Newer
Older
mbed-os / hal / targets / hal / TARGET_Atmel / TARGET_SAM_CortexM4 / drivers / usart / usart.c
@Mihail Stoyanov Mihail Stoyanov on 23 May 2016 53 KB Simplify layout:
/**
 * \file
 *
 * \brief Universal Synchronous Asynchronous Receiver Transmitter (USART) driver
 * for SAM.
 *
 * Copyright (c) 2011-2015 Atmel Corporation. All rights reserved.
 *
 * \asf_license_start
 *
 * \page License
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 *
 * 3. The name of Atmel may not be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * 4. This software may only be redistributed and used in connection with an
 *    Atmel microcontroller product.
 *
 * THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
 * EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 * \asf_license_stop
 *
 */
/*
 * Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
 */

#include "usart.h"

/// @cond 0
/**INDENT-OFF**/
#ifdef __cplusplus
extern "C" {
#endif
/**INDENT-ON**/
/// @endcond

    /**
     * \defgroup sam_drivers_usart_group Universal Synchronous Asynchronous
     * Receiver Transmitter (USART)
     *
     * The Universal Synchronous Asynchronous Receiver Transceiver (USART)
     * provides one full duplex universal synchronous asynchronous serial link.
     * Data frame format is widely programmable (data length, parity, number of
     * stop bits) to support a maximum of standards. The receiver implements
     * parity error, framing error and overrun error detection. The receiver
     * time-out enables handling variable-length frames and the transmitter
     * timeguard facilitates communications with slow remote devices. Multidrop
     * communications are also supported through address bit handling in reception
     * and transmission. The driver supports the following modes:
     * RS232, RS485, SPI, IrDA, ISO7816, MODEM, Hardware handshaking and LIN.
     *
     * @{
     */

    /* The write protect key value. */
#ifndef US_WPMR_WPKEY_PASSWD
#define US_WPMR_WPKEY_PASSWD    US_WPMR_WPKEY(0x555341U)
#endif

#ifndef US_WPMR_WPKEY_PASSWD
#  define US_WPMR_WPKEY_PASSWD US_WPMR_WPKEY(US_WPKEY_VALUE)
#endif

    /* The CD value scope programmed in MR register. */
#define MIN_CD_VALUE                  0x01
#define MIN_CD_VALUE_SPI              0x04
#define MAX_CD_VALUE                  US_BRGR_CD_Msk

    /* The receiver sampling divide of baudrate clock. */
#define HIGH_FRQ_SAMPLE_DIV           16
#define LOW_FRQ_SAMPLE_DIV            8

    /* Max transmitter timeguard. */
#define MAX_TRAN_GUARD_TIME           US_TTGR_TG_Msk

    /* The non-existent parity error number. */
#define USART_PARITY_ERROR            5

    /* ISO7816 protocol type. */
#define ISO7816_T_0                   0
#define ISO7816_T_1                   1

    /**
     * \brief Calculate a clock divider(CD) and a fractional part (FP) for the
     * USART asynchronous modes to generate a baudrate as close as possible to
     * the baudrate set point.
     *
     * \note Baud rate calculation: Baudrate = ul_mck/(Over * (CD + FP/8))
     * (Over being 16 or 8). The maximal oversampling is selected if it allows to
     * generate a baudrate close to the set point.
     *
     * \param p_usart Pointer to a USART instance.
     * \param baudrate Baud rate set point.
     * \param ul_mck USART module input clock frequency.
     *
     * \retval 0 Baud rate is successfully initialized.
     * \retval 1 Baud rate set point is out of range for the given input clock
     * frequency.
     */
    uint32_t usart_set_async_baudrate(Usart *p_usart,
                                      uint32_t baudrate, uint32_t ul_mck)
{
    uint32_t over;
    uint32_t cd_fp;
    uint32_t cd;
    uint32_t fp;

    /* Calculate the receiver sampling divide of baudrate clock. */
    if (ul_mck >= HIGH_FRQ_SAMPLE_DIV * baudrate) {
        over = HIGH_FRQ_SAMPLE_DIV;
    } else {
        over = LOW_FRQ_SAMPLE_DIV;
    }

    /* Calculate clock divider according to the fraction calculated formula. */
    cd_fp = (8 * ul_mck + (over * baudrate) / 2) / (over * baudrate);
    cd = cd_fp >> 3;
    fp = cd_fp & 0x07;
    if (cd < MIN_CD_VALUE || cd > MAX_CD_VALUE) {
        return 1;
    }

    /* Configure the OVER bit in MR register. */
    if (over == 8) {
        p_usart->US_MR |= US_MR_OVER;
    }

    /* Configure the baudrate generate register. */
    p_usart->US_BRGR = (cd << US_BRGR_CD_Pos) | (fp << US_BRGR_FP_Pos);

    return 0;
}

/**
 * \brief Calculate a clock divider for the USART synchronous master modes
 * to generate a baudrate as close as possible to the baudrate set point.
 *
 * \note Synchronous baudrate calculation: baudrate = ul_mck / cd
 *
 * \param p_usart Pointer to a USART instance.
 * \param baudrate Baud rate set point.
 * \param ul_mck USART module input clock frequency.
 *
 * \retval 0 Baud rate is successfully initialized.
 * \retval 1 Baud rate set point is out of range for the given input clock
 * frequency.
 */
static uint32_t usart_set_sync_master_baudrate(Usart *p_usart,
        uint32_t baudrate, uint32_t ul_mck)
{
    uint32_t cd;

    /* Calculate clock divider according to the formula in synchronous mode. */
    cd = (ul_mck + baudrate / 2) / baudrate;

    if (cd < MIN_CD_VALUE || cd > MAX_CD_VALUE) {
        return 1;
    }

    /* Configure the baudrate generate register. */
    p_usart->US_BRGR = cd << US_BRGR_CD_Pos;

    p_usart->US_MR = (p_usart->US_MR & ~US_MR_USCLKS_Msk) |
                     US_MR_USCLKS_MCK | US_MR_SYNC;
    return 0;
}

/**
 * \brief Select the SCK pin as the source of baud rate for the USART
 * synchronous slave modes.
 *
 * \param p_usart Pointer to a USART instance.
 */
static void usart_set_sync_slave_baudrate(Usart *p_usart)
{
    p_usart->US_MR = (p_usart->US_MR & ~US_MR_USCLKS_Msk) |
                     US_MR_USCLKS_SCK | US_MR_SYNC;
}

/**
 * \brief Calculate a clock divider (\e CD) for the USART SPI master mode to
 * generate a baud rate as close as possible to the baud rate set point.
 *
 * \note Baud rate calculation:
 * \f$ Baudrate = \frac{SelectedClock}{CD} \f$.
 *
 * \param p_usart Pointer to a USART instance.
 * \param baudrate Baud rate set point.
 * \param ul_mck USART module input clock frequency.
 *
 * \retval 0 Baud rate is successfully initialized.
 * \retval 1 Baud rate set point is out of range for the given input clock
 * frequency.
 */
static uint32_t usart_set_spi_master_baudrate(Usart *p_usart,
        uint32_t baudrate, uint32_t ul_mck)
{
    uint32_t cd;

    /* Calculate the clock divider according to the formula in SPI mode. */
    cd = (ul_mck + baudrate / 2) / baudrate;

    if (cd < MIN_CD_VALUE_SPI || cd > MAX_CD_VALUE) {
        return 1;
    }

    p_usart->US_BRGR = cd << US_BRGR_CD_Pos;

    return 0;
}

/**
 * \brief Select the SCK pin as the source of baudrate for the USART SPI slave
 * mode.
 *
 * \param p_usart Pointer to a USART instance.
 */
static void usart_set_spi_slave_baudrate(Usart *p_usart)
{
    p_usart->US_MR &= ~US_MR_USCLKS_Msk;
    p_usart->US_MR |= US_MR_USCLKS_SCK;
}

/**
 * \brief Reset the USART and disable TX and RX.
 *
 * \param p_usart Pointer to a USART instance.
 */
void usart_reset(Usart *p_usart)
{
    /* Disable the Write Protect. */
    usart_disable_writeprotect(p_usart);

