Newer
Older
mbed-os / targets / TARGET_STM / TARGET_STM32L4 / device / stm32l4xx_hal_nand.c
/**
  ******************************************************************************
  * @file    stm32l4xx_hal_nand.c
  * @author  MCD Application Team
  * @brief   NAND HAL module driver.
  *          This file provides a generic firmware to drive NAND memories mounted
  *          as external device.
  *
  @verbatim
  ==============================================================================
                         ##### How to use this driver #####
  ==============================================================================
    [..]
      This driver is a generic layered driver which contains a set of APIs used to
      control NAND flash memories. It uses the FMC layer functions to interface
      with NAND devices. This driver is used as follows:

      (+) NAND flash memory configuration sequence using the function HAL_NAND_Init()
          with control and timing parameters for both common and attribute spaces.

      (+) Read NAND flash memory maker and device IDs using the function
          HAL_NAND_Read_ID(). The read information is stored in the NAND_ID_TypeDef
          structure declared by the function caller.

      (+) Access NAND flash memory by read/write operations using the functions
          HAL_NAND_Read_Page_8b()/HAL_NAND_Read_SpareArea_8b(),
          HAL_NAND_Write_Page_8b()/HAL_NAND_Write_SpareArea_8b(),
          HAL_NAND_Read_Page_16b()/HAL_NAND_Read_SpareArea_16b(),
          HAL_NAND_Write_Page_16b()/HAL_NAND_Write_SpareArea_16b()
          to read/write page(s)/spare area(s). These functions use specific device
          information (Block, page size..) predefined by the user in the NAND_DeviceConfigTypeDef
          structure. The read/write address information is contained by the Nand_Address_Typedef
          structure passed as parameter.

      (+) Perform NAND flash Reset chip operation using the function HAL_NAND_Reset().

      (+) Perform NAND flash erase block operation using the function HAL_NAND_Erase_Block().
          The erase block address information is contained in the Nand_Address_Typedef
          structure passed as parameter.

      (+) Read the NAND flash status operation using the function HAL_NAND_Read_Status().

      (+) You can also control the NAND device by calling the control APIs HAL_NAND_ECC_Enable()/
          HAL_NAND_ECC_Disable() to respectively enable/disable the ECC code correction
          feature or the function HAL_NAND_GetECC() to get the ECC correction code.

      (+) You can monitor the NAND device HAL state by calling the function
          HAL_NAND_GetState()

    [..]
      (@) This driver is a set of generic APIs which handle standard NAND flash operations.
          If a NAND flash device contains different operations and/or implementations,
          it should be implemented separately.

  @endverbatim
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; Copyright (c) 2017 STMicroelectronics.
  * All rights reserved.</center></h2>
  *
  * This software component is licensed by ST under BSD 3-Clause license,
  * the "License"; You may not use this file except in compliance with the
  * License. You may obtain a copy of the License at:
  *                        opensource.org/licenses/BSD-3-Clause
  *
  ******************************************************************************
  */

/* Includes ------------------------------------------------------------------*/
#include "stm32l4xx_hal.h"

#if defined(FMC_BANK3)

/** @addtogroup STM32L4xx_HAL_Driver
  * @{
  */

#ifdef HAL_NAND_MODULE_ENABLED

/** @defgroup NAND NAND
  * @brief NAND HAL module driver
  * @{
  */

/* Private typedef -----------------------------------------------------------*/
/* Private Constants ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions ---------------------------------------------------------*/

/** @defgroup NAND_Exported_Functions NAND Exported Functions
  * @{
  */

/** @defgroup NAND_Exported_Functions_Group1 Initialization and de-initialization functions
  * @brief    Initialization and Configuration functions
  *
  @verbatim
  ==============================================================================
            ##### NAND Initialization and de-initialization functions #####
  ==============================================================================
  [..]
    This section provides functions allowing to initialize/de-initialize
    the NAND memory

