Newer
Older
mbed-os / targets / TARGET_NXP / TARGET_MCUXpresso_MCUS / TARGET_MIMXRT1050 / drivers / fsl_spdif.c
@Mahesh Mahadevan Mahesh Mahadevan on 12 Dec 2019 25 KB MIMXRT1050: Update the drivers to SDK 2.6
/*
 * Copyright 2017, NXP
 * All rights reserved.
 *
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

#include "fsl_spdif.h"

/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.spdif"
#endif

/*******************************************************************************
 * Definitations
 ******************************************************************************/
enum _spdif_transfer_state
{
    kSPDIF_Busy = 0x0U, /*!< SPDIF is busy */
    kSPDIF_Idle,        /*!< Transfer is done. */
    kSPDIF_Error        /*!< Transfer error occurred. */
};

/*! @brief Typedef for spdif tx interrupt handler. */
typedef void (*spdif_isr_t)(SPDIF_Type *base, spdif_handle_t *handle);
/*******************************************************************************
 * Prototypes
 ******************************************************************************/

/*!
 * @brief Get the instance number for SPDIF.
 *
 * @param base SPDIF base pointer.
 */
uint32_t SPDIF_GetInstance(SPDIF_Type *base);

/*******************************************************************************
 * Variables
 ******************************************************************************/
/* Base pointer array */
static SPDIF_Type *const s_spdifBases[] = SPDIF_BASE_PTRS;
/*! @brief SPDIF handle pointer */
spdif_handle_t *s_spdifHandle[ARRAY_SIZE(s_spdifBases)][2];
/* IRQ number array */
static const IRQn_Type s_spdifIRQ[] = SPDIF_IRQS;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Clock name array */
static const clock_ip_name_t s_spdifClock[] = SPDIF_CLOCKS;
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/*! @brief Pointer to IRQ handler for each instance. */
static spdif_isr_t s_spdifTxIsr;
/*! @brief Pointer to IRQ handler for each instance. */
static spdif_isr_t s_spdifRxIsr;
/*! @brief Used for spdif gain */
static uint8_t s_spdif_gain[8]         = {24U, 16U, 12U, 8U, 6U, 4U, 3U, 1U};
static uint8_t s_spdif_tx_watermark[4] = {16, 12, 8, 4};
static uint8_t s_spdif_rx_watermark[4] = {1, 4, 8, 16};

/*******************************************************************************
 * Code
 ******************************************************************************/
uint32_t SPDIF_GetInstance(SPDIF_Type *base)
{
    uint32_t instance;

    /* Find the instance index from base address mappings. */
    for (instance = 0; instance < ARRAY_SIZE(s_spdifBases); instance++)
    {
        if (s_spdifBases[instance] == base)
        {
            break;
        }
    }

    assert(instance < ARRAY_SIZE(s_spdifBases));

    return instance;
}

/*!
 * brief Initializes the SPDIF peripheral.
 *
 * Ungates the SPDIF clock, resets the module, and configures SPDIF with a configuration structure.
 * The configuration structure can be custom filled or set with default values by
 * SPDIF_GetDefaultConfig().
 *
 * note  This API should be called at the beginning of the application to use
 * the SPDIF driver. Otherwise, accessing the SPDIF module can cause a hard fault
 * because the clock is not enabled.
 *
 * param base SPDIF base pointer
 * param config SPDIF configuration structure.
 */
void SPDIF_Init(SPDIF_Type *base, const spdif_config_t *config)
{
    uint32_t val = 0;

#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
    /* Enable the SPDIF clock */
    CLOCK_EnableClock(s_spdifClock[SPDIF_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */

    /* Reset the internal logic */
    base->SCR |= SPDIF_SCR_SOFT_RESET_MASK;

    /* Waiting for reset finish */
    while (base->SCR & SPDIF_SCR_SOFT_RESET_MASK)
    {
    }

    /* Setting the SPDIF settings */
    base->SCR = SPDIF_SCR_RXFIFOFULL_SEL(config->rxFullSelect) | SPDIF_SCR_RXAUTOSYNC(config->isRxAutoSync) |
                SPDIF_SCR_TXAUTOSYNC(config->isRxAutoSync) | SPDIF_SCR_TXFIFOEMPTY_SEL(config->txFullSelect) |
                SPDIF_SCR_TXFIFO_CTRL(1U) | SPDIF_SCR_VALCTRL(config->validityConfig) |
                SPDIF_SCR_TXSEL(config->txSource) | SPDIF_SCR_USRC_SEL(config->uChannelSrc);