    /* Reset registers that could cause unpredictable behavior after reset. */
    p_usart->US_MR = 0;
    p_usart->US_RTOR = 0;
    p_usart->US_TTGR = 0;

    /* Disable TX and RX. */
    usart_reset_tx(p_usart);
    usart_reset_rx(p_usart);
    /* Reset status bits. */
    usart_reset_status(p_usart);
    /* Turn off RTS and DTR if exist. */
    usart_drive_RTS_pin_high(p_usart);
#if (SAM3S || SAM4S || SAM3U || SAM4L || SAM4E)
    usart_drive_DTR_pin_high(p_usart);
#endif
}

/**
 * \brief Configure USART to work in RS232 mode.
 *
 * \note By default, the transmitter and receiver aren't enabled.
 *
 * \param p_usart Pointer to a USART instance.
 * \param p_usart_opt Pointer to sam_usart_opt_t instance.
 * \param ul_mck USART module input clock frequency.
 *
 * \retval 0 on success.
 * \retval 1 on failure.
 */
uint32_t usart_init_rs232(Usart *p_usart,
                          const sam_usart_opt_t *p_usart_opt, uint32_t ul_mck)
{
    static uint32_t ul_reg_val;

    /* Reset the USART and shut down TX and RX. */
    usart_reset(p_usart);

    ul_reg_val = 0;
    /* Check whether the input values are legal. */
    if (!p_usart_opt || usart_set_async_baudrate(p_usart,
            p_usart_opt->baudrate, ul_mck)) {
        return 1;
    }

    /* Configure the USART option. */
    ul_reg_val |= p_usart_opt->char_length | p_usart_opt->parity_type |
                  p_usart_opt->channel_mode | p_usart_opt->stop_bits;

    /* Configure the USART mode as normal mode. */
    ul_reg_val |= US_MR_USART_MODE_NORMAL;

    p_usart->US_MR |= ul_reg_val;

    return 0;
}

/**
 * \brief Configure USART to work in hardware handshaking mode.
 *
 * \note By default, the transmitter and receiver aren't enabled.
 *
 * \param p_usart Pointer to a USART instance.
 * \param p_usart_opt Pointer to sam_usart_opt_t instance.
 * \param ul_mck USART module input clock frequency.
 *
 * \retval 0 on success.
 * \retval 1 on failure.
 */
uint32_t usart_init_hw_handshaking(Usart *p_usart,
                                   const sam_usart_opt_t *p_usart_opt, uint32_t ul_mck)
{
    /* Initialize the USART as standard RS232. */
    if (usart_init_rs232(p_usart, p_usart_opt, ul_mck)) {
        return 1;
    }

    /* Set hardware handshaking mode. */
    p_usart->US_MR = (p_usart->US_MR & ~US_MR_USART_MODE_Msk) |
                     US_MR_USART_MODE_HW_HANDSHAKING;

    return 0;
}

#if (SAM3S || SAM4S || SAM3U || SAM4L || SAM4E)

/**
 * \brief Configure USART to work in modem mode.
 *
 * \note By default, the transmitter and receiver aren't enabled.
 *
 * \param p_usart Pointer to a USART instance.
 * \param p_usart_opt Pointer to sam_usart_opt_t instance.
 * \param ul_mck USART module input clock frequency.
 *
 * \retval 0 on success.
 * \retval 1 on failure.
 */
uint32_t usart_init_modem(Usart *p_usart,
                          const sam_usart_opt_t *p_usart_opt, uint32_t ul_mck)
{
    /*
     * SAM3S, SAM4S and SAM4E series support MODEM mode only on USART1,
     * SAM3U and SAM4L series support MODEM mode only on USART0.
     */
#if (SAM3S || SAM4S || SAM4E)
#ifdef USART1
    if (p_usart != USART1) {
        return 1;
    }
#endif
#elif (SAM3U || SAM4L)
    if (p_usart != USART0) {
        return 1;
    }
#endif

    /* Initialize the USART as standard RS232. */
    if (usart_init_rs232(p_usart, p_usart_opt, ul_mck)) {
        return 1;
    }

    /* Set MODEM mode. */
    p_usart->US_MR = (p_usart->US_MR & ~US_MR_USART_MODE_Msk) |
                     US_MR_USART_MODE_MODEM;

    return 0;
}
#endif

/**
 * \brief Configure USART to work in SYNC mode and act as a master.
 *
 * \note By default, the transmitter and receiver aren't enabled.
 *
 * \param p_usart Pointer to a USART instance.
 * \param p_usart_opt Pointer to sam_usart_opt_t instance.
 * \param ul_mck USART module input clock frequency.
 *
 * \retval 0 on success.
 * \retval 1 on failure.
 */
uint32_t usart_init_sync_master(Usart *p_usart,
                                const sam_usart_opt_t *p_usart_opt, uint32_t ul_mck)
{
    static uint32_t ul_reg_val;

    /* Reset the USART and shut down TX and RX. */
    usart_reset(p_usart);

    ul_reg_val = 0;
    /* Check whether the input values are legal. */
    if (!p_usart_opt || usart_set_sync_master_baudrate(p_usart,
            p_usart_opt->baudrate, ul_mck)) {
        return 1;
    }

    /* Configure the USART option. */
    ul_reg_val |= p_usart_opt->char_length | p_usart_opt->parity_type |
                  p_usart_opt->channel_mode | p_usart_opt->stop_bits;

    /* Set normal mode and output clock as synchronous master. */
    ul_reg_val |= US_MR_USART_MODE_NORMAL | US_MR_CLKO;
    p_usart->US_MR |= ul_reg_val;

    return 0;
}

/**
 * \brief Configure USART to work in SYNC mode and act as a slave.
 *
 * \note By default, the transmitter and receiver aren't enabled.
 *
 * \param p_usart Pointer to a USART instance.
 * \param p_usart_opt Pointer to sam_usart_opt_t instance.
 *
 * \retval 0 on success.
 * \retval 1 on failure.
 */
uint32_t usart_init_sync_slave(Usart *p_usart,
                               const sam_usart_opt_t *p_usart_opt)
{
    static uint32_t ul_reg_val;

    /* Reset the USART and shut down TX and RX. */
    usart_reset(p_usart);

    ul_reg_val = 0;
    usart_set_sync_slave_baudrate(p_usart);

    /* Check whether the input values are legal. */
    if (!p_usart_opt) {
        return 1;
    }

    /* Configure the USART option. */
    ul_reg_val |= p_usart_opt->char_length | p_usart_opt->parity_type |
                  p_usart_opt->channel_mode | p_usart_opt->stop_bits;

    /* Set normal mode. */
    ul_reg_val |= US_MR_USART_MODE_NORMAL;
    p_usart->US_MR |= ul_reg_val;

    return 0;
}

/**
 * \brief Configure USART to work in RS485 mode.
 *
 * \note By default, the transmitter and receiver aren't enabled.
 *
 * \param p_usart Pointer to a USART instance.
 * \param p_usart_opt Pointer to sam_usart_opt_t instance.
 * \param ul_mck USART module input clock frequency.
 *
 * \retval 0 on success.
 * \retval 1 on failure.
 */
uint32_t usart_init_rs485(Usart *p_usart,
                          const sam_usart_opt_t *p_usart_opt, uint32_t ul_mck)
{
    /* Initialize the USART as standard RS232. */
    if (usart_init_rs232(p_usart, p_usart_opt, ul_mck)) {
        return 1;
    }

    /* Set RS485 mode. */
    p_usart->US_MR = (p_usart->US_MR & ~US_MR_USART_MODE_Msk) |
                     US_MR_USART_MODE_RS485;

    return 0;
}

#if (!SAMG55 && !SAMV71 && !SAMV70 && !SAME70 && !SAMS70)
/**
 * \brief Configure USART to work in IrDA mode.
 *
 * \note By default, the transmitter and receiver aren't enabled.
 *
 * \param p_usart Pointer to a USART instance.
 * \param p_usart_opt Pointer to sam_usart_opt_t instance.
 * \param ul_mck USART module input clock frequency.
 *
 * \retval 0 on success.
 * \retval 1 on failure.
 */
uint32_t usart_init_irda(Usart *p_usart,
                         const sam_usart_opt_t *p_usart_opt, uint32_t ul_mck)
{
    /* Initialize the USART as standard RS232. */
    if (usart_init_rs232(p_usart, p_usart_opt, ul_mck)) {
        return 1;
    }

