Newer
Older
mbed-os / targets / TARGET_TOSHIBA / TARGET_TMPM4G9 / serial_api.c
@Deepak V. Shreshti Deepak V. Shreshti on 6 Dec 2019 21 KB Added SPDX identifier License
/* mbed Microcontroller Library
 *
 * Copyright (C) 2019, Toshiba Electronic Device Solutions Corporation
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include <string.h>
#include "mbed_error.h"
#include "serial_api.h"
#include "pinmap.h"

#define UART_NUM                        8
#define UART_ENABLE_RX                  ((uint32_t)0x00000001)
#define UART_ENABLE_TX                  ((uint32_t)0x00000002)
#define UARTxFIFOCLR_TFCLR_CLEAR        ((uint32_t)0x00000002)
#define UARTxFIFOCLR_RFCLR_CLEAR        ((uint32_t)0x00000001)
#define UARTxSWRST_SWRSTF_MASK          ((uint32_t)0x00000080)
#define UARTxSWRST_SWRSTF_RUN           ((uint32_t)0x00000080)
#define UARTxSWRST_SWRST_10             ((uint32_t)0x00000002)
#define UARTxSWRST_SWRST_01             ((uint32_t)0x00000001)
#define UART_RX_FIFO_FILL_LEVEL         ((uint32_t)0x00000100)
#define LCR_H_WLEN_MASK                 ((uint32_t)0xFFFFFF9F)
#define LCR_H_STP2_MASK                 ((uint32_t)0xFFFFFFF7)
#define LCR_H_PARITY_MASK               ((uint32_t)0xFFFFFF79)
#define CR_FLOW_CTRL_MASK               ((uint32_t)0x00000F07)
#define CR_MODE_MASK                    ((uint32_t)0x0000CC07)
#define FUARTxCR_UARTEN_ENABLE_CLEAR    ((uint32_t)0xFFFFFF7E)
#define FUART_CTS_RTS_DISABLE_MASK      ((uint32_t)0XFFFF3FFF)
#define BAUDRATE_DEFAULT                (9600)
#define CLR_REGISTER                    (0x00)

static const PinMap PinMap_UART_TX[] = {
    {PE3, SERIAL_0, PIN_DATA(7, 1)},
    {PH1, SERIAL_1, PIN_DATA(3, 1)},
    {PG1, SERIAL_2, PIN_DATA(3, 1)},
    {PU7, SERIAL_3, PIN_DATA(7, 1)},
    {PU0, SERIAL_4, PIN_DATA(7, 1)},
    {PJ1, SERIAL_5, PIN_DATA(3, 1)},
    {PG4, SERIAL_6, PIN_DATA(5, 1)},
    {PM7, SERIAL_7, PIN_DATA(7, 1)},
    {NC,  NC,       0}
};

static const PinMap PinMap_UART_RX[] = {
    {PE2, SERIAL_0, PIN_DATA(7, 0)},
    {PH0, SERIAL_1, PIN_DATA(3, 0)},
    {PG0, SERIAL_2, PIN_DATA(3, 0)},
    {PU6, SERIAL_3, PIN_DATA(7, 0)},
    {PU1, SERIAL_4, PIN_DATA(7, 0)},
    {PJ0, SERIAL_5, PIN_DATA(3, 0)},
    {PG5, SERIAL_6, PIN_DATA(5, 0)},
    {PM6, SERIAL_7, PIN_DATA(7, 0)},
    {NC,  NC,       0}
};

static const PinMap PinMap_UART_RTS[] = {
    {PE0, SERIAL_0, PIN_DATA(7, 1)},
    {PH2, SERIAL_1, PIN_DATA(3, 1)},
    {PG2, SERIAL_2, PIN_DATA(3, 1)},
    {PU4, SERIAL_3, PIN_DATA(7, 1)},
    {PU3, SERIAL_4, PIN_DATA(5, 1)},
    {PJ2, SERIAL_5, PIN_DATA(3, 1)},
    {PG6, SERIAL_6, PIN_DATA(5, 1)},
    {PM5, SERIAL_7, PIN_DATA(7, 1)},
    {NC,  NC,    0}
};