    /* Set DPLL clock source */
    base->SRPC = SPDIF_SRPC_CLKSRC_SEL(config->DPLLClkSource) | SPDIF_SRPC_GAINSEL(config->gain);

    /* Set SPDIF tx clock source */
    val = base->STC & ~SPDIF_STC_TXCLK_SOURCE_MASK;
    val |= SPDIF_STC_TXCLK_SOURCE(config->txClkSource);
    base->STC = val;
}

/*!
 * brief De-initializes the SPDIF peripheral.
 *
 * This API gates the SPDIF clock. The SPDIF module can't operate unless SPDIF_Init is called to enable the clock.
 *
 * param base SPDIF base pointer
 */
void SPDIF_Deinit(SPDIF_Type *base)
{
    SPDIF_TxEnable(base, false);
    SPDIF_RxEnable(base, false);
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
    CLOCK_DisableClock(s_spdifClock[SPDIF_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
}

/*!
 * brief  Sets the SPDIF configuration structure to default values.
 *
 * This API initializes the configuration structure for use in SPDIF_Init.
 * The initialized structure can remain unchanged in SPDIF_Init, or it can be modified
 *  before calling SPDIF_Init.
 * This is an example.
   code
   spdif_config_t config;
   SPDIF_GetDefaultConfig(&config);
   endcode
 *
 * param config pointer to master configuration structure
 */
void SPDIF_GetDefaultConfig(spdif_config_t *config)
{
    /* Initializes the configure structure to zero. */
    memset(config, 0, sizeof(*config));

    config->isTxAutoSync   = true;
    config->isRxAutoSync   = true;
    config->DPLLClkSource  = 1;
    config->txClkSource    = 1;
    config->rxFullSelect   = kSPDIF_RxFull8Samples;
    config->txFullSelect   = kSPDIF_TxEmpty8Samples;
    config->uChannelSrc    = kSPDIF_UChannelFromTx;
    config->txSource       = kSPDIF_txNormal;
    config->validityConfig = kSPDIF_validityFlagAlwaysClear;
    config->gain           = kSPDIF_GAIN_8;
}

/*!
 * brief Enables/disables the SPDIF Tx.
 *
 * param base SPDIF base pointer
 * param enable True means enable SPDIF Tx, false means disable.
 */
void SPDIF_TxEnable(SPDIF_Type *base, bool enable)
{
    uint32_t val = 0;

    if (enable)
    {
        /* Open Tx FIFO */
        val = base->SCR & (~SPDIF_SCR_TXFIFO_CTRL_MASK);
        val |= SPDIF_SCR_TXFIFO_CTRL(1U);
        base->SCR = val;
        /* Enable transfer clock */
        base->STC |= SPDIF_STC_TX_ALL_CLK_EN_MASK;
    }
    else
    {
        base->SCR &= ~(SPDIF_SCR_TXFIFO_CTRL_MASK | SPDIF_SCR_TXSEL_MASK);
        /* Disable transfer clock */
        base->STC &= ~SPDIF_STC_TX_ALL_CLK_EN_MASK;
    }
}

/*!
 * brief Configures the SPDIF Tx sample rate.
 *
 * The audio format can be changed at run-time. This function configures the sample rate.
 *
 * param base SPDIF base pointer.
 * param sampleRate_Hz SPDIF sample rate frequency in Hz.
 * param sourceClockFreq_Hz SPDIF tx clock source frequency in Hz.
 */
void SPDIF_TxSetSampleRate(SPDIF_Type *base, uint32_t sampleRate_Hz, uint32_t sourceClockFreq_Hz)
{
    uint32_t clkDiv     = sourceClockFreq_Hz / (sampleRate_Hz * 64);
    uint32_t mod        = sourceClockFreq_Hz % (sampleRate_Hz * 64);
    uint32_t val        = 0;
    uint8_t clockSource = (((base->STC) & SPDIF_STC_TXCLK_SOURCE_MASK) >> SPDIF_STC_TXCLK_SOURCE_SHIFT);

    /* Compute the nearest divider */
    if (mod > ((sampleRate_Hz * 64) / 2))
    {
        clkDiv += 1U;
    }

