Newer
Older
mbed-os / connectivity / drivers / mbedtls / TARGET_NUVOTON / TARGET_M480 / sha / sha_alt_hw.c
@George Psimenos George Psimenos on 11 Aug 2020 13 KB Move mbedtls target-specific code
/*
 * Copyright (c) 2015-2016, Nuvoton Technology Corporation
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "mbedtls/sha1.h"
#include "mbedtls/sha256.h"
#include "mbedtls/sha512.h"

#if defined(MBEDTLS_SHA1_C) || defined(MBEDTLS_SHA256_C) || defined(MBEDTLS_SHA512_C)

#if defined(MBEDTLS_SHA1_ALT) || defined(MBEDTLS_SHA256_ALT) || defined(MBEDTLS_SHA512_ALT)

#include "nu_bitutil.h"
#include "nu_timer.h"
#include "mbed_assert.h"
#include "mbed_error.h"
#include "crypto-misc.h"

#include <string.h>

void crypto_sha_update(crypto_sha_context *ctx, const unsigned char *input, size_t ilen);
void crypto_sha_update_nobuf(crypto_sha_context *ctx, const unsigned char *input, size_t ilen, int islast);
void crypto_sha_getinternstate(unsigned char output[], size_t olen);

#endif /* MBEDTLS_SHA1_ALT || MBEDTLS_SHA256_ALT || MBEDTLS_SHA512_ALT */

#if defined(MBEDTLS_SHA1_C)
#if defined(MBEDTLS_SHA1_ALT)

void mbedtls_sha1_hw_init(crypto_sha_context *ctx)
{
    /* Init crypto module */
    crypto_init();
    memset(ctx, 0, sizeof(*ctx));
}

void mbedtls_sha1_hw_free(crypto_sha_context *ctx)
{
    if (ctx == NULL) {
        return;
    }

    CRPT->HMAC_CTL |= CRPT_HMAC_CTL_STOP_Msk;

    /* Uninit crypto module */
    crypto_uninit();
    crypto_zeroize(ctx, sizeof(*ctx));
}

void mbedtls_sha1_hw_starts(crypto_sha_context *ctx)
{
    // NOTE: mbedtls may call mbedtls_shaXXX_starts multiple times and then call the ending mbedtls_shaXXX_finish. Guard from it.
    CRPT->HMAC_CTL |= CRPT_HMAC_CTL_STOP_Msk;

    ctx->total = 0;
    ctx->buffer_left = 0;
    ctx->blocksize = 64;
    ctx->blocksize_mask = 0x3F;

    SHA_Open(CRPT, SHA_MODE_SHA1, SHA_NO_SWAP, 0);

    // Ensure we have correct initial internal states in SHA_DGST registers even though SHA H/W is not actually started.
    CRPT->HMAC_CTL |= CRPT_HMAC_CTL_START_Msk;

    return;
}

void mbedtls_sha1_hw_update(crypto_sha_context *ctx, const unsigned char *input, size_t ilen)
{
    crypto_sha_update(ctx, input, ilen);
}

void mbedtls_sha1_hw_finish(crypto_sha_context *ctx, unsigned char output[20])
{
    // H/W SHA cannot handle zero data well. Fall back to S/W SHA.
    if (ctx->total) {
        crypto_sha_update_nobuf(ctx, ctx->buffer, ctx->buffer_left, 1);
        ctx->buffer_left = 0;
        crypto_sha_getinternstate(output, 20);
    } else {
        mbedtls_sha1_sw_context ctx_sw;

        mbedtls_sha1_sw_init(&ctx_sw);
        mbedtls_sha1_sw_starts(&ctx_sw);
        mbedtls_sha1_sw_finish(&ctx_sw, output);
        mbedtls_sha1_sw_free(&ctx_sw);
    }
    
    CRPT->HMAC_CTL |= CRPT_HMAC_CTL_STOP_Msk;
}

void mbedtls_sha1_hw_process(crypto_sha_context *ctx, const unsigned char data[64])
{
    mbedtls_sha1_hw_update(ctx, data, 64);
}

#endif /* MBEDTLS_SHA1_ALT */
#endif /* MBEDTLS_SHA1_C */

#if defined(MBEDTLS_SHA256_C)
#if defined(MBEDTLS_SHA256_ALT)

void mbedtls_sha256_hw_init(crypto_sha_context *ctx)
{
    /* Init crypto module */
    crypto_init();
    memset(ctx, 0, sizeof(*ctx));
}

void mbedtls_sha256_hw_free(crypto_sha_context *ctx)
{
    if (ctx == NULL) {
        return;
    }

