tmpreg);
  
  /* Configure and enable Bank1_SRAM3 */
  FSMC_Bank1->BTCR[4]  = 0x00001011;
  FSMC_Bank1->BTCR[5]  = 0x00000300;
  FSMC_Bank1E->BWTR[4] = 0x0FFFFFFF;
/*
  Bank1_SRAM3 is configured as follow:

  p.FSMC_AddressSetupTime = 0;
  p.FSMC_AddressHoldTime = 0;
  p.FSMC_DataSetupTime = 3;
  p.FSMC_BusTurnAroundDuration = 0;
  p.FSMC_CLKDivision = 0;
  p.FSMC_DataLatency = 0;
  p.FSMC_AccessMode = FSMC_AccessMode_A;

  FSMC_NORSRAMInitStructure.FSMC_Bank = FSMC_Bank1_NORSRAM3;
  FSMC_NORSRAMInitStructure.FSMC_DataAddressMux = FSMC_DataAddressMux_Disable;
  FSMC_NORSRAMInitStructure.FSMC_MemoryType = FSMC_MemoryType_SRAM;
  FSMC_NORSRAMInitStructure.FSMC_MemoryDataWidth = FSMC_MemoryDataWidth_16b;
  FSMC_NORSRAMInitStructure.FSMC_BurstAccessMode = FSMC_BurstAccessMode_Disable;
  FSMC_NORSRAMInitStructure.FSMC_AsynchronousWait = FSMC_AsynchronousWait_Disable;
  FSMC_NORSRAMInitStructure.FSMC_WaitSignalPolarity = FSMC_WaitSignalPolarity_Low;
  FSMC_NORSRAMInitStructure.FSMC_WrapMode = FSMC_WrapMode_Disable;
  FSMC_NORSRAMInitStructure.FSMC_WaitSignalActive = FSMC_WaitSignalActive_BeforeWaitState;
  FSMC_NORSRAMInitStructure.FSMC_WriteOperation = FSMC_WriteOperation_Enable;
  FSMC_NORSRAMInitStructure.FSMC_WaitSignal = FSMC_WaitSignal_Disable;
  FSMC_NORSRAMInitStructure.FSMC_ExtendedMode = FSMC_ExtendedMode_Disable;
  FSMC_NORSRAMInitStructure.FSMC_WriteBurst = FSMC_WriteBurst_Disable;
  FSMC_NORSRAMInitStructure.FSMC_ReadWriteTimingStruct = &p;
  FSMC_NORSRAMInitStructure.FSMC_WriteTimingStruct = &p;

  FSMC_NORSRAMInit(&FSMC_NORSRAMInitStructure); 

  FSMC_NORSRAMCmd(FSMC_Bank1_NORSRAM3, ENABLE);
*/
  
}
#endif /* DATA_IN_ExtSRAM */
#endif /* STM32L151xD || STM32L152xD || STM32L162xD */

/**
  * @brief  Configures the System clock source, PLL Multiplier and Divider factors,
  *               AHB/APBx prescalers and Flash settings
  * @note   This function should be called only once the RCC clock configuration  
  *         is reset to the default reset state (done in SystemInit() function).             
  * @param  None
  * @retval None
  */
void SetSysClock(void)
{
  /* 1- Try to start with HSE and external clock */
#if USE_PLL_HSE_EXTC != 0
  if (SetSysClock_PLL_HSE(1) == 0)
#endif
  {
    /* 2- If fail try to start with HSE and external xtal */
    #if USE_PLL_HSE_XTAL != 0
    if (SetSysClock_PLL_HSE(0) == 0)
    #endif
    {
      /* 3- If fail start with HSI clock */
      if (SetSysClock_PLL_HSI() == 0)
      {
        while(1)
        {
          // [TODO] Put something here to tell the user that a problem occured...
        }
      }
    }
  }
  
  /* Output clock on MCO1 pin(PA8) for debugging purpose */
  //HAL_RCC_MCOConfig(RCC_MCO1, RCC_MCO1SOURCE_SYSCLK, RCC_MCODIV_1);
}

#if (USE_PLL_HSE_XTAL != 0) || (USE_PLL_HSE_EXTC != 0)
/******************************************************************************/
/*            PLL (clocked by HSE) used as System clock source                */
/******************************************************************************/
uint8_t SetSysClock_PLL_HSE(uint8_t bypass)
{
  RCC_ClkInitTypeDef RCC_ClkInitStruct;
  RCC_OscInitTypeDef RCC_OscInitStruct;