    /* Set IrDA filter. */
    p_usart->US_IF = p_usart_opt->irda_filter;

    /* Set IrDA mode. */
    p_usart->US_MR = (p_usart->US_MR & ~US_MR_USART_MODE_Msk) |
                     US_MR_USART_MODE_IRDA;

    return 0;
}
#endif

#if (!SAMV71 && !SAMV70 && !SAME70 && !SAMS70)
/**
 * \brief Calculate a clock divider (\e CD) for the USART ISO7816 mode to
 * generate an ISO7816 clock as close as possible to the clock set point.
 *
 * \note ISO7816 clock calculation: Clock = ul_mck / cd
 *
 * \param p_usart Pointer to a USART instance.
 * \param clock ISO7816 clock set point.
 * \param ul_mck USART module input clock frequency.
 *
 * \retval 0 ISO7816 clock is successfully initialized.
 * \retval 1 ISO7816 clock set point is out of range for the given input clock
 * frequency.
 */
static uint32_t usart_set_iso7816_clock(Usart *p_usart,
                                        uint32_t clock, uint32_t ul_mck)
{
    uint32_t cd;

    /* Calculate clock divider according to the formula in ISO7816 mode. */
    cd = (ul_mck + clock / 2) / clock;

    if (cd < MIN_CD_VALUE || cd > MAX_CD_VALUE) {
        return 1;
    }

    p_usart->US_MR = (p_usart->US_MR & ~(US_MR_USCLKS_Msk | US_MR_SYNC |
                                         US_MR_OVER)) | US_MR_USCLKS_MCK | US_MR_CLKO;

    /* Configure the baudrate generate register. */
    p_usart->US_BRGR = cd << US_BRGR_CD_Pos;

    return 0;
}

/**
 * \brief Configure USART to work in ISO7816 mode.
 *
 * \note By default, the transmitter and receiver aren't enabled.
 *
 * \param p_usart Pointer to a USART instance.
 * \param p_usart_opt Pointer to sam_usart_opt_t instance.
 * \param ul_mck USART module input clock frequency.
 *
 * \retval 0 on success.
 * \retval 1 on failure.
 */
uint32_t usart_init_iso7816(Usart *p_usart,
                            const usart_iso7816_opt_t *p_usart_opt, uint32_t ul_mck)
{
    static uint32_t ul_reg_val;

    /* Reset the USART and shut down TX and RX. */
    usart_reset(p_usart);

    ul_reg_val = 0;

    /* Check whether the input values are legal. */
    if (!p_usart_opt || ((p_usart_opt->parity_type != US_MR_PAR_EVEN) &&
                         (p_usart_opt->parity_type != US_MR_PAR_ODD))) {
        return 1;
    }

    if (p_usart_opt->protocol_type == ISO7816_T_0) {
        ul_reg_val |= US_MR_USART_MODE_IS07816_T_0 | US_MR_NBSTOP_2_BIT |
                      (p_usart_opt->max_iterations << US_MR_MAX_ITERATION_Pos);

        if (p_usart_opt->bit_order) {
            ul_reg_val |= US_MR_MSBF;
        }
    } else if (p_usart_opt->protocol_type == ISO7816_T_1) {
        /*
         * Only LSBF is used in the T=1 protocol, and max_iterations field
         * is only used in T=0 mode.
         */
        if (p_usart_opt->bit_order || p_usart_opt->max_iterations) {
            return 1;
        }

        /* Set USART mode to ISO7816, T=1, and always uses 1 stop bit. */
        ul_reg_val |= US_MR_USART_MODE_IS07816_T_1 | US_MR_NBSTOP_1_BIT;
    } else {
        return 1;
    }

    /* Set up the baudrate. */
    if (usart_set_iso7816_clock(p_usart, p_usart_opt->iso7816_hz, ul_mck)) {
        return 1;
    }

    /* Set FIDI register: bit rate = iso7816_hz / fidi_ratio. */
    p_usart->US_FIDI = p_usart_opt->fidi_ratio;

    /* Set ISO7816 parity type in the MODE register. */
    ul_reg_val |= p_usart_opt->parity_type;

    if (p_usart_opt->inhibit_nack) {
        ul_reg_val |= US_MR_INACK;
    }
    if (p_usart_opt->dis_suc_nack) {
        ul_reg_val |= US_MR_DSNACK;
    }

    p_usart->US_MR |= ul_reg_val;

    return 0;
}

/**
 * \brief Reset the ITERATION in US_CSR when the ISO7816 mode is enabled.
 *
 * \param p_usart Pointer to a USART instance.
 */
void usart_reset_iterations(Usart *p_usart)
{
    p_usart->US_CR = US_CR_RSTIT;
}

/**
 * \brief Reset NACK in US_CSR.
 *
 * \param p_usart Pointer to a USART instance.
 */
void usart_reset_nack(Usart *p_usart)
{
    p_usart->US_CR = US_CR_RSTNACK;
}

/**
 * \brief Check if one receive buffer is filled.
 *
 * \param p_usart Pointer to a USART instance.
 *
 * \retval 1 Receive is complete.
 * \retval 0 Receive is still pending.
 */
uint32_t usart_is_rx_buf_end(Usart *p_usart)
{
    return (p_usart->US_CSR & US_CSR_ENDRX) > 0;
}

/**
 * \brief Check if one transmit buffer is empty.
 *
 * \param p_usart Pointer to a USART instance.
 *
 * \retval 1 Transmit is complete.
 * \retval 0 Transmit is still pending.
 */
uint32_t usart_is_tx_buf_end(Usart *p_usart)
{
    return (p_usart->US_CSR & US_CSR_ENDTX) > 0;
}

/**
 * \brief Check if both receive buffers are full.
 *
 * \param p_usart Pointer to a USART instance.
 *
 * \retval 1 Receive buffers are full.
 * \retval 0 Receive buffers are not full.
 */
uint32_t usart_is_rx_buf_full(Usart *p_usart)
{
    return (p_usart->US_CSR & US_CSR_RXBUFF) > 0;
}

/**
 * \brief Check if both transmit buffers are empty.
 *
 * \param p_usart Pointer to a USART instance.
 *
 * \retval 1 Transmit buffers are empty.
 * \retval 0 Transmit buffers are not empty.
 */
uint32_t usart_is_tx_buf_empty(Usart *p_usart)
{
    return (p_usart->US_CSR & US_CSR_TXBUFE) > 0;
}

/**
 * \brief Get the total number of errors that occur during an ISO7816 transfer.
 *
 * \param p_usart Pointer to a USART instance.
 *
 * \return The number of errors that occurred.
 */
uint8_t usart_get_error_number(Usart *p_usart)
{
    return (p_usart->US_NER & US_NER_NB_ERRORS_Msk);
}

#endif

/**
 * \brief Configure USART to work in SPI mode and act as a master.
 *
 * \note By default, the transmitter and receiver aren't enabled.
 *
 * \param p_usart Pointer to a USART instance.
 * \param p_usart_opt Pointer to sam_usart_opt_t instance.
 * \param ul_mck USART module input clock frequency.
 *
 * \retval 0 on success.
 * \retval 1 on failure.
 */
uint32_t usart_init_spi_master(Usart *p_usart,
                               const usart_spi_opt_t *p_usart_opt, uint32_t ul_mck)
{
    static uint32_t ul_reg_val;

    /* Reset the USART and shut down TX and RX. */
    usart_reset(p_usart);

    ul_reg_val = 0;
    /* Check whether the input values are legal. */
    if (!p_usart_opt || (p_usart_opt->spi_mode > SPI_MODE_3) ||
            usart_set_spi_master_baudrate(p_usart, p_usart_opt->baudrate,
                                          ul_mck)) {
        return 1;
    }

    /* Configure the character length bit in MR register. */
    ul_reg_val |= p_usart_opt->char_length;