    CRPT->HMAC_CTL |= CRPT_HMAC_CTL_STOP_Msk;

    /* Uninit crypto module */
    crypto_uninit();
    crypto_zeroize(ctx, sizeof(*ctx));
}

void mbedtls_sha256_hw_starts( crypto_sha_context *ctx, int is224)
{
    // NOTE: mbedtls may call mbedtls_shaXXX_starts multiple times and then call the ending mbedtls_shaXXX_finish. Guard from it.
    CRPT->HMAC_CTL |= CRPT_HMAC_CTL_STOP_Msk;

    ctx->total = 0;
    ctx->buffer_left = 0;
    ctx->blocksize = 64;
    ctx->blocksize_mask = 0x3F;
    ctx->is224_384 = is224;

    SHA_Open(CRPT, is224 ? SHA_MODE_SHA224 : SHA_MODE_SHA256, SHA_NO_SWAP, 0);

    // Ensure we have correct initial internal states in SHA_DGST registers even though SHA H/W is not actually started.
    CRPT->HMAC_CTL |= CRPT_HMAC_CTL_START_Msk;

    return;
}

void mbedtls_sha256_hw_update(crypto_sha_context *ctx, const unsigned char *input, size_t ilen)
{
    crypto_sha_update(ctx, input, ilen);
}

void mbedtls_sha256_hw_finish(crypto_sha_context *ctx, unsigned char output[32])
{
    // H/W SHA cannot handle zero data well. Fall back to S/W SHA.
    if (ctx->total) {
        crypto_sha_update_nobuf(ctx, ctx->buffer, ctx->buffer_left, 1);
        ctx->buffer_left = 0;
        crypto_sha_getinternstate(output, ctx->is224_384 ? 28 : 32);
    } else {
        mbedtls_sha256_sw_context ctx_sw;

        mbedtls_sha256_sw_init(&ctx_sw);
        mbedtls_sha256_sw_starts(&ctx_sw, ctx->is224_384);
        mbedtls_sha256_sw_finish(&ctx_sw, output);
        mbedtls_sha256_sw_free(&ctx_sw);
    }
    
    CRPT->HMAC_CTL |= CRPT_HMAC_CTL_STOP_Msk;
}

void mbedtls_sha256_hw_process(crypto_sha_context *ctx, const unsigned char data[64])
{
    mbedtls_sha256_hw_update(ctx, data, 64);
}

#endif /* MBEDTLS_SHA256_ALT */
#endif /* MBEDTLS_SHA256_C */


#if defined(MBEDTLS_SHA512_C)
#if defined(MBEDTLS_SHA512_ALT)

void mbedtls_sha512_hw_init(crypto_sha_context *ctx)
{
    /* Init crypto module */
    crypto_init();
    memset(ctx, 0, sizeof(*ctx));
}

void mbedtls_sha512_hw_free(crypto_sha_context *ctx)
{
    if (ctx == NULL) {
        return;
    }

    CRPT->HMAC_CTL |= CRPT_HMAC_CTL_STOP_Msk;
    
    /* Uninit crypto module */
    crypto_uninit();
    crypto_zeroize(ctx, sizeof(*ctx));
}

void mbedtls_sha512_hw_starts( crypto_sha_context *ctx, int is384)
{
    // NOTE: mbedtls may call mbedtls_shaXXX_starts multiple times and then call the ending mbedtls_shaXXX_finish. Guard from it.
    CRPT->HMAC_CTL |= CRPT_HMAC_CTL_STOP_Msk;

    ctx->total = 0;
    ctx->buffer_left = 0;
    ctx->blocksize = 128;
    ctx->blocksize_mask = 0x7F;
    ctx->is224_384 = is384;

    SHA_Open(CRPT, is384 ? SHA_MODE_SHA384 : SHA_MODE_SHA512, SHA_NO_SWAP, 0);

    // Ensure we have correct initial internal states in SHA_DGST registers even though SHA H/W is not actually started.
    CRPT->HMAC_CTL |= CRPT_HMAC_CTL_START_Msk;

    return;
}

void mbedtls_sha512_hw_update(crypto_sha_context *ctx, const unsigned char *input, size_t ilen)
{
    crypto_sha_update(ctx, input, ilen);
}

void mbedtls_sha512_hw_finish(crypto_sha_context *ctx, unsigned char output[64])
{
    // H/W SHA cannot handle zero data well. Fall back to S/W SHA.
    if (ctx->total) {
        crypto_sha_update_nobuf(ctx, ctx->buffer, ctx->buffer_left, 1);
        ctx->buffer_left = 0;
        crypto_sha_getinternstate(output, ctx->is224_384 ? 48 : 64);
    } else {
        mbedtls_sha512_sw_context ctx_sw;

        mbedtls_sha512_sw_init(&ctx_sw);
        mbedtls_sha512_sw_starts(&ctx_sw, ctx->is224_384);
        mbedtls_sha512_sw_finish(&ctx_sw, output);
        mbedtls_sha512_sw_free(&ctx_sw);
    }
    