    /* If use divided systeme clock */
    if (clockSource == 5U)
    {
        if (clkDiv > 256)
        {
            val = base->STC & (~(SPDIF_STC_TXCLK_DF_MASK | SPDIF_STC_SYSCLK_DF_MASK));
            val |= SPDIF_STC_SYSCLK_DF(clkDiv / 128U - 1U) | SPDIF_STC_TXCLK_DF(127U);
            base->STC = val;
        }
        else
        {
            val = base->STC & (~(SPDIF_STC_TXCLK_DF_MASK | SPDIF_STC_SYSCLK_DF_MASK));
            val |= SPDIF_STC_SYSCLK_DF(1U) | SPDIF_STC_TXCLK_DF(clkDiv - 1U);
            base->STC = val;
        }
    }
    else
    {
        /* Other clock only uses txclk div */
        val = base->STC & (~(SPDIF_STC_TXCLK_DF_MASK | SPDIF_STC_SYSCLK_DF_MASK));
        val |= SPDIF_STC_TXCLK_DF(clkDiv - 1U);
        base->STC = val;
    }
}

/*!
 * brief Configures the SPDIF Rx audio format.
 *
 * The audio format can be changed at run-time. This function configures the sample rate and audio data
 * format to be transferred.
 *
 * param base SPDIF base pointer.
 * param clockSourceFreq_Hz SPDIF system clock frequency in hz.
 */
uint32_t SPDIF_GetRxSampleRate(SPDIF_Type *base, uint32_t clockSourceFreq_Hz)
{
    uint32_t gain    = s_spdif_gain[((base->SRPC & SPDIF_SRPC_GAINSEL_MASK) >> SPDIF_SRPC_GAINSEL_SHIFT)];
    uint32_t measure = 0, sampleRate = 0;
    uint64_t temp = 0;

    /* Wait the DPLL locked */
    while ((base->SRPC & SPDIF_SRPC_LOCK_MASK) == 0U)
    {
    }

    /* Get the measure value */
    measure = base->SRFM;
    temp    = (uint64_t)measure * (uint64_t)clockSourceFreq_Hz;
    temp /= (uint64_t)(1024 * 1024 * 128 * gain);
    sampleRate = (uint32_t)temp;

    return sampleRate;
}

/*!
 * brief Sends data using a blocking method.
 *
 * note This function blocks by polling until data is ready to be sent.
 *
 * param base SPDIF base pointer.
 * param buffer Pointer to the data to be written.
 * param size Bytes to be written.
 */
void SPDIF_WriteBlocking(SPDIF_Type *base, uint8_t *buffer, uint32_t size)
{
    assert(buffer);
    assert(size % 6U == 0U);

    uint32_t i = 0, j = 0, data = 0;

    while (i < size)
    {
        /* Wait until it can write data */
        while ((SPDIF_GetStatusFlag(base) & kSPDIF_TxFIFOEmpty) == 0U)
        {
        }

        /* Write left channel data */
        for (j = 0; j < 3U; j++)
        {
            data |= ((uint32_t)(*buffer) << (j * 8U));
            buffer++;
        }
        SPDIF_WriteLeftData(base, data);

        /* Write right channel data */
        data = 0;
        for (j = 0; j < 3U; j++)
        {
            data |= ((uint32_t)(*buffer) << (j * 8U));
            buffer++;
        }
        SPDIF_WriteRightData(base, data);

        i += 6U;
    }
}

/*!
 * brief Receives data using a blocking method.
 *
 * note This function blocks by polling until data is ready to be sent.
 *
 * param base SPDIF base pointer.
 * param buffer Pointer to the data to be read.
 * param size Bytes to be read.
 */
void SPDIF_ReadBlocking(SPDIF_Type *base, uint8_t *buffer, uint32_t size)
{
    assert(buffer);
    assert(size % 6U == 0U);

    uint32_t i = 0, j = 0, data = 0;

    while (i < size)
    {
        /* Wait until it can write data */
        while ((SPDIF_GetStatusFlag(base) & kSPDIF_RxFIFOFull) == 0U)
        {
        }

        /* Write left channel data */
        data = SPDIF_ReadLeftData(base);
        for (j = 0; j < 3U; j++)
        {
            *buffer = ((data >> (j * 8U)) & 0xFFU);
            buffer++;
        }