@endverbatim
  * @{
  */

/**
  * @brief  Perform NAND memory Initialization sequence
  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
  *                the configuration information for NAND module.
  * @param  ComSpace_Timing pointer to Common space timing structure
  * @param  AttSpace_Timing pointer to Attribute space timing structure
  * @retval HAL status
  */
HAL_StatusTypeDef  HAL_NAND_Init(NAND_HandleTypeDef *hnand, FMC_NAND_PCC_TimingTypeDef *ComSpace_Timing, FMC_NAND_PCC_TimingTypeDef *AttSpace_Timing)
{
  /* Check the NAND handle state */
  if(hnand == NULL)
  {
     return HAL_ERROR;
  }

  if(hnand->State == HAL_NAND_STATE_RESET)
  {
    /* Allocate lock resource and initialize it */
    hnand->Lock = HAL_UNLOCKED;
    /* Initialize the low level hardware (MSP) */
    HAL_NAND_MspInit(hnand);
  }

  /* Initialize NAND control Interface */
  FMC_NAND_Init(hnand->Instance, &(hnand->Init));

  /* Initialize NAND common space timing Interface */
  FMC_NAND_CommonSpace_Timing_Init(hnand->Instance, ComSpace_Timing, hnand->Init.NandBank);

  /* Initialize NAND attribute space timing Interface */
  FMC_NAND_AttributeSpace_Timing_Init(hnand->Instance, AttSpace_Timing, hnand->Init.NandBank);

  /* Enable the NAND device */
  __FMC_NAND_ENABLE(hnand->Instance);

  /* Update the NAND controller state */
  hnand->State = HAL_NAND_STATE_READY;

  return HAL_OK;
}

/**
  * @brief  Perform NAND memory De-Initialization sequence
  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
  *                the configuration information for NAND module.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_NAND_DeInit(NAND_HandleTypeDef *hnand)
{
  /* Initialize the low level hardware (MSP) */
  HAL_NAND_MspDeInit(hnand);

  /* Configure the NAND registers with their reset values */
  FMC_NAND_DeInit(hnand->Instance, hnand->Init.NandBank);

  /* Reset the NAND controller state */
  hnand->State = HAL_NAND_STATE_RESET;

  /* Release Lock */
  __HAL_UNLOCK(hnand);

  return HAL_OK;
}

/**
  * @brief  Initialize the NAND MSP
  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
  *                the configuration information for NAND module.
  * @retval None
  */
__weak void HAL_NAND_MspInit(NAND_HandleTypeDef *hnand)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hnand);

  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_NAND_MspInit could be implemented in the user file
   */
}

/**
  * @brief  DeInitialize the NAND MSP
  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
  *                the configuration information for NAND module.
  * @retval None
  */
__weak void HAL_NAND_MspDeInit(NAND_HandleTypeDef *hnand)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hnand);

  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_NAND_MspDeInit could be implemented in the user file
   */
}


/**
  * @brief  This function handles NAND device interrupt request.
  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
  *                the configuration information for NAND module.
  * @retval HAL status
*/
void HAL_NAND_IRQHandler(NAND_HandleTypeDef *hnand)
{
  /* Check NAND interrupt Rising edge flag */
  if(__FMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_RISING_EDGE))
  {
    /* NAND interrupt callback*/
    HAL_NAND_ITCallback(hnand);

    /* Clear NAND interrupt Rising edge pending bit */
    __FMC_NAND_CLEAR_FLAG(hnand->Instance, FMC_FLAG_RISING_EDGE);
  }

  /* Check NAND interrupt Level flag */
  if(__FMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_LEVEL))
  {
    /* NAND interrupt callback*/
    HAL_NAND_ITCallback(hnand);

    /* Clear NAND interrupt Level pending bit */
    __FMC_NAND_CLEAR_FLAG(hnand->Instance, FMC_FLAG_LEVEL);
  }

  /* Check NAND interrupt Falling edge flag */
  if(__FMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_FALLING_EDGE))
  {
    /* NAND interrupt callback*/
    HAL_NAND_ITCallback(hnand);

    /* Clear NAND interrupt Falling edge pending bit */
    __FMC_NAND_CLEAR_FLAG(hnand->Instance, FMC_FLAG_FALLING_EDGE);
  }

  /* Check NAND interrupt FIFO empty flag */
  if(__FMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_FEMPT))
  {
    /* NAND interrupt callback*/
    HAL_NAND_ITCallback(hnand);