    CRPT->HMAC_CTL |= CRPT_HMAC_CTL_STOP_Msk;
}

void mbedtls_sha512_hw_process(crypto_sha_context *ctx, const unsigned char data[128])
{
    mbedtls_sha512_hw_update(ctx, data, 128);
}

#endif /* MBEDTLS_SHA512_ALT */
#endif /* MBEDTLS_SHA512_C */

#if defined(MBEDTLS_SHA1_C) || defined(MBEDTLS_SHA256_C) || defined(MBEDTLS_SHA512_C)
#if defined(MBEDTLS_SHA1_ALT) || defined(MBEDTLS_SHA256_ALT) || defined(MBEDTLS_SHA512_ALT)

void crypto_sha_update(crypto_sha_context *ctx, const unsigned char *input, size_t ilen)
{
    if (ilen == 0) {
        return;
    }

    size_t fill = ctx->blocksize - ctx->buffer_left;

    ctx->total += (uint32_t) ilen;

    if (ctx->buffer_left && ilen >= fill) {
        memcpy((void *) (ctx->buffer + ctx->buffer_left), input, fill);
        input += fill;
        ilen  -= fill;
        ctx->buffer_left += fill;
        if (ilen) {
            crypto_sha_update_nobuf(ctx, ctx->buffer, ctx->buffer_left, 0);
            ctx->buffer_left = 0;
        }
    }

    while (ilen > ctx->blocksize) {
        crypto_sha_update_nobuf(ctx, input, ctx->blocksize, 0);
        input += ctx->blocksize;
        ilen  -= ctx->blocksize;
    }

    if (ilen > 0) {
        memcpy((void *) (ctx->buffer + ctx->buffer_left), input, ilen);
        ctx->buffer_left += ilen;
    }
}

void crypto_sha_update_nobuf(crypto_sha_context *ctx, const unsigned char *input, size_t ilen, int islast)
{
    // Accept only:
    // 1. Last block which may be incomplete
    // 2. Non-last block which is complete
    MBED_ASSERT(islast || ilen == ctx->blocksize);

    const unsigned char *in_pos = input;
    int rmn = ilen;
    uint32_t sha_ctl_start = (CRPT->HMAC_CTL & ~(CRPT_HMAC_CTL_DMALAST_Msk | CRPT_HMAC_CTL_DMAEN_Msk | CRPT_HMAC_CTL_HMACEN_Msk)) | CRPT_HMAC_CTL_START_Msk;
    uint32_t sha_opmode = (CRPT->HMAC_CTL & CRPT_HMAC_CTL_OPMODE_Msk) >> CRPT_HMAC_CTL_OPMODE_Pos;
    uint32_t DGSTs[16] = { 0 };
    
    while (rmn > 0) {
        uint32_t data = nu_get32_be(in_pos);
        if (rmn <= 4) { // Last word of a (in)complete block
            if (islast) {
                uint32_t lastblock_size = ctx->total & ctx->blocksize_mask;
                if (lastblock_size == 0) {
                    lastblock_size = ctx->blocksize;
                }
                CRPT->HMAC_DMACNT = lastblock_size;
                CRPT->HMAC_CTL = sha_ctl_start | CRPT_HMAC_CTL_DMALAST_Msk;
            } else {
                switch (sha_opmode) {
                case SHA_MODE_SHA512:
                    DGSTs[12] = CRPT->HMAC_DGST[12];
                    DGSTs[13] = CRPT->HMAC_DGST[13];
                    DGSTs[14] = CRPT->HMAC_DGST[14];
                    DGSTs[15] = CRPT->HMAC_DGST[15];
                case SHA_MODE_SHA384:
                    DGSTs[8] = CRPT->HMAC_DGST[8];
                    DGSTs[9] = CRPT->HMAC_DGST[9];
                    DGSTs[10] = CRPT->HMAC_DGST[10];
                    DGSTs[11] = CRPT->HMAC_DGST[11];
                case SHA_MODE_SHA256:
                    DGSTs[7] = CRPT->HMAC_DGST[7];
                case SHA_MODE_SHA224:
                    DGSTs[5] = CRPT->HMAC_DGST[5];
                    DGSTs[6] = CRPT->HMAC_DGST[6];
                case SHA_MODE_SHA1:
                    DGSTs[0] = CRPT->HMAC_DGST[0];
                    DGSTs[1] = CRPT->HMAC_DGST[1];
                    DGSTs[2] = CRPT->HMAC_DGST[2];
                    DGSTs[3] = CRPT->HMAC_DGST[3];
                    DGSTs[4] = CRPT->HMAC_DGST[4];
                }