        /* Write right channel data */
        data = SPDIF_ReadRightData(base);
        for (j = 0; j < 3U; j++)
        {
            *buffer = ((data >> (j * 8U)) & 0xFFU);
            buffer++;
        }

        i += 6U;
    }
}

/*!
 * brief Initializes the SPDIF Tx handle.
 *
 * This function initializes the Tx handle for the SPDIF Tx transactional APIs. Call
 * this function once to get the handle initialized.
 *
 * param base SPDIF base pointer
 * param handle SPDIF handle pointer.
 * param callback Pointer to the user callback function.
 * param userData User parameter passed to the callback function
 */
void SPDIF_TransferTxCreateHandle(SPDIF_Type *base,
                                  spdif_handle_t *handle,
                                  spdif_transfer_callback_t callback,
                                  void *userData)
{
    assert(handle);

    /* Zero the handle */
    memset(handle, 0, sizeof(*handle));

    s_spdifHandle[SPDIF_GetInstance(base)][0] = handle;

    handle->callback = callback;
    handle->userData = userData;
    handle->watermark =
        s_spdif_tx_watermark[(base->SCR & SPDIF_SCR_TXFIFOEMPTY_SEL_MASK) >> SPDIF_SCR_TXFIFOEMPTY_SEL_SHIFT];

    /* Set the isr pointer */
    s_spdifTxIsr = SPDIF_TransferTxHandleIRQ;

    /* Enable Tx irq */
    EnableIRQ(s_spdifIRQ[SPDIF_GetInstance(base)]);
}

/*!
 * brief Initializes the SPDIF Rx handle.
 *
 * This function initializes the Rx handle for the SPDIF Rx transactional APIs. Call
 * this function once to get the handle initialized.
 *
 * param base SPDIF base pointer.
 * param handle SPDIF handle pointer.
 * param callback Pointer to the user callback function.
 * param userData User parameter passed to the callback function.
 */
void SPDIF_TransferRxCreateHandle(SPDIF_Type *base,
                                  spdif_handle_t *handle,
                                  spdif_transfer_callback_t callback,
                                  void *userData)
{
    assert(handle);

    /* Zero the handle */
    memset(handle, 0, sizeof(*handle));

    s_spdifHandle[SPDIF_GetInstance(base)][1] = handle;

    handle->callback = callback;
    handle->userData = userData;
    handle->watermark =
        s_spdif_rx_watermark[(base->SCR & SPDIF_SCR_RXFIFOFULL_SEL_MASK) >> SPDIF_SCR_RXFIFOFULL_SEL_SHIFT];

    /* Set the isr pointer */
    s_spdifRxIsr = SPDIF_TransferRxHandleIRQ;

    /* Enable Rx irq */
    EnableIRQ(s_spdifIRQ[SPDIF_GetInstance(base)]);
}

/*!
 * brief Performs an interrupt non-blocking send transfer on SPDIF.
 *
 * note This API returns immediately after the transfer initiates.
 * Call the SPDIF_TxGetTransferStatusIRQ to poll the transfer status and check whether
 * the transfer is finished. If the return status is not kStatus_SPDIF_Busy, the transfer
 * is finished.
 *
 * param base SPDIF base pointer.
 * param handle Pointer to the spdif_handle_t structure which stores the transfer state.
 * param xfer Pointer to the spdif_transfer_t structure.
 * retval kStatus_Success Successfully started the data receive.
 * retval kStatus_SPDIF_TxBusy Previous receive still not finished.
 * retval kStatus_InvalidArgument The input parameter is invalid.
 */
status_t SPDIF_TransferSendNonBlocking(SPDIF_Type *base, spdif_handle_t *handle, spdif_transfer_t *xfer)
{
    assert(handle);

    /* Check if the queue is full */
    if (handle->spdifQueue[handle->queueUser].data)
    {
        return kStatus_SPDIF_QueueFull;
    }

    /* Add into queue */
    handle->transferSize[handle->queueUser]        = xfer->dataSize;
    handle->spdifQueue[handle->queueUser].data     = xfer->data;
    handle->spdifQueue[handle->queueUser].dataSize = xfer->dataSize;
    handle->queueUser                              = (handle->queueUser + 1) % SPDIF_XFER_QUEUE_SIZE;

    /* Set the state to busy */
    handle->state = kSPDIF_Busy;

    /* Enable interrupt */
    SPDIF_EnableInterrupts(base, kSPDIF_TxFIFOEmpty);