    /* Set SPI master mode and channel mode. */
    ul_reg_val |= US_MR_USART_MODE_SPI_MASTER | US_MR_CLKO |
                  p_usart_opt->channel_mode;

    switch (p_usart_opt->spi_mode) {
        case SPI_MODE_0:
            ul_reg_val |= US_MR_CPHA;
            ul_reg_val &= ~US_MR_CPOL;
            break;

        case SPI_MODE_1:
            ul_reg_val &= ~US_MR_CPHA;
            ul_reg_val &= ~US_MR_CPOL;
            break;

        case SPI_MODE_2:
            ul_reg_val |= US_MR_CPHA;
            ul_reg_val |= US_MR_CPOL;
            break;

        case SPI_MODE_3:
            ul_reg_val &= ~US_MR_CPHA;
            ul_reg_val |= US_MR_CPOL;
            break;

        default:
            break;
    }

    p_usart->US_MR |= ul_reg_val;

    return 0;
}

/**
 * \brief Configure USART to work in SPI mode and act as a slave.
 *
 * \note By default, the transmitter and receiver aren't enabled.
 *
 * \param p_usart Pointer to a USART instance.
 * \param p_usart_opt Pointer to sam_usart_opt_t instance.
 *
 * \retval 0 on success.
 * \retval 1 on failure.
 */
uint32_t usart_init_spi_slave(Usart *p_usart,
                              const usart_spi_opt_t *p_usart_opt)
{
    static uint32_t ul_reg_val;

    /* Reset the USART and shut down TX and RX. */
    usart_reset(p_usart);

    ul_reg_val = 0;
    usart_set_spi_slave_baudrate(p_usart);

    /* Check whether the input values are legal. */
    if (!p_usart_opt || p_usart_opt->spi_mode > SPI_MODE_3) {
        return 1;
    }

    /* Configure the character length bit in MR register. */
    ul_reg_val |= p_usart_opt->char_length;

    /* Set SPI slave mode and channel mode. */
    ul_reg_val |= US_MR_USART_MODE_SPI_SLAVE | p_usart_opt->channel_mode;

    switch (p_usart_opt->spi_mode) {
        case SPI_MODE_0:
            ul_reg_val |= US_MR_CPHA;
            ul_reg_val &= ~US_MR_CPOL;
            break;

        case SPI_MODE_1:
            ul_reg_val &= ~US_MR_CPHA;
            ul_reg_val &= ~US_MR_CPOL;
            break;

        case SPI_MODE_2:
            ul_reg_val |= US_MR_CPHA;
            ul_reg_val |= US_MR_CPOL;
            break;

        case SPI_MODE_3:
            ul_reg_val |= US_MR_CPOL;
            ul_reg_val &= ~US_MR_CPHA;
            break;

        default:
            break;
    }

    p_usart->US_MR |= ul_reg_val;

    return 0;
}

#if (SAM3XA || SAM4L || SAMG55 || SAMV71 || SAMV70 || SAME70 || SAMS70)

/**
 * \brief Configure USART to work in LIN mode and act as a LIN master.
 *
 * \note By default, the transmitter and receiver aren't enabled.
 *
 * \param p_usart Pointer to a USART instance.
 * \param ul_baudrate Baudrate to be used.
 * \param ul_mck USART module input clock frequency.
 *
 * \retval 0 on success.
 * \retval 1 on failure.
 */
uint32_t usart_init_lin_master(Usart *p_usart,uint32_t ul_baudrate,
                               uint32_t ul_mck)
{
    /* Reset the USART and shut down TX and RX. */
    usart_reset(p_usart);

    /* Set up the baudrate. */
    if (usart_set_async_baudrate(p_usart, ul_baudrate, ul_mck)) {
        return 1;
    }

    /* Set LIN master mode. */
    p_usart->US_MR = (p_usart->US_MR & ~US_MR_USART_MODE_Msk) |
                     US_MR_USART_MODE_LIN_MASTER;

    usart_enable_rx(p_usart);
    usart_enable_tx(p_usart);

    return 0;
}

/**
 * \brief Configure USART to work in LIN mode and act as a LIN slave.
 *
 * \note By default, the transmitter and receiver aren't enabled.
 *
 * \param p_usart Pointer to a USART instance.
 * \param ul_baudrate Baudrate to be used.
 * \param ul_mck USART module input clock frequency.
 *
 * \retval 0 on success.
 * \retval 1 on failure.
 */
uint32_t usart_init_lin_slave(Usart *p_usart, uint32_t ul_baudrate,
                              uint32_t ul_mck)
{
    /* Reset the USART and shut down TX and RX. */
    usart_reset(p_usart);

    usart_enable_rx(p_usart);
    usart_enable_tx(p_usart);

    /* Set LIN slave mode. */
    p_usart->US_MR = (p_usart->US_MR & ~US_MR_USART_MODE_Msk) |
                     US_MR_USART_MODE_LIN_SLAVE;

    /* Set up the baudrate. */
    if (usart_set_async_baudrate(p_usart, ul_baudrate, ul_mck)) {
        return 1;
    }

    return 0;
}

/**
 * \brief Abort the current LIN transmission.
 *
 * \param p_usart Pointer to a USART instance.
 */
void usart_lin_abort_tx(Usart *p_usart)
{
    p_usart->US_CR = US_CR_LINABT;
}

/**
 * \brief Send a wakeup signal on the LIN bus.
 *
 * \param p_usart Pointer to a USART instance.
 */
void usart_lin_send_wakeup_signal(Usart *p_usart)
{
    p_usart->US_CR = US_CR_LINWKUP;
}

/**
 * \brief Configure the LIN node action, which should be one of PUBLISH,
 * SUBSCRIBE or IGNORE.
 *
 * \param p_usart Pointer to a USART instance.
 * \param uc_action 0 for PUBLISH, 1 for SUBSCRIBE, 2 for IGNORE.
 */
void usart_lin_set_node_action(Usart *p_usart, uint8_t uc_action)
{
    p_usart->US_LINMR = (p_usart->US_LINMR & ~US_LINMR_NACT_Msk) |
                        (uc_action << US_LINMR_NACT_Pos);
}

/**
 * \brief Disable the parity check during the LIN communication.
 *
 * \param p_usart Pointer to a USART instance.
 */
void usart_lin_disable_parity(Usart *p_usart)
{
    p_usart->US_LINMR |= US_LINMR_PARDIS;
}

/**
 * \brief Enable the parity check during the LIN communication.
 *
 * \param p_usart Pointer to a USART instance.
 */
void usart_lin_enable_parity(Usart *p_usart)
{
    p_usart->US_LINMR &= ~US_LINMR_PARDIS;
}

/**
 * \brief Disable the checksum during the LIN communication.
 *
 * \param p_usart Pointer to a USART instance.
 */
void usart_lin_disable_checksum(Usart *p_usart)
{
    p_usart->US_LINMR |= US_LINMR_CHKDIS;
}

/**
 * \brief Enable the checksum during the LIN communication.
 *
 * \param p_usart Pointer to a USART instance.
 */
void usart_lin_enable_checksum(Usart *p_usart)
{
    p_usart->US_LINMR &= ~US_LINMR_CHKDIS;
}

/**
 * \brief Configure the checksum type during the LIN communication.
 *
 * \param p_usart Pointer to a USART instance.
 * \param uc_type 0 for LIN 2.0 Enhanced checksum or 1 for LIN 1.3 Classic
 *  checksum.
 */
void usart_lin_set_checksum_type(Usart *p_usart, uint8_t uc_type)
{
    p_usart->US_LINMR = (p_usart->US_LINMR & ~US_LINMR_CHKTYP) |
                        (uc_type << 4);
}

/**
 * \brief Configure the data length mode during the LIN communication.
 *
 * \param p_usart Pointer to a USART instance.
 * \param uc_mode Indicate the data length type: 0 if the data length is
 * defined by the DLC of LIN mode register or 1 if the data length is defined
 * by the bit 5 and 6 of the identifier.
 */
void usart_lin_set_data_len_mode(Usart *p_usart, uint8_t uc_mode)
{
    p_usart->US_LINMR = (p_usart->US_LINMR & ~US_LINMR_DLM) |
                        (uc_mode << 5);
}