                CRPT->HMAC_CTL = sha_ctl_start;
            }
        } else { // Non-last word of a complete block
            CRPT->HMAC_CTL = sha_ctl_start;
        }
        while (! (CRPT->HMAC_STS & CRPT_HMAC_STS_DATINREQ_Msk));
        CRPT->HMAC_DATIN = data;

        in_pos += 4;
        rmn -= 4;
    }

    if (islast) {   // Finish of last block
        while (CRPT->HMAC_STS & CRPT_HMAC_STS_BUSY_Msk);
    } else { // Finish of non-last block
        /* SHA accelerator doesn't export a flag to indicate non-last block process has finished.
         * Per designer, if the digest (SHA_DGSTx) code changes after the last word of the block is input,
         * this indicates the non-last block process has finished.
         *
         * There is a rare case that two digest codes are the same for 
         * two non-last block processes in a row.
         * To address it, we use a count-down timer to detect it.
         * As the count-down timer expires, we see it as finished.
         */
        int isfinish = 0;
        struct nu_countdown_ctx_s ctx;

        // Set up 2s timeout
        nu_countdown_init(&ctx, 2000*1000);
        while (! isfinish) {
            switch (sha_opmode) {
            case SHA_MODE_SHA512:
                if (DGSTs[12] != CRPT->HMAC_DGST[12] || DGSTs[13] != CRPT->HMAC_DGST[13] || DGSTs[14] != CRPT->HMAC_DGST[14] ||
                        DGSTs[15] != CRPT->HMAC_DGST[15]) {
                    isfinish = 1;
                    break;
                }
            case SHA_MODE_SHA384:
                if (DGSTs[8] != CRPT->HMAC_DGST[8] || DGSTs[9] != CRPT->HMAC_DGST[9] || DGSTs[10] != CRPT->HMAC_DGST[10] ||
                    DGSTs[11] != CRPT->HMAC_DGST[11]) {
                    isfinish = 1;
                    break;
                }
            case SHA_MODE_SHA256:
                if (DGSTs[7] != CRPT->HMAC_DGST[7]) {
                    isfinish = 1;
                    break;
                }
            case SHA_MODE_SHA224:
                if (DGSTs[5] != CRPT->HMAC_DGST[5] || DGSTs[6] != CRPT->HMAC_DGST[6]) {
                    isfinish = 1;
                    break;
                }
            case SHA_MODE_SHA1:
                if (DGSTs[0] != CRPT->HMAC_DGST[0] || DGSTs[1] != CRPT->HMAC_DGST[1] || DGSTs[2] != CRPT->HMAC_DGST[2] ||
                        DGSTs[3] != CRPT->HMAC_DGST[3] || DGSTs[4] != CRPT->HMAC_DGST[4]) {
                    isfinish = 1;
                    break;
                }
            }
            
            if (nu_countdown_expired(&ctx)) {
                // We may meet a rare case that the current digest code and the previous one are the same.
                isfinish = 1;
            }
        }
        // Must pair nu_countdown_init with nu_countdown_free in the end
        nu_countdown_free(&ctx);
    }
}

void crypto_sha_getinternstate(unsigned char output[], size_t olen)
{
    if (olen & 0x3) {
        error("Internal error in SHA alter. SHA internal state size requires to be a multiple of 4 bytes.");
    }
    
    uint32_t *in_pos = (uint32_t *) &CRPT->HMAC_DGST[0];
    unsigned char *out_pos = output;
    uint32_t rmn = olen;

    while (rmn) {
        uint32_t val = *in_pos ++;
        nu_set32_be(out_pos, val);
        out_pos += 4;
        rmn -= 4;
    }
}

#endif /* MBEDTLS_SHA1_ALT || MBEDTLS_SHA256_ALT || MBEDTLS_SHA512_ALT */
#endif /* MBEDTLS_SHA1_C || MBEDTLS_SHA256_C || MBEDTLS_SHA512_C */

#endif /* MBEDTLS_SHA1_C || MBEDTLS_SHA256_C || MBEDTLS_SHA512_C */