static const PinMap PinMap_UART_CTS[] = {
    {PE1, SERIAL_0, PIN_DATA(7, 0)},
    {PH3, SERIAL_1, PIN_DATA(3, 0)},
    {PG3, SERIAL_2, PIN_DATA(3, 0)},
    {PU5, SERIAL_3, PIN_DATA(7, 0)},
    {PU2, SERIAL_4, PIN_DATA(5, 0)},
    {PJ3, SERIAL_5, PIN_DATA(3, 0)},
    {PG7, SERIAL_6, PIN_DATA(5, 0)},
    {PM4, SERIAL_7, PIN_DATA(7, 0)},
    {NC,  NC,    0}
};

static int serial_irq_ids[UART_NUM] = {0};
static uart_irq_handler irq_handler;

int stdio_uart_inited = 0;
serial_t stdio_uart;

static void uart_swreset(TSB_UART_TypeDef *UARTx);
static void fuart_init_config(TSB_FURT_TypeDef * FUARTx, FUART_InitTypeDef * InitStruct);

void serial_init(serial_t *obj, PinName tx, PinName rx)
{
    int is_stdio_uart = 0;
    obj->mode         = 0;
    cg_t paramCG;
    paramCG.p_instance   = TSB_CG;
    uart_clock_t prescal = {0};

    UARTName uart_tx   = (UARTName)pinmap_peripheral(tx, PinMap_UART_TX);
    UARTName uart_rx   = (UARTName)pinmap_peripheral(rx, PinMap_UART_RX);
    UARTName uart_name = (UARTName)pinmap_merge(uart_tx, uart_rx);

    MBED_ASSERT((int)uart_name != NC);

    obj->is_using_fuart = 0;
    obj->index = uart_name;
    // Initialize UART instance
    switch (uart_name) {
        case SERIAL_0:
            obj->UARTx = TSB_UART0;
            // Enable clock for UART0 and Port E
            TSB_CG_FSYSMENA_IPMENA23 = TXZ_ENABLE;
            TSB_CG_FSYSMENB_IPMENB06 = TXZ_ENABLE;
            break;
        case SERIAL_1:
            obj->UARTx = TSB_UART1;
            // Enable clock for UART1 and Port H
            TSB_CG_FSYSMENA_IPMENA24 = TXZ_ENABLE;
            TSB_CG_FSYSMENB_IPMENB09 = TXZ_ENABLE;
            break;
        case SERIAL_2:
            obj->UARTx = TSB_UART2;
            // Enable clock for UART2 and Port G
            TSB_CG_FSYSMENA_IPMENA25 = TXZ_ENABLE;
            TSB_CG_FSYSMENB_IPMENB08 = TXZ_ENABLE;
            break;
        case SERIAL_3:
            obj->UARTx = TSB_UART3;
            // Enable clock for UART3 and Port U
            TSB_CG_FSYSMENA_IPMENA26 = TXZ_ENABLE;
            TSB_CG_FSYSMENB_IPMENB18 = TXZ_ENABLE;
            break;
        case SERIAL_4:
            obj->UARTx = TSB_UART4;
            // Enable clock for UART4 and Port U
            TSB_CG_FSYSMENA_IPMENA27 = TXZ_ENABLE;
            TSB_CG_FSYSMENB_IPMENB18 = TXZ_ENABLE;
            break;
        case SERIAL_5:
            obj->UARTx = TSB_UART5;
            // Enable clock for UART5 and Port J
            TSB_CG_FSYSMENA_IPMENA28 = TXZ_ENABLE;
            TSB_CG_FSYSMENB_IPMENB10 = TXZ_ENABLE;
            break;
        case SERIAL_6:
            obj->FUARTx = TSB_FURT0;
            //Enable clock for UART6 and Port G
            TSB_CG_FSYSMENA_IPMENA01 = TXZ_ENABLE;
            TSB_CG_FSYSMENB_IPMENB08 = TXZ_ENABLE;
            obj->is_using_fuart = 1;
            break;
        case SERIAL_7:
            obj->FUARTx = TSB_FURT1;
            //Enable clock for UART7 and Port M
            TSB_CG_FSYSMENA_IPMENA02 = TXZ_ENABLE;
            TSB_CG_FSYSMENB_IPMENB13 = TXZ_ENABLE;
            obj->is_using_fuart = 1;
            break;
        default:
            break;
    }