/**
 * \brief Disable the frame slot mode during the LIN communication.
 *
 * \param p_usart Pointer to a USART instance.
 */
void usart_lin_disable_frame_slot(Usart *p_usart)
{
    p_usart->US_LINMR |= US_LINMR_FSDIS;
}

/**
 * \brief Enable the frame slot mode during the LIN communication.
 *
 * \param p_usart Pointer to a USART instance.
 */
void usart_lin_enable_frame_slot(Usart *p_usart)
{
    p_usart->US_LINMR &= ~US_LINMR_FSDIS;
}

/**
 * \brief Configure the wakeup signal type during the LIN communication.
 *
 * \param p_usart Pointer to a USART instance.
 * \param uc_type Indicate the checksum type: 0 if the wakeup signal is a
 * LIN 2.0 wakeup signal; 1 if the wakeup signal is a LIN 1.3 wakeup signal.
 */
void usart_lin_set_wakeup_signal_type(Usart *p_usart, uint8_t uc_type)
{
    p_usart->US_LINMR = (p_usart->US_LINMR & ~US_LINMR_WKUPTYP) |
                        (uc_type << 7);
}

/**
 * \brief Configure the response data length if the data length is defined by
 * the DLC field during the LIN communication.
 *
 * \param p_usart Pointer to a USART instance.
 * \param uc_len Indicate the response data length.
 */
void usart_lin_set_response_data_len(Usart *p_usart, uint8_t uc_len)
{
    p_usart->US_LINMR = (p_usart->US_LINMR & ~US_LINMR_DLC_Msk) |
                        ((uc_len - 1) << US_LINMR_DLC_Pos);
}

/**
 * \brief The LIN mode register is not written by the PDC.
 *
 * \param p_usart Pointer to a USART instance.
 */
void usart_lin_disable_pdc_mode(Usart *p_usart)
{
    p_usart->US_LINMR &= ~US_LINMR_PDCM;
}

/**
 * \brief The LIN mode register (except this flag) is written by the PDC.
 *
 * \param p_usart Pointer to a USART instance.
 */
void usart_lin_enable_pdc_mode(Usart *p_usart)
{
    p_usart->US_LINMR |= US_LINMR_PDCM;
}

/**
 * \brief Configure the LIN identifier when USART works in LIN master mode.
 *
 * \param p_usart Pointer to a USART instance.
 * \param uc_id The identifier to be transmitted.
 */
void usart_lin_set_tx_identifier(Usart *p_usart, uint8_t uc_id)
{
    p_usart->US_LINIR = (p_usart->US_LINIR & ~US_LINIR_IDCHR_Msk) |
                        US_LINIR_IDCHR(uc_id);
}

/**
 * \brief Read the identifier when USART works in LIN mode.
 *
 * \param p_usart Pointer to a USART instance.
 *
 * \return The last identifier received in LIN slave mode or the last
 * identifier transmitted in LIN master mode.
 */
uint8_t usart_lin_read_identifier(Usart *p_usart)
{
    return (p_usart->US_LINIR & US_LINIR_IDCHR_Msk);
}

/**
 * \brief Get data length.
 *
 * \param p_usart Pointer to a USART instance.
 *
 * \return Data length.
 */
uint8_t usart_lin_get_data_length(Usart *usart)
{
    if (usart->US_LINMR & US_LINMR_DLM) {
        uint8_t data_length = 1 << ((usart->US_LINIR >>
                                     (US_LINIR_IDCHR_Pos + 4)) & 0x03);
        return data_length;
    } else {
        return ((usart->US_LINMR & US_LINMR_DLC_Msk) >> US_LINMR_DLC_Pos) + 1;
    }
}

#endif

#if (SAMV71 || SAMV70 || SAME70 || SAMS70)
/**
 * \brief Get identifier send status.
 *
 * \param p_usart Pointer to a USART instance.
 *
 * \return
 * 0:  No LIN identifier has been sent since the last RSTSTA.
 * 1: :At least one LIN identifier has been sent since the last RSTSTA.
 */
uint8_t usart_lin_identifier_send_complete(Usart *usart)
{
    return (usart->US_CSR & US_CSR_LINID) > 0;
}

/**
 * \brief Get identifier received status.
 *
 * \param p_usart Pointer to a USART instance.
 *
 * \return
 * 0:  No LIN identifier has been reveived since the last RSTSTA.
 * 1: At least one LIN identifier has been received since the last RSTSTA.
 */
uint8_t usart_lin_identifier_reception_complete(Usart *usart)
{
    return (usart->US_CSR & US_CSR_LINID) > 0;
}

/**
 * \brief Get transmission status.
 *
 * \param p_usart Pointer to a USART instance.
 *
 * \return
 * 0: The USART is idle or a LIN transfer is ongoing.
 * 1: A LIN transfer has been completed since the last RSTSTA.
 */
uint8_t usart_lin_tx_complete(Usart *usart)
{
    return (usart->US_CSR & US_CSR_LINTC) > 0;
}

/**
 * \brief Configure USART to work in LON mode.
 *
 * \note By default, the transmitter and receiver aren't enabled.
 *
 * \param p_usart Pointer to a USART instance.
 * \param ul_baudrate Baudrate to be used.
 * \param ul_mck USART module input clock frequency.
 *
 * \retval 0 on success.
 * \retval 1 on failure.
 */
uint32_t usart_init_lon(Usart *p_usart,uint32_t ul_baudrate,
                        uint32_t ul_mck)
{
    /* Reset the USART and shut down TX and RX. */
    usart_reset(p_usart);

    /* Set up the baudrate. */
    if (usart_set_async_baudrate(p_usart, ul_baudrate, ul_mck)) {
        return 1;
    }

    /* Set LIN master mode. */
    p_usart->US_MR = (p_usart->US_MR & ~US_MR_USART_MODE_Msk) |
                     US_MR_USART_MODE_LON;

    usart_enable_rx(p_usart);
    usart_enable_tx(p_usart);

    return 0;
}

/**
 * \brief set LON parameter value.
 *
 * \param p_usart Pointer to a USART instance.
 * \param uc_type 0: LON comm_type = 1 mode,
 *  1: LON comm_type = 2 mode
 */
void  usart_lon_set_comm_type(Usart *p_usart, uint8_t uc_type)
{
    p_usart->US_LONMR = (p_usart->US_LONMR & ~US_LONMR_COMMT) |
                        (uc_type << 0);
}

/**
 * \brief Disable  LON Collision Detection Feature.
 *
 * \param p_usart Pointer to a USART instance.
 */
void usart_lon_disable_coll_detection(Usart *p_usart)
{
    p_usart->US_LONMR |= US_LONMR_COLDET;
}

/**
 * \brief Enable LON Collision Detection Feature.
 *
 * \param p_usart Pointer to a USART instance.
 */
void usart_lon_enable_coll_detection(Usart *p_usart)
{
    p_usart->US_LONMR &= ~US_LONMR_COLDET;
}

/**
 * \brief set Terminate Frame upon Collision Notification.
 *
 * \param p_usart Pointer to a USART instance.
 * \param uc_type 0:  Do not terminate the frame in LON comm_type = 1 mode upon collision detection.
 * 1:Terminate the frame in LON comm_type = 1 mode upon collision detection if possible.
 */
void  usart_lon_set_tcol(Usart *p_usart, uint8_t uc_type)
{
    p_usart->US_LONMR = (p_usart->US_LONMR & ~US_LONMR_TCOL) |
                        (uc_type << 2);
}

/**
 * \brief set  LON Collision Detection on Frame Tail.
 *
 * \param p_usart Pointer to a USART instance.
 * \param uc_type 0: Detect collisions after CRC has been sent but prior end of transmission in LON comm_type = 1 mode.
 * 1: Ignore collisions after CRC has been sent but prior end of transmission in LON comm_type = 1 mode.
 */
void  usart_lon_set_cdtail(Usart *p_usart, uint8_t uc_type)
{
    p_usart->US_LONMR = (p_usart->US_LONMR & ~US_LONMR_CDTAIL) |
                        (uc_type << 3);
}

/**
 * \brief set  LON DMA Mode.
 *
 * \param p_usart Pointer to a USART instance.
 * \param uc_type 0: The LON data length register US_LONDL is not written by the DMA.
 * 1: The LON data length register US_LONDL is written by the DMA.
 */
void  usart_lon_set_dmam(Usart *p_usart, uint8_t uc_type)
{
    p_usart->US_LONMR = (p_usart->US_LONMR & ~US_LONMR_DMAM) |
                        (uc_type << 4);
}