    /* Enable Tx transfer */
    SPDIF_TxEnable(base, true);

    return kStatus_Success;
}

/*!
 * brief Performs an interrupt non-blocking receive transfer on SPDIF.
 *
 * note This API returns immediately after the transfer initiates.
 * Call the SPDIF_RxGetTransferStatusIRQ to poll the transfer status and check whether
 * the transfer is finished. If the return status is not kStatus_SPDIF_Busy, the transfer
 * is finished.
 *
 * param base SPDIF base pointer
 * param handle Pointer to the spdif_handle_t structure which stores the transfer state.
 * param xfer Pointer to the spdif_transfer_t structure.
 * retval kStatus_Success Successfully started the data receive.
 * retval kStatus_SPDIF_RxBusy Previous receive still not finished.
 * retval kStatus_InvalidArgument The input parameter is invalid.
 */
status_t SPDIF_TransferReceiveNonBlocking(SPDIF_Type *base, spdif_handle_t *handle, spdif_transfer_t *xfer)
{
    assert(handle);

    /* Check if the queue is full */
    if (handle->spdifQueue[handle->queueUser].data)
    {
        return kStatus_SPDIF_QueueFull;
    }

    /* Add into queue */
    handle->transferSize[handle->queueUser]        = xfer->dataSize;
    handle->spdifQueue[handle->queueUser].data     = xfer->data;
    handle->spdifQueue[handle->queueUser].dataSize = xfer->dataSize;
    handle->spdifQueue[handle->queueUser].udata    = xfer->udata;
    handle->spdifQueue[handle->queueUser].qdata    = xfer->qdata;
    handle->queueUser                              = (handle->queueUser + 1) % SPDIF_XFER_QUEUE_SIZE;

    /* Set state to busy */
    handle->state = kSPDIF_Busy;

    /* Enable interrupt */
    SPDIF_EnableInterrupts(base, kSPDIF_UChannelReceiveRegisterFull | kSPDIF_QChannelReceiveRegisterFull |
                                     kSPDIF_RxFIFOFull | kSPDIF_RxControlChannelChange);

    /* Enable Rx transfer */
    SPDIF_RxEnable(base, true);

    return kStatus_Success;
}

/*!
 * brief Gets a set byte count.
 *
 * param base SPDIF base pointer.
 * param handle Pointer to the spdif_handle_t structure which stores the transfer state.
 * param count Bytes count sent.
 * retval kStatus_Success Succeed get the transfer count.
 * retval kStatus_NoTransferInProgress There is not a non-blocking transaction currently in progress.
 */
status_t SPDIF_TransferGetSendCount(SPDIF_Type *base, spdif_handle_t *handle, size_t *count)
{
    assert(handle);

    status_t status = kStatus_Success;

    if (handle->state != kSPDIF_Busy)
    {
        status = kStatus_NoTransferInProgress;
    }
    else
    {
        *count = (handle->transferSize[handle->queueDriver] - handle->spdifQueue[handle->queueDriver].dataSize);
    }

    return status;
}

/*!
 * brief Gets a received byte count.
 *
 * param base SPDIF base pointer.
 * param handle Pointer to the spdif_handle_t structure which stores the transfer state.
 * param count Bytes count received.
 * retval kStatus_Success Succeed get the transfer count.
 * retval kStatus_NoTransferInProgress There is not a non-blocking transaction currently in progress.
 */
status_t SPDIF_TransferGetReceiveCount(SPDIF_Type *base, spdif_handle_t *handle, size_t *count)
{
    assert(handle);

    status_t status = kStatus_Success;

    if (handle->state != kSPDIF_Busy)
    {
        status = kStatus_NoTransferInProgress;
    }
    else
    {
        *count = (handle->transferSize[handle->queueDriver] - handle->spdifQueue[handle->queueDriver].dataSize);
    }

    return status;
}

/*!
 * brief Aborts the current send.
 *
 * note This API can be called any time when an interrupt non-blocking transfer initiates
 * to abort the transfer early.
 *
 * param base SPDIF base pointer.
 * param handle Pointer to the spdif_handle_t structure which stores the transfer state.
 */
void SPDIF_TransferAbortSend(SPDIF_Type *base, spdif_handle_t *handle)
{
    assert(handle);