    // Set alternate function
    pinmap_pinout(tx, PinMap_UART_TX);
    pinmap_pinout(rx, PinMap_UART_RX);

    if(!(obj->is_using_fuart)) {
        if (tx != NC && rx != NC) {
            obj->mode = UART_ENABLE_RX | UART_ENABLE_TX;
        } else {
            if (tx != NC) {
                obj->mode = UART_ENABLE_TX;
            } else {
                if (rx != NC) {
                    obj->mode = UART_ENABLE_RX;
                }
            }
        }
        //software reset
        uart_swreset(obj->UARTx);
        //mbed default configurations
        obj->UARTx->CR0 |= (1U);                                    // data lengh 8 bit No parity one stop bit
        prescal.prsel = UART_PLESCALER_1;
        uart_get_boudrate_setting(cg_get_mphyt0(&paramCG), &prescal, BAUDRATE_DEFAULT, &obj->boud_obj);
        obj->UARTx->BRD    |=((obj->boud_obj.ken) | (obj->boud_obj.brk << 16) | (obj->boud_obj.brn));
        obj->UARTx->FIFOCLR = (UARTxFIFOCLR_TFCLR_CLEAR | UARTxFIFOCLR_RFCLR_CLEAR);             // Clear FIFO
        obj->UARTx->TRANS  |= obj->mode;                                                          // Enable TX RX block.
        obj->UARTx->CR1     = (UART_RX_FIFO_FILL_LEVEL | UART_TX_INT_ENABLE | UART_RX_INT_ENABLE);
    } else {
        if (tx != NC && rx != NC) {
            obj->fuart_config.Mode = FUARTxCR_TXE_ENABLE | FUARTxCR_RXE_ENABLE;
        } else if (tx != NC) {
            obj->fuart_config.Mode = FUARTxCR_TXE_ENABLE;
        } else if (rx != NC) {
            obj->fuart_config.Mode = FUARTxCR_RXE_ENABLE;
        }

        obj->fuart_config.BaudRate = BAUDRATE_DEFAULT;
        obj->fuart_config.DataBits = FUART_DATA_LENGTH_8;
        obj->fuart_config.StopBits = FUART_STOP_BIT_1;
        obj->fuart_config.Parity   = FUART_PARITY_DISABLE;
        obj->fuart_config.FlowCtrl = FUART_CTS_DISABLE | FUART_RTS_DISABLE;

        fuart_init_config(obj->FUARTx, &obj->fuart_config);
        //Enable FUART
        obj->FUARTx->CR |= FUARTxCR_UARTEN_ENABLE;
    }

    is_stdio_uart = (uart_name == STDIO_UART) ? (1) : (0);
    if (is_stdio_uart) {
        stdio_uart_inited = 1;
        memcpy(&stdio_uart, obj, sizeof(serial_t));
    }
}

void serial_free(serial_t *obj)
{
    if(!(obj->is_using_fuart)) {
        obj->UARTx->TRANS   = CLR_REGISTER;
        obj->UARTx->CR0     = CLR_REGISTER;
        obj->UARTx->CR1     = CLR_REGISTER;
        obj->UARTx          = CLR_REGISTER;
        uart_swreset(obj->UARTx);
    } else {
        obj->FUARTx->CR     = CLR_REGISTER;
        obj->FUARTx->IMSC   = CLR_REGISTER;
        obj->FUARTx->ICR    = CLR_REGISTER;
        obj->FUARTx->LCR_H  = CLR_REGISTER;
        obj->FUARTx         = CLR_REGISTER;
    }
    obj->index = (uint32_t)NC;
}