/**
 * \brief set LON Beta1 Length after Transmission.
 *
 * \param p_usart Pointer to a USART instance.
 * \param ul_len 1-16777215: LON beta1 length after transmission in tbit
 */
void  usart_lon_set_beta1_tx_len(Usart *p_usart, uint32_t ul_len)
{
    p_usart->US_LONB1TX = US_LONB1TX_BETA1TX(ul_len);
}

/**
 * \brief set LON Beta1 Length after Reception.
 *
 * \param p_usart Pointer to a USART instance.
 * \param ul_len 1-16777215: LON beta1 length after reception in tbit.
 */
void  usart_lon_set_beta1_rx_len(Usart *p_usart, uint32_t ul_len)
{
    p_usart->US_LONB1RX = US_LONB1RX_BETA1RX(ul_len);
}

/**
 * \brief set  LON Priority.
 *
 * \param p_usart Pointer to a USART instance.
 * \param uc_psnb 0 -127: LON Priority Slot Number.
 * \param uc_nps  0 -127: LON Node Priority Slot.
 */
void  usart_lon_set_priority(Usart *p_usart, uint8_t uc_psnb, uint8_t uc_nps)
{
    p_usart->US_LONPRIO = US_LONPRIO_PSNB(uc_psnb) | US_LONPRIO_NPS(uc_nps);
}

/**
 * \brief set LON Indeterminate Time after Transmission.
 *
 * \param p_usart Pointer to a USART instance.
 * \param ul_time 1-16777215: LON Indeterminate Time after Transmission (comm_type = 1 mode only).
 */
void  usart_lon_set_tx_idt(Usart *p_usart, uint32_t ul_time)
{
    p_usart->US_IDTTX = US_IDTTX_IDTTX(ul_time);
}

/**
 * \brief set LON Indeterminate Time after Reception.
 *
 * \param p_usart Pointer to a USART instance.
 * \param ul_time 1-16777215: LON Indeterminate Time after Reception (comm_type = 1 mode only).
 */
void  usart_lon_set_rx_idt(Usart *p_usart, uint32_t ul_time)
{
    p_usart->US_IDTRX = US_IDTRX_IDTRX(ul_time);
}

/**
 * \brief set LON Preamble Length.
 *
 * \param p_usart Pointer to a USART instance.
 * \param ul_len 1-16383: LON preamble length in tbit(without byte-sync).
 */
void  usart_lon_set_pre_len(Usart *p_usart, uint32_t ul_len)
{
    p_usart->US_LONPR = US_LONPR_LONPL(ul_len);
}

/**
 * \brief set LON  Data Length.
 *
 * \param p_usart Pointer to a USART instance.
 * \param uc_len 0-255: LON data length is LONDL+1 bytes.
 */
void  usart_lon_set_data_len(Usart *p_usart, uint8_t uc_len)
{
    p_usart->US_LONDL = US_LONDL_LONDL(uc_len);
}

/**
 * \brief set  LON Priority.
 *
 * \param p_usart Pointer to a USART instance.
 * \param uc_bli   LON Backlog Increment.
 * \param uc_altp LON Alternate Path Bit.
 * \param uc_pb   LON Priority Bit.
 */
void  usart_lon_set_l2hdr(Usart *p_usart, uint8_t uc_bli, uint8_t uc_altp, uint8_t uc_pb)
{
    p_usart->US_LONL2HDR = US_LONL2HDR_BLI(uc_bli) | (uc_altp << 6) | (uc_pb << 7);
}

/**
 * \brief Check if LON Transmission End.
 *
 * \param p_usart Pointer to a USART instance.
 *
 * \retval 1  At least one transmission has been performed since the last RSTSTA.
 * \retval 0  Transmission on going or no transmission occurred since the last RSTSTA.
 */
uint32_t usart_lon_is_tx_end(Usart *p_usart)
{
    return (p_usart->US_CSR & US_CSR_LTXD) > 0;
}

/**
 * \brief Check if LON Reception End.
 *
 * \param p_usart Pointer to a USART instance.
 *
 * \retval 1  At least one Reception has been performed since the last RSTSTA.
 * \retval 0  Reception on going or no Reception occurred since the last RSTSTA.
 */
uint32_t usart_lon_is_rx_end(Usart *p_usart)
{
    return (p_usart->US_CSR & US_CSR_LRXD) > 0;
}
#endif

/**
 * \brief Enable USART transmitter.
 *
 * \param p_usart Pointer to a USART instance.
 */
void usart_enable_tx(Usart *p_usart)
{
    p_usart->US_CR = US_CR_TXEN;
}

/**
 * \brief Disable USART transmitter.
 *
 * \param p_usart Pointer to a USART instance.
 */
void usart_disable_tx(Usart *p_usart)
{
    p_usart->US_CR = US_CR_TXDIS;
}

/**
 * \brief Immediately stop and disable USART transmitter.
 *
 * \param p_usart Pointer to a USART instance.
 */
void usart_reset_tx(Usart *p_usart)
{
    /* Reset transmitter */
    p_usart->US_CR = US_CR_RSTTX | US_CR_TXDIS;
}

/**
 * \brief Configure the transmit timeguard register.
 *
 * \param p_usart Pointer to a USART instance.
 * \param timeguard The value of transmit timeguard.
 */
void usart_set_tx_timeguard(Usart *p_usart, uint32_t timeguard)
{
    p_usart->US_TTGR = timeguard;
}

/**
 * \brief Enable USART receiver.
 *
 * \param p_usart Pointer to a USART instance.
 */
void usart_enable_rx(Usart *p_usart)
{
    p_usart->US_CR = US_CR_RXEN;
}

/**
 * \brief Disable USART receiver.
 *
 * \param p_usart Pointer to a USART instance.
 */
void usart_disable_rx(Usart *p_usart)
{
    p_usart->US_CR = US_CR_RXDIS;
}

/**
 * \brief Immediately stop and disable USART receiver.
 *
 * \param p_usart Pointer to a USART instance.
 */
void usart_reset_rx(Usart *p_usart)
{
    /* Reset Receiver */
    p_usart->US_CR = US_CR_RSTRX | US_CR_RXDIS;
}

/**
 * \brief Configure the receive timeout register.
 *
 * \param p_usart Pointer to a USART instance.
 * \param timeout The value of receive timeout.
 */
void usart_set_rx_timeout(Usart *p_usart, uint32_t timeout)
{
    p_usart->US_RTOR = timeout;
}

/**
 * \brief Enable USART interrupts.
 *
 * \param p_usart Pointer to a USART peripheral.
 * \param ul_sources Interrupt sources bit map.
 */
void usart_enable_interrupt(Usart *p_usart, uint32_t ul_sources)
{
    p_usart->US_IER = ul_sources;
}

/**
 * \brief Disable USART interrupts.
 *
 * \param p_usart Pointer to a USART peripheral.
 * \param ul_sources Interrupt sources bit map.
 */
void usart_disable_interrupt(Usart *p_usart, uint32_t ul_sources)
{
    p_usart->US_IDR = ul_sources;
}

/**
 * \brief Read USART interrupt mask.
 *
 * \param p_usart Pointer to a USART peripheral.
 *
 * \return The interrupt mask value.
 */
uint32_t usart_get_interrupt_mask(Usart *p_usart)
{
    return p_usart->US_IMR;
}

/**
 * \brief Get current status.
 *
 * \param p_usart Pointer to a USART instance.
 *
 * \return The current USART status.
 */
uint32_t usart_get_status(Usart *p_usart)
{
    return p_usart->US_CSR;
}

/**
 * \brief Reset status bits (PARE, OVER, MANERR, UNRE and PXBRK in US_CSR).
 *
 * \param p_usart Pointer to a USART instance.
 */
void usart_reset_status(Usart *p_usart)
{
    p_usart->US_CR = US_CR_RSTSTA;
}