  /* Used to gain time after DeepSleep in case HSI is used */
  if (__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET)
  {
    return 0;
  }
  
  /* The voltage scaling allows optimizing the power consumption when the device is 
     clocked below the maximum system frequency, to update the voltage scaling value 
     regarding system frequency refer to product datasheet. */
  __PWR_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
  
  /* Enable HSE and HSI48 oscillators and activate PLL with HSE as source */
  RCC_OscInitStruct.OscillatorType      = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI;
  if (bypass == 0)
  {
    RCC_OscInitStruct.HSEState          = RCC_HSE_ON; /* External 8 MHz xtal on OSC_IN/OSC_OUT */
  }
  else
  {
    RCC_OscInitStruct.HSEState          = RCC_HSE_BYPASS; /* External 8 MHz clock on OSC_IN */
  }
  RCC_OscInitStruct.HSIState            = RCC_HSI_OFF;
  // SYSCLK = 24 MHz ((8 MHz * 6) / 2)
  // USBCLK = 48 MHz (8 MHz * 6) --> USB OK
  RCC_OscInitStruct.PLL.PLLState        = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource       = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLMUL          = RCC_PLL_MUL6;
  RCC_OscInitStruct.PLL.PLLDIV          = RCC_PLL_DIV2;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    return 0; // FAIL
  }
 
  /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */
  RCC_ClkInitStruct.ClockType      = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
  RCC_ClkInitStruct.SYSCLKSource   = RCC_SYSCLKSOURCE_PLLCLK; // 24 MHz
  RCC_ClkInitStruct.AHBCLKDivider  = RCC_SYSCLK_DIV1;         // 24 MHz
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;           // 24 MHz
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;           // 24 MHz
  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
  {
    return 0; // FAIL
  }

  /* Output clock on MCO1 pin(PA8) for debugging purpose */
  //if (bypass == 0)
    //HAL_RCC_MCOConfig(RCC_MCO1, RCC_MCO1SOURCE_HSE, RCC_MCODIV_2); // 4 MHz
  //else
    //HAL_RCC_MCOConfig(RCC_MCO1, RCC_MCO1SOURCE_HSE, RCC_MCODIV_1); // 8 MHz
  
  return 1; // OK
}
#endif

/******************************************************************************/
/*            PLL (clocked by HSI) used as System clock source                */
/******************************************************************************/
uint8_t SetSysClock_PLL_HSI(void)
{
  RCC_ClkInitTypeDef RCC_ClkInitStruct;
  RCC_OscInitTypeDef RCC_OscInitStruct;

  /* The voltage scaling allows optimizing the power consumption when the device is 
     clocked below the maximum system frequency, to update the voltage scaling value 
     regarding system frequency refer to product datasheet. */
  __PWR_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
  
  /* Enable HSI oscillator and activate PLL with HSI as source */
  RCC_OscInitStruct.OscillatorType      = RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState            = RCC_HSE_OFF;
  RCC_OscInitStruct.HSIState            = RCC_HSI_ON;
  RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
  // SYSCLK = 32 MHz ((16 MHz * 4) / 2)
  // USBCLK = 64 MHz (16 MHz * 4) --> USB not possible
  RCC_OscInitStruct.PLL.PLLState        = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource       = RCC_PLLSOURCE_HSI;
  RCC_OscInitStruct.PLL.PLLMUL          = RCC_PLL_MUL4;
  RCC_OscInitStruct.PLL.PLLDIV          = RCC_PLL_DIV2;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    return 0; // FAIL
  }
  
  /* Poll VOSF bit of in PWR_CSR. Wait until it is reset to 0 */
  while (__HAL_PWR_GET_FLAG(PWR_FLAG_VOS) != RESET) {};

  /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */
  RCC_ClkInitStruct.ClockType      = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
  RCC_ClkInitStruct.SYSCLKSource   = RCC_SYSCLKSOURCE_PLLCLK; // 32 MHz
  RCC_ClkInitStruct.AHBCLKDivider  = RCC_SYSCLK_DIV1;         // 32 MHz
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;           // 32 MHz
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;           // 32 MHz
  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
  {
    return 0; // FAIL
  }

  /* Output clock on MCO1 pin(PA8) for debugging purpose */
  //HAL_RCC_MCOConfig(RCC_MCO1, RCC_MCO1SOURCE_HSI, RCC_MCODIV_1); // 16 MHz
  
  return 1; // OK
}

/**
  * @}
  */

/**
  * @}
  */

/**
  * @}
  */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/