void serial_baud(serial_t *obj, int baudrate)
{
    cg_t paramCG;
    paramCG.p_instance = TSB_CG;
    uart_clock_t prescal;
    if(!(obj->is_using_fuart)) {
        prescal.prsel    = UART_PLESCALER_1;
        uart_get_boudrate_setting(cg_get_mphyt0(&paramCG), &prescal, baudrate, &obj->boud_obj);
        obj->UARTx->BRD  = CLR_REGISTER;               //clear BRD register
        obj->UARTx->BRD |=((obj->boud_obj.ken) | (obj->boud_obj.brk << 16) | (obj->boud_obj.brn));
    } else {
        obj->FUARTx->CR &= FUARTxCR_UARTEN_ENABLE_CLEAR;
        obj->fuart_config.BaudRate = baudrate * 2;
        fuart_init_config(obj->FUARTx, &obj->fuart_config);
        obj->FUARTx->CR |= FUARTxCR_UARTEN_ENABLE;
    }
}

void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits)
{
    uint32_t parity_check = 0;
    uint32_t data_length  = 0;
    uint32_t tmp          = 0;
    uint32_t sblen        = 0;

    MBED_ASSERT((stop_bits == 1) || (stop_bits == 2));
    MBED_ASSERT((parity == ParityNone) || (parity == ParityOdd) || (parity == ParityEven));

    if(!(obj->is_using_fuart)) {
        MBED_ASSERT((data_bits > 6) && (data_bits < 10));                       // 0: 7 data bits ... 2: 9 data bits
        parity_check = ((parity == ParityOdd) ? 1 :((parity == ParityEven) ? 3 : 0));
        data_length = (data_bits == 8 ? 1 :((data_bits == 7) ? 0 : 2));
        sblen = (stop_bits == 1) ? 0 : 1;                                       // 0: 1 stop bits, 1: 2 stop bits
        tmp = ((sblen << 4) |(parity_check << 2) | data_length);
        obj->UARTx->CR0 = tmp;
    } else {
        MBED_ASSERT((data_bits > 6) && (data_bits < 9));                        // 0: 5 data bits ... 2: 8 data bits
        obj->FUARTx->CR &= FUARTxCR_UARTEN_ENABLE_CLEAR;
        // Parity bit update
        if(parity == ParityOdd) {
            obj->fuart_config.Parity = FUART_PARITY_BIT_ODD | FUART_PARITY_ENABLE;
        } else if(parity == ParityEven) {
            obj->fuart_config.Parity = FUART_PARITY_BIT_EVEN | FUART_PARITY_ENABLE;
        } else {
            obj->fuart_config.Parity = FUART_PARITY_DISABLE;
        }
        // Stop bit update
        obj->fuart_config.StopBits = (stop_bits == 1) ? FUART_STOP_BIT_1 : FUART_STOP_BIT_2;
        // Data length update
        obj->fuart_config.DataBits = (data_bits == 7) ? FUART_DATA_LENGTH_7 : FUART_DATA_LENGTH_8;

        fuart_init_config(obj->FUARTx, &obj->fuart_config);
        obj->FUARTx->CR |= FUARTxCR_UARTEN_ENABLE;
    }
}

// INTERRUPT HANDLING
void INTUART0RX_IRQHandler(void)
{
    irq_handler(serial_irq_ids[SERIAL_0], RxIrq);
}

void INTUART0TX_IRQHandler(void)
{
    irq_handler(serial_irq_ids[SERIAL_0], TxIrq);
}

void INTUART1RX_IRQHandler(void)
{
    irq_handler(serial_irq_ids[SERIAL_1], RxIrq);
}

void INTUART1TX_IRQHandler(void)
{
    irq_handler(serial_irq_ids[SERIAL_1], TxIrq);
}

void INTUART2RX_IRQHandler(void)
{
    irq_handler(serial_irq_ids[SERIAL_2], RxIrq);
}

void INTUART2TX_IRQHandler(void)
{
    irq_handler(serial_irq_ids[SERIAL_2], TxIrq);
}