    /* Use FIFO request interrupt and fifo error */
    SPDIF_DisableInterrupts(base, kSPDIF_TxFIFOEmpty);

    handle->state = kSPDIF_Idle;

    /* Clear the queue */
    memset(handle->spdifQueue, 0, sizeof(spdif_transfer_t) * SPDIF_XFER_QUEUE_SIZE);
    handle->queueDriver = 0;
    handle->queueUser   = 0;
}

/*!
 * brief Aborts the current IRQ receive.
 *
 * note This API can be called when an interrupt non-blocking transfer initiates
 * to abort the transfer early.
 *
 * param base SPDIF base pointer
 * param handle Pointer to the spdif_handle_t structure which stores the transfer state.
 */
void SPDIF_TransferAbortReceive(SPDIF_Type *base, spdif_handle_t *handle)
{
    assert(handle);

    /* Disable interrupt */
    SPDIF_DisableInterrupts(base, kSPDIF_UChannelReceiveRegisterFull | kSPDIF_QChannelReceiveRegisterFull |
                                      kSPDIF_RxFIFOFull | kSPDIF_RxControlChannelChange);

    handle->state = kSPDIF_Idle;

    /* Clear the queue */
    memset(handle->spdifQueue, 0, sizeof(spdif_transfer_t) * SPDIF_XFER_QUEUE_SIZE);
    handle->queueDriver = 0;
    handle->queueUser   = 0;
}

/*!
 * brief Tx interrupt handler.
 *
 * param base SPDIF base pointer.
 * param handle Pointer to the spdif_handle_t structure.
 */
void SPDIF_TransferTxHandleIRQ(SPDIF_Type *base, spdif_handle_t *handle)
{
    assert(handle);

    uint8_t *buffer  = handle->spdifQueue[handle->queueDriver].data;
    uint8_t dataSize = 0;
    uint32_t i = 0, j = 0, data = 0;

    /* Do Transfer */
    if ((SPDIF_GetStatusFlag(base) & kSPDIF_TxFIFOEmpty) && (base->SIE & kSPDIF_TxFIFOEmpty))
    {
        dataSize = handle->watermark;
        while (i < dataSize)
        {
            data = 0;
            /* Write left channel data */
            for (j = 0; j < 3U; j++)
            {
                data |= ((uint32_t)(*buffer) << (j * 8U));
                buffer++;
            }
            SPDIF_WriteLeftData(base, data);

            /* Write right channel data */
            data = 0;
            for (j = 0; j < 3U; j++)
            {
                data |= ((uint32_t)(*buffer) << (j * 8U));
                buffer++;
            }
            SPDIF_WriteRightData(base, data);

            i++;
        }
        handle->spdifQueue[handle->queueDriver].dataSize -= dataSize * 6U;
        handle->spdifQueue[handle->queueDriver].data += dataSize * 6U;

        /* If finished a block, call the callback function */
        if (handle->spdifQueue[handle->queueDriver].dataSize == 0U)
        {
            memset(&handle->spdifQueue[handle->queueDriver], 0, sizeof(spdif_transfer_t));
            handle->queueDriver = (handle->queueDriver + 1) % SPDIF_XFER_QUEUE_SIZE;
            if (handle->callback)
            {
                (handle->callback)(base, handle, kStatus_SPDIF_TxIdle, handle->userData);
            }
        }

        /* If all data finished, just stop the transfer */
        if (handle->spdifQueue[handle->queueDriver].data == NULL)
        {
            SPDIF_TransferAbortSend(base, handle);
        }
    }
}

/*!
 * brief Tx interrupt handler.
 *
 * param base SPDIF base pointer.
 * param handle Pointer to the spdif_handle_t structure.
 */
void SPDIF_TransferRxHandleIRQ(SPDIF_Type *base, spdif_handle_t *handle)
{
    assert(handle);

    uint8_t *buffer  = NULL;
    uint8_t dataSize = 0;
    uint32_t i = 0, j = 0, data = 0;

    /* Handle Cnew flag */
    if (SPDIF_GetStatusFlag(base) & kSPDIF_RxControlChannelChange)
    {
        /* Clear the interrupt flag */
        SPDIF_ClearStatusFlags(base, SPDIF_SIE_CNEW_MASK);
        if (handle->callback)
        {
            (handle->callback)(base, handle, kStatus_SPDIF_RxCnew, handle->userData);
        }
    }