/**
 * \brief Start transmission of a break.
 *
 * \param p_usart Pointer to a USART instance.
 */
void usart_start_tx_break(Usart *p_usart)
{
    p_usart->US_CR = US_CR_STTBRK;
}

/**
 * \brief Stop transmission of a break.
 *
 * \param p_usart Pointer to a USART instance.
 */
void usart_stop_tx_break(Usart *p_usart)
{
    p_usart->US_CR = US_CR_STPBRK;
}

/**
 * \brief Start waiting for a character before clocking the timeout count.
 * Reset the status bit TIMEOUT in US_CSR.
 *
 * \param p_usart Pointer to a USART instance.
 */
void usart_start_rx_timeout(Usart *p_usart)
{
    p_usart->US_CR = US_CR_STTTO;
}

/**
 * \brief In Multidrop mode only, the next character written to the US_THR
 * is sent with the address bit set.
 *
 * \param p_usart Pointer to a USART instance.
 * \param ul_addr The address to be sent out.
 *
 * \retval 0 on success.
 * \retval 1 on failure.
 */
uint32_t usart_send_address(Usart *p_usart, uint32_t ul_addr)
{
    if ((p_usart->US_MR & US_MR_PAR_MULTIDROP) != US_MR_PAR_MULTIDROP) {
        return 1;
    }

    p_usart->US_CR = US_CR_SENDA;

    if (usart_write(p_usart, ul_addr)) {
        return 1;
    } else {
        return 0;
    }
}

/**
 * \brief Restart the receive timeout.
 *
 * \param p_usart Pointer to a USART instance.
 */
void usart_restart_rx_timeout(Usart *p_usart)
{
    p_usart->US_CR = US_CR_RETTO;
}

#if (SAM3S || SAM4S || SAM3U || SAM4L || SAM4E)

/**
 * \brief Drive the pin DTR to 0.
 *
 * \param p_usart Pointer to a USART instance.
 */
void usart_drive_DTR_pin_low(Usart *p_usart)
{
    p_usart->US_CR = US_CR_DTREN;
}

/**
 * \brief Drive the pin DTR to 1.
 *
 * \param p_usart Pointer to a USART instance.
 */
void usart_drive_DTR_pin_high(Usart *p_usart)
{
    p_usart->US_CR = US_CR_DTRDIS;
}

#endif

/**
 * \brief Drive the pin RTS to 0.
 *
 * \param p_usart Pointer to a USART instance.
 */
void usart_drive_RTS_pin_low(Usart *p_usart)
{
    p_usart->US_CR = US_CR_RTSEN;
}

/**
 * \brief Drive the pin RTS to 1.
 *
 * \param p_usart Pointer to a USART instance.
 */
void usart_drive_RTS_pin_high(Usart *p_usart)
{
    p_usart->US_CR = US_CR_RTSDIS;
}

/**
 * \brief Drive the slave select line NSS (RTS pin) to 0 in SPI master mode.
 *
 * \param p_usart Pointer to a USART instance.
 */
void usart_spi_force_chip_select(Usart *p_usart)
{
    p_usart->US_CR = US_CR_FCS;
}

/**
 * \brief Drive the slave select line NSS (RTS pin) to 1 in SPI master mode.
 *
 * \param p_usart Pointer to a USART instance.
 */
void usart_spi_release_chip_select(Usart *p_usart)
{
    p_usart->US_CR = US_CR_RCS;
}

/**
 * \brief Check if Transmit is Ready.
 * Check if data have been loaded in USART_THR and are waiting to be loaded
 * into the Transmit Shift Register (TSR).
 *
 * \param p_usart Pointer to a USART instance.
 *
 * \retval 1 No data is in the Transmit Holding Register.
 * \retval 0 There is data in the Transmit Holding Register.
 */
uint32_t usart_is_tx_ready(Usart *p_usart)
{
    return (p_usart->US_CSR & US_CSR_TXRDY) > 0;
}

/**
 * \brief Check if Transmit Holding Register is empty.
 * Check if the last data written in USART_THR have been loaded in TSR and the
 * last data loaded in TSR have been transmitted.
 *
 * \param p_usart Pointer to a USART instance.
 *
 * \retval 1 Transmitter is empty.
 * \retval 0 Transmitter is not empty.
 */
uint32_t usart_is_tx_empty(Usart *p_usart)
{
    return (p_usart->US_CSR & US_CSR_TXEMPTY) > 0;
}

/**
 * \brief Check if the received data are ready.
 * Check if Data have been received and loaded into USART_RHR.
 *
 * \param p_usart Pointer to a USART instance.
 *
 * \retval 1 Some data has been received.
 * \retval 0 No data has been received.
 */
uint32_t usart_is_rx_ready(Usart *p_usart)
{
    return (p_usart->US_CSR & US_CSR_RXRDY) > 0;
}

/**
 * \brief Write to USART Transmit Holding Register.
 *
 * \note Before writing user should check if tx is ready (or empty).
 *
 * \param p_usart Pointer to a USART instance.
 * \param c Data to be sent.
 *
 * \retval 0 on success.
 * \retval 1 on failure.
 */
uint32_t usart_write(Usart *p_usart, uint32_t c)
{
    if (!(p_usart->US_CSR & US_CSR_TXRDY)) {
        return 1;
    }

    p_usart->US_THR = US_THR_TXCHR(c);
    return 0;
}

/**
 * \brief Write to USART Transmit Holding Register.
 *
 * \note Before writing user should check if tx is ready (or empty).
 *
 * \param p_usart Pointer to a USART instance.
 * \param c Data to be sent.
 *
 * \retval 0 on success.
 * \retval 1 on failure.
 */
uint32_t usart_putchar(Usart *p_usart, uint32_t c)
{
    while (!(p_usart->US_CSR & US_CSR_TXRDY)) {
    }

    p_usart->US_THR = US_THR_TXCHR(c);

    return 0;
}

/**
 * \brief Write one-line string through USART.
 *
 * \param p_usart Pointer to a USART instance.
 * \param string Pointer to one-line string to be sent.
 */
void usart_write_line(Usart *p_usart, const char *string)
{
    while (*string != '\0') {
        usart_putchar(p_usart, *string++);
    }
}

/**
 * \brief Read from USART Receive Holding Register.
 *
 * \note Before reading user should check if rx is ready.
 *
 * \param p_usart Pointer to a USART instance.
 * \param c Pointer where the one-byte received data will be stored.
 *
 * \retval 0 on success.
 * \retval 1 if no data is available or errors.
 */
uint32_t usart_read(Usart *p_usart, uint32_t *c)
{
    if (!(p_usart->US_CSR & US_CSR_RXRDY)) {
        return 1;
    }

    /* Read character */
    *c = p_usart->US_RHR & US_RHR_RXCHR_Msk;

    return 0;
}

/**
 * \brief Read from USART Receive Holding Register.
 * Before reading user should check if rx is ready.
 *
 * \param p_usart Pointer to a USART instance.
 * \param c Pointer where the one-byte received data will be stored.
 *
 * \retval 0 Data has been received.
 * \retval 1 on failure.
 */
uint32_t usart_getchar(Usart *p_usart, uint32_t *c)
{
    /* Wait until it's not empty or timeout has reached. */
    while (!(p_usart->US_CSR & US_CSR_RXRDY)) {
    }

    /* Read character */
    *c = p_usart->US_RHR & US_RHR_RXCHR_Msk;

    return 0;
}

#if (SAM3XA || SAM3U)
/**
 * \brief Get Transmit address for DMA operation.
 *
 * \param p_usart Pointer to a USART instance.
 *
 * \return Transmit address for DMA access.
 */
uint32_t *usart_get_tx_access(Usart *p_usart)
{
    return (uint32_t *)&(p_usart->US_THR);
}

/**
 * \brief Get Receive address for DMA operation.
 *
 * \param p_usart Pointer to a USART instance.
 *
 * \return Receive address for DMA access.
 */
uint32_t *usart_get_rx_access(Usart *p_usart)
{
    return (uint32_t *)&(p_usart->US_RHR);
}
#endif

#if (!SAM4L && !SAMV71 && !SAMV70 && !SAME70 && !SAMS70)
/**
 * \brief Get USART PDC base address.
 *
 * \param p_usart Pointer to a UART instance.
 *
 * \return USART PDC registers base for PDC driver to access.
 */
Pdc *usart_get_pdc_base(Usart *p_usart)
{
    Pdc *p_pdc_base;

    p_pdc_base = (Pdc *)NULL;