void INTUART3RX_IRQHandler(void)
{
    irq_handler(serial_irq_ids[SERIAL_3], RxIrq);
}

void INTUART3TX_IRQHandler(void)
{
    irq_handler(serial_irq_ids[SERIAL_3], TxIrq);
}

void INTUART4RX_IRQHandler(void)
{
    irq_handler(serial_irq_ids[SERIAL_4], RxIrq);
}

void INTUART4TX_IRQHandler(void)
{
    irq_handler(serial_irq_ids[SERIAL_4], TxIrq);
}

void INTUART5RX_IRQHandler(void)
{
    irq_handler(serial_irq_ids[SERIAL_5], RxIrq);
}

void INTUART5TX_IRQHandler(void)
{
    irq_handler(serial_irq_ids[SERIAL_5], TxIrq);
}

void INTFUART0_IRQHandler(void)
{
    uint32_t int_status;

    int_status = TSB_FURT0->MIS;
    if (int_status & (1 << 4U)) {
        irq_handler(serial_irq_ids[SERIAL_6], RxIrq);
    } else if (int_status & (1 << 5U)) {
        irq_handler(serial_irq_ids[SERIAL_6], TxIrq);
    } else {
        return;
    }
}

void INTFUART1_IRQHandler(void)
{
    uint32_t int_status;

    int_status = TSB_FURT1->MIS;
    if (int_status & (1 << 4U)) {
        irq_handler(serial_irq_ids[SERIAL_7], RxIrq);
    } else if (int_status & (1 << 5U)) {
        irq_handler(serial_irq_ids[SERIAL_7], TxIrq);
    } else {
        return;
    }
}

void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id)
{
    irq_handler = handler;
    serial_irq_ids[obj->index] = id;
}

void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable)
{
    IRQn_Type irq_n = (IRQn_Type)0;

    switch (obj->index) {
        case SERIAL_0:
            if (irq == RxIrq) {
                irq_n = INTUART0RX_IRQn;
            } else {
                irq_n = INTUART0TX_IRQn;
            }
            break;
        case SERIAL_1:
            if (irq == RxIrq) {
                irq_n = INTUART1RX_IRQn;
            } else {
                irq_n = INTUART1TX_IRQn;
            }
            break;
        case SERIAL_2:
            if (irq == RxIrq) {
                irq_n = INTUART2RX_IRQn;
            } else {
                irq_n = INTUART2TX_IRQn;
            }
            break;
        case SERIAL_3:
            if (irq == RxIrq) {
                irq_n = INTUART3RX_IRQn;
            } else {
                irq_n = INTUART3TX_IRQn;
            }
            break;
        case SERIAL_4:
            if (irq == RxIrq) {
                irq_n = INTUART4RX_IRQn;
            } else {
                irq_n = INTUART4TX_IRQn;
            }
            break;
        case SERIAL_5:
            if (irq == RxIrq) {
                irq_n = INTUART5RX_IRQn;
            } else {
                irq_n = INTUART5TX_IRQn;
            }
            break;
        case SERIAL_6:
            irq_n = INTFUART0_IRQn;
            break;
        case SERIAL_7:
            irq_n = INTFUART1_IRQn;
            break;
        default:
            break;
    }

    if(obj->is_using_fuart) {
        // Set interrupt mask
        if (irq == RxIrq) {
            obj->FUARTx->IMSC = (1 << 4U);
        } else {
            obj->FUARTx->IMSC = (1 << 5U);
        }
    }
    NVIC_ClearPendingIRQ(irq_n);

    if (enable) {
        NVIC_EnableIRQ(irq_n);
    } else {
        NVIC_DisableIRQ(irq_n);
    }
}

int serial_getc(serial_t *obj)
{
    int data = 0;

    while (!serial_readable(obj)) {         // Wait until Rx buffer is full
        // Do nothing
    }

    if(!(obj->is_using_fuart)) {
        //Read Data Register
        data = (obj->UARTx->DR & 0xFFU);
        obj->UARTx->SR |= (1U << 6);        // clear RXEND flag
    } else {
        data = (obj->FUARTx->DR & 0xFFU);
    }

    return data;
}

void serial_putc(serial_t *obj, int c)
{
    while (!serial_writable(obj)) {
        // Do nothing
    }