    /* Handle illegal symbol */
    if (SPDIF_GetStatusFlag(base) & kSPDIF_RxIllegalSymbol)
    {
        SPDIF_ClearStatusFlags(base, kSPDIF_RxIllegalSymbol);
        if (handle->callback)
        {
            (handle->callback)(base, handle, kStatus_SPDIF_RxIllegalSymbol, handle->userData);
        }
    }

    /* Handle Parity Bit Error */
    if (SPDIF_GetStatusFlag(base) & kSPDIF_RxParityBitError)
    {
        SPDIF_ClearStatusFlags(base, kSPDIF_RxParityBitError);
        if (handle->callback)
        {
            (handle->callback)(base, handle, kStatus_SPDIF_RxParityBitError, handle->userData);
        }
    }

    /* Handle DPlocked */
    if (SPDIF_GetStatusFlag(base) & kSPDIF_RxDPLLLocked)
    {
        SPDIF_ClearStatusFlags(base, kSPDIF_RxDPLLLocked);
        if (handle->callback)
        {
            (handle->callback)(base, handle, kStatus_SPDIF_RxDPLLLocked, handle->userData);
        }
    }

    /* Handle Q channel full flag */
    if ((SPDIF_GetStatusFlag(base) & kSPDIF_QChannelReceiveRegisterFull) &&
        (base->SIE & kSPDIF_QChannelReceiveRegisterFull))
    {
        buffer    = handle->spdifQueue[handle->queueDriver].qdata;
        data      = SPDIF_ReadQChannel(base);
        buffer[0] = data & 0xFFU;
        buffer[1] = (data >> 8U) & 0xFFU;
        buffer[2] = (data >> 16U) & 0xFFU;
    }

    /* Handle U channel full flag */
    if ((SPDIF_GetStatusFlag(base) & kSPDIF_UChannelReceiveRegisterFull) &&
        (base->SIE & kSPDIF_UChannelReceiveRegisterFull))
    {
        buffer    = handle->spdifQueue[handle->queueDriver].udata;
        data      = SPDIF_ReadUChannel(base);
        buffer[0] = data & 0xFFU;
        buffer[1] = (data >> 8U) & 0xFFU;
        buffer[2] = (data >> 16U) & 0xFFU;
    }

    /* Handle audio data transfer */
    if ((SPDIF_GetStatusFlag(base) & kSPDIF_RxFIFOFull) && (base->SIE & kSPDIF_RxFIFOFull))
    {
        dataSize = handle->watermark;
        buffer   = handle->spdifQueue[handle->queueDriver].data;
        while (i < dataSize)
        {
            /* Read left channel data */
            data = SPDIF_ReadLeftData(base);
            for (j = 0; j < 3U; j++)
            {
                *buffer = ((data >> (j * 8U)) & 0xFFU);
                buffer++;
            }

            /* Read right channel data */
            data = SPDIF_ReadRightData(base);
            for (j = 0; j < 3U; j++)
            {
                *buffer = ((data >> (j * 8U)) & 0xFFU);
                buffer++;
            }

            i++;
        }
        handle->spdifQueue[handle->queueDriver].dataSize -= dataSize * 6U;
        handle->spdifQueue[handle->queueDriver].data += dataSize * 6U;

        /* If finished a block, call the callback function */
        if (handle->spdifQueue[handle->queueDriver].dataSize == 0U)
        {
            memset(&handle->spdifQueue[handle->queueDriver], 0, sizeof(spdif_transfer_t));
            handle->queueDriver = (handle->queueDriver + 1) % SPDIF_XFER_QUEUE_SIZE;
            if (handle->callback)
            {
                (handle->callback)(base, handle, kStatus_SPDIF_RxIdle, handle->userData);
            }
        }

        /* If all data finished, just stop the transfer */
        if (handle->spdifQueue[handle->queueDriver].data == NULL)
        {
            SPDIF_TransferAbortReceive(base, handle);
        }
    }
}

#if defined(SPDIF)
void SPDIF_DriverIRQHandler(void)
{
    if ((s_spdifHandle[0][0]) && s_spdifTxIsr)
    {
        s_spdifTxIsr(SPDIF, s_spdifHandle[0][0]);
    }

    if ((s_spdifHandle[0][1]) && s_spdifRxIsr)
    {
        s_spdifRxIsr(SPDIF, s_spdifHandle[0][1]);
    }
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
  exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}
#endif