#ifdef PDC_USART
    if (p_usart == USART) {
        p_pdc_base = PDC_USART;
        return p_pdc_base;
    }
#endif
#ifdef PDC_USART0
    if (p_usart == USART0) {
        p_pdc_base = PDC_USART0;
        return p_pdc_base;
    }
#endif
#ifdef PDC_USART1
    else if (p_usart == USART1) {
        p_pdc_base = PDC_USART1;
        return p_pdc_base;
    }
#endif
#ifdef PDC_USART2
    else if (p_usart == USART2) {
        p_pdc_base = PDC_USART2;
        return p_pdc_base;
    }
#endif
#ifdef PDC_USART3
    else if (p_usart == USART3) {
        p_pdc_base = PDC_USART3;
        return p_pdc_base;
    }
#endif
#ifdef PDC_USART4
    else if (p_usart == USART4) {
        p_pdc_base = PDC_USART4;
        return p_pdc_base;
    }
#endif
#ifdef PDC_USART5
    else if (p_usart == USART5) {
        p_pdc_base = PDC_USART5;
        return p_pdc_base;
    }
#endif
#ifdef PDC_USART6
    else if (p_usart == USART6) {
        p_pdc_base = PDC_USART6;
        return p_pdc_base;
    }
#endif
#ifdef PDC_USART7
    else if (p_usart == USART7) {
        p_pdc_base = PDC_USART7;
        return p_pdc_base;
    }
#endif

    return p_pdc_base;
}
#endif

/**
 * \brief Enable write protect of USART registers.
 *
 * \param p_usart Pointer to a USART instance.
 */
void usart_enable_writeprotect(Usart *p_usart)
{
    p_usart->US_WPMR = US_WPMR_WPEN | US_WPMR_WPKEY_PASSWD;
}

/**
 * \brief Disable write protect of USART registers.
 *
 * \param p_usart Pointer to a USART instance.
 */
void usart_disable_writeprotect(Usart *p_usart)
{
    p_usart->US_WPMR = US_WPMR_WPKEY_PASSWD;
}

/**
 * \brief Get write protect status.
 *
 * \param p_usart Pointer to a USART instance.
 *
 * \return 0 if no write protect violation occurred, or 16-bit write protect
 * violation source.
 */
uint32_t usart_get_writeprotect_status(Usart *p_usart)
{
    uint32_t reg_value;

    reg_value = p_usart->US_WPSR;
    if (reg_value & US_WPSR_WPVS) {
        return (reg_value & US_WPSR_WPVSRC_Msk) >> US_WPSR_WPVSRC_Pos;
    } else {
        return 0;
    }
}

#if (SAM3S || SAM4S || SAM3U || SAM3XA || SAM4L || SAM4E || SAM4C || SAM4CP || SAM4CM)

/**
 * \brief Configure the transmitter preamble length when the Manchester
 * encode/decode is enabled.
 *
 * \param p_usart Pointer to a USART instance.
 * \param uc_len The transmitter preamble length, which should be 0 ~ 15.
 */
void usart_man_set_tx_pre_len(Usart *p_usart, uint8_t uc_len)
{
    p_usart->US_MAN = (p_usart->US_MAN & ~US_MAN_TX_PL_Msk) |
                      US_MAN_TX_PL(uc_len);
}

/**
 * \brief Configure the transmitter preamble pattern when the Manchester
 * encode/decode is enabled, which should be 0 ~ 3.
 *
 * \param p_usart Pointer to a USART instance.
 * \param uc_pattern 0 if the preamble is composed of '1's;
 * 1 if the preamble is composed of '0's;
 * 2 if the preamble is composed of '01's;
 * 3 if the preamble is composed of '10's.
 */
void usart_man_set_tx_pre_pattern(Usart *p_usart, uint8_t uc_pattern)
{
    p_usart->US_MAN = (p_usart->US_MAN & ~US_MAN_TX_PP_Msk) |
                      (uc_pattern << US_MAN_TX_PP_Pos);
}

/**
 * \brief Configure the transmitter Manchester polarity when the Manchester
 * encode/decode is enabled.
 *
 * \param p_usart Pointer to a USART instance.
 * \param uc_polarity Indicate the transmitter Manchester polarity, which
 * should be 0 or 1.
 */
void usart_man_set_tx_polarity(Usart *p_usart, uint8_t uc_polarity)
{
    p_usart->US_MAN = (p_usart->US_MAN & ~US_MAN_TX_MPOL) |
                      (uc_polarity << 12);
}

/**
 * \brief Configure the detected receiver preamble length when the Manchester
 * encode/decode is enabled.
 *
 * \param p_usart Pointer to a USART instance.
 * \param uc_len The detected receiver preamble length, which should be 0 ~ 15.
 */
void usart_man_set_rx_pre_len(Usart *p_usart, uint8_t uc_len)
{
    p_usart->US_MAN = (p_usart->US_MAN & ~US_MAN_RX_PL_Msk) |
                      US_MAN_RX_PL(uc_len);
}

/**
 * \brief Configure the detected receiver preamble pattern when the Manchester
 *  encode/decode is enabled, which should be 0 ~ 3.
 *
 * \param p_usart Pointer to a USART instance.
 * \param uc_pattern 0 if the preamble is composed of '1's;
 * 1 if the preamble is composed of '0's;
 * 2 if the preamble is composed of '01's;
 * 3 if the preamble is composed of '10's.
 */
void usart_man_set_rx_pre_pattern(Usart *p_usart, uint8_t uc_pattern)
{
    p_usart->US_MAN = (p_usart->US_MAN & ~US_MAN_RX_PP_Msk) |
                      (uc_pattern << US_MAN_RX_PP_Pos);
}

/**
 * \brief Configure the receiver Manchester polarity when the Manchester
 * encode/decode is enabled.
 *
 * \param p_usart Pointer to a USART instance.
 * \param uc_polarity Indicate the receiver Manchester polarity, which should
 * be 0 or 1.
 */
void usart_man_set_rx_polarity(Usart *p_usart, uint8_t uc_polarity)
{
    p_usart->US_MAN = (p_usart->US_MAN & ~US_MAN_RX_MPOL) |
                      (uc_polarity << 28);
}

/**
 * \brief Enable drift compensation.
 *
 * \note The 16X clock mode must be enabled.
 *
 * \param p_usart Pointer to a USART instance.
 */
void usart_man_enable_drift_compensation(Usart *p_usart)
{
    p_usart->US_MAN |= US_MAN_DRIFT;
}

/**
 * \brief Disable drift compensation.
 *
 * \param p_usart Pointer to a USART instance.
 */
void usart_man_disable_drift_compensation(Usart *p_usart)
{
    p_usart->US_MAN &= ~US_MAN_DRIFT;
}

#endif

#if SAM4L

uint32_t usart_get_version(Usart *p_usart)
{
    return p_usart->US_VERSION;
}

#endif

#if SAMG55
/**
 * \brief Set sleepwalking match mode.
 *
 * \param p_uart Pointer to a USART instance.
 * \param ul_low_value First comparison value for received character.
 * \param ul_high_value Second comparison value for received character.
 * \param cmpmode ture for start condition, false for flag only.
 * \param cmppar ture for parity check, false for no.
 */
void usart_set_sleepwalking(Usart *p_uart, uint8_t ul_low_value,
                            bool cmpmode, bool cmppar, uint8_t ul_high_value)
{
    Assert(ul_low_value <= ul_high_value);

    uint32_t temp = 0;

    if (cmpmode) {
        temp |= US_CMPR_CMPMODE_START_CONDITION;
    }

    if (cmppar) {
        temp |= US_CMPR_CMPPAR;
    }

    temp |= US_CMPR_VAL1(ul_low_value);

    temp |= US_CMPR_VAL2(ul_high_value);

    p_uart->US_CMPR= temp;
}
#endif

//@}

/// @cond 0
/**INDENT-OFF**/
#ifdef __cplusplus
}
#endif
/**INDENT-ON**/
/// @endcond