    // Write Data Register
    if(!(obj->is_using_fuart)) {
        obj->UARTx->DR = (c & 0xFF);

        while((obj->UARTx->SR & (1U << 14)) == 0) {
        }

        obj->UARTx->SR |= (1U << 14);       // clear TXEND flag
    } else {
        obj->FUARTx->DR = (c & 0xFF);
    }
}

int serial_readable(serial_t *obj)
{
    int ret = 0;

    if(!(obj->is_using_fuart)) {
        if ((obj->UARTx->SR & 0x000F) != 0) {
            ret = 1;
        }
    } else {
        if(obj->FUARTx->FR & (1 << 6U)) {
            ret = 1;
        }
    }

    return ret;
}

int serial_writable(serial_t *obj)
{
    int ret = 0;

    if(!(obj->is_using_fuart)) {
        if ((obj->UARTx->SR & 0x8000) == 0) {
            ret = 1;
        }
    } else {
        if(obj->FUARTx->FR & (1 << 7U)) {
            ret = 1;
        }
    }

    return ret;
}

void serial_clear(serial_t *obj)
{
    uint32_t dummy;
    if(!(obj->is_using_fuart)) {
        obj->UARTx->FIFOCLR = 0x03;
    } else {
        {
            dummy = obj->FUARTx->DR;            //dummy read
            (void)dummy;
        }
    }
}

void serial_pinout_tx(PinName tx)
{
    pinmap_pinout(tx, PinMap_UART_TX);
}

// Set flow control
void serial_set_flow_control(serial_t *obj, FlowControl type, PinName rxflow, PinName txflow)
{
    UARTName uart_cts = (UARTName)pinmap_peripheral(txflow, PinMap_UART_CTS);
    UARTName uart_rts = (UARTName)pinmap_peripheral(rxflow, PinMap_UART_RTS);
    UARTName uart_name = (UARTName)pinmap_merge(uart_cts, uart_rts);

    if (!(obj->is_using_fuart)) {
        if (type == FlowControlCTS) {
            MBED_ASSERT(uart_cts != (UARTName) NC);
            pinmap_pinout(txflow, PinMap_UART_CTS);     // Enable the pin for CTS function
            pin_mode(txflow, PullUp);                   // initial state of CTS preferably high
            obj->UARTx->CR0 |= (1 << 10);               // Enable CTS hardware control

        } else if (type == FlowControlRTS) {
            MBED_ASSERT(uart_rts != (UARTName) NC);
            pinmap_pinout(rxflow, PinMap_UART_RTS);     // Enable the pin for RTS function
            obj->UARTx->CR0 |= (1 << 9);                // Enable RTS hardware control

        } else if (type == FlowControlRTSCTS) {
            MBED_ASSERT(uart_name != (UARTName) NC);
            obj->UARTx->CR0 |= (3 << 9);                // Enable CTS and RTS hardware flow control

            pinmap_pinout(txflow, PinMap_UART_CTS);     // Enable the pin for CTS function
            pinmap_pinout(rxflow, PinMap_UART_RTS);     // Enable the pin for RTS function
            pin_mode(txflow, PullUp);
        } else {
            obj->UARTx->CR0 &= (~(3 << 9));             // Disable CTS and RTS hardware flow control
        }
    } else {
        obj->FUARTx->CR &= FUARTxCR_UARTEN_ENABLE_CLEAR; // Disable FUART
        if (type == FlowControlCTS) {
            MBED_ASSERT(uart_cts != (UARTName) NC);
            obj->FUARTx->CR |= FUART_CTS_ENABLE;        // Enable CTS hardware flow control
            pinmap_pinout(txflow, PinMap_UART_CTS);     // Enable the pin for CTS and RTS function
            pin_mode(txflow, PullUp);

        } else if (type == FlowControlRTS) {
            MBED_ASSERT(uart_rts != (UARTName) NC);
            obj->FUARTx->CR |= FUART_RTS_ENABLE;        // Enable RTS hardware flow control
            pinmap_pinout(rxflow, PinMap_UART_RTS);     // Enable the pin for RTS function

        } else if (type == FlowControlRTSCTS) {
            MBED_ASSERT(uart_name != (UARTName) NC);
            obj->FUARTx->CR |= (FUART_CTS_ENABLE | FUART_RTS_ENABLE); // Enable CTS and RTS hardware flow control
            pinmap_pinout(txflow, PinMap_UART_CTS);     // Enable the pin for CTS function
            pinmap_pinout(rxflow, PinMap_UART_RTS);     // Enable the pin for RTS function
            pin_mode(txflow, PullUp);

        } else {
            obj->FUARTx->CR &= FUART_CTS_RTS_DISABLE_MASK;            // Disable CTS and RTS hardware flow control
        }
        obj->FUARTx->CR |= FUARTxCR_UARTEN_ENABLE;
    }
}

// Pause transmission
void serial_break_set(serial_t *obj)
{
    if (!(obj->is_using_fuart)) {
        obj->UARTx->TRANS |= 0x08;
    } else {
        obj->FUARTx->LCR_H |= FUARTxLCR_H_BRK_SEND;
    }
}

// Switch to normal transmission
void serial_break_clear(serial_t *obj)
{
    if (!(obj->is_using_fuart)) {
        obj->UARTx->TRANS &= ~(0x08);
    } else {
        obj->FUARTx->LCR_H &= ~(FUARTxLCR_H_BRK_SEND);
    }
}

static void uart_swreset(TSB_UART_TypeDef *UARTx)
{
    while (((UARTx->SWRST) & UARTxSWRST_SWRSTF_MASK) == UARTxSWRST_SWRSTF_RUN) {
        // No process
    }

    UARTx->SWRST = UARTxSWRST_SWRST_10;
    UARTx->SWRST = UARTxSWRST_SWRST_01;

    while (((UARTx->SWRST) & UARTxSWRST_SWRSTF_MASK) == UARTxSWRST_SWRSTF_RUN) {
        // No process
    }
}

static void fuart_init_config(TSB_FURT_TypeDef * FUARTx, FUART_InitTypeDef * InitStruct)
{
    uint32_t tmp = 0U;
    uint32_t fuartclk = 0U;
    uint32_t ibd = 0U;
    uint32_t fbd = 0U;
    uint32_t br = InitStruct->BaudRate;

    SystemCoreClockUpdate();
    fuartclk = SystemCoreClock;

    ibd = fuartclk / (16U * br);
    fbd = (8U * fuartclk + br - 128U * ibd * br) / (2U * br);

    if (fbd == 0U) {
        fbd = 1U;                 //Fractional part of baud rate divisor can not be 0x00
    } else {

    }

    FUARTx->BRD = ibd;            // Set integer part of baud rate divisor
    FUARTx->FBRD = fbd;           // Set fractional part of baud rate divisor

    tmp = FUARTx->LCR_H;

    tmp &= LCR_H_WLEN_MASK;
    tmp |= InitStruct->DataBits;

    tmp &= LCR_H_STP2_MASK;
    tmp |= InitStruct->StopBits;

    tmp &= LCR_H_PARITY_MASK;
    tmp |= InitStruct->Parity;

    FUARTx->LCR_H = tmp;          //Set DataBits, StopBits, Parity

    tmp = FUARTx->CR;
    tmp &= CR_FLOW_CTRL_MASK;
    tmp |= InitStruct->FlowCtrl;

    tmp &= CR_MODE_MASK;
    tmp |= InitStruct->Mode;

    FUARTx->CR = tmp;
}

const PinMap *serial_tx_pinmap()
{
    return PinMap_UART_TX;
}

const PinMap *serial_rx_pinmap()
{
    return PinMap_UART_RX;
}

const PinMap *serial_cts_pinmap()
{
    return PinMap_UART_CTS;
}

const PinMap *serial_rts_pinmap()
{
    return PinMap_UART_RTS;
}