    /* Clear NAND interrupt FIFO empty pending bit */
    __FMC_NAND_CLEAR_FLAG(hnand->Instance, FMC_FLAG_FEMPT);
  }

}

/**
  * @brief  NAND interrupt feature callback
  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
  *                the configuration information for NAND module.
  * @retval None
  */
__weak void HAL_NAND_ITCallback(NAND_HandleTypeDef *hnand)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hnand);

  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_NAND_ITCallback could be implemented in the user file
   */
}

/**
  * @}
  */

/** @defgroup NAND_Exported_Functions_Group2 Input and Output functions
  * @brief    Input Output and memory control functions
  *
  @verbatim
  ==============================================================================
                    ##### NAND Input and Output functions #####
  ==============================================================================
  [..]
    This section provides functions allowing to use and control the NAND
    memory

@endverbatim
  * @{
  */

/**
  * @brief  Read the NAND memory electronic signature
  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
  *                the configuration information for NAND module.
  * @param  pNAND_ID NAND ID structure
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_NAND_Read_ID(NAND_HandleTypeDef *hnand, NAND_IDTypeDef *pNAND_ID)
{
  __IO uint32_t data = 0;
  __IO uint32_t data1 = 0;
  uint32_t deviceAddress = 0;

  /* Process Locked */
  __HAL_LOCK(hnand);

  /* Check the NAND controller state */
  if(hnand->State == HAL_NAND_STATE_BUSY)
  {
     return HAL_BUSY;
  }

  /* Identify the device address */
  deviceAddress = NAND_DEVICE;

  /* Update the NAND controller state */
  hnand->State = HAL_NAND_STATE_BUSY;

  /* Send Read ID command sequence */
  *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA))  = NAND_CMD_READID;
  __DSB();
  *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00;
  __DSB();

  /* Read the electronic signature from NAND flash */
  if (hnand->Init.MemoryDataWidth == FMC_NAND_MEM_BUS_WIDTH_8)
  {
    data = *(__IO uint32_t *)deviceAddress;

    /* Return the data read */
    pNAND_ID->Maker_Id   = ADDR_1ST_CYCLE(data);
    pNAND_ID->Device_Id  = ADDR_2ND_CYCLE(data);
    pNAND_ID->Third_Id   = ADDR_3RD_CYCLE(data);
    pNAND_ID->Fourth_Id  = ADDR_4TH_CYCLE(data);
  }
  else
  {
    data = *(__IO uint32_t *)deviceAddress;
    data1 = *((__IO uint32_t *)deviceAddress + 4);

    /* Return the data read */
    pNAND_ID->Maker_Id   = ADDR_1ST_CYCLE(data);
    pNAND_ID->Device_Id  = ADDR_3RD_CYCLE(data);
    pNAND_ID->Third_Id   = ADDR_1ST_CYCLE(data1);
    pNAND_ID->Fourth_Id  = ADDR_3RD_CYCLE(data1);
  }

  /* Update the NAND controller state */
  hnand->State = HAL_NAND_STATE_READY;

  /* Process unlocked */
  __HAL_UNLOCK(hnand);

  return HAL_OK;
}

/**
  * @brief  NAND memory reset
  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
  *                the configuration information for NAND module.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_NAND_Reset(NAND_HandleTypeDef *hnand)
{
  uint32_t deviceAddress = 0;

  /* Process Locked */
  __HAL_LOCK(hnand);

  /* Check the NAND controller state */
  if(hnand->State == HAL_NAND_STATE_BUSY)
  {
     return HAL_BUSY;
  }

  /* Identify the device address */
  deviceAddress = NAND_DEVICE;

  /* Update the NAND controller state */
  hnand->State = HAL_NAND_STATE_BUSY;

  /* Send NAND reset command */
  *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = 0xFF;

  /* Update the NAND controller state */
  hnand->State = HAL_NAND_STATE_READY;

  /* Process unlocked */
  __HAL_UNLOCK(hnand);

  return HAL_OK;

}

/**
  * @brief  Configure the device: Enter the physical parameters of the device
  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
  *                the configuration information for NAND module.
  * @param  pDeviceConfig  pointer to NAND_DeviceConfigTypeDef structure
  * @retval HAL status
  */
HAL_StatusTypeDef  HAL_NAND_ConfigDevice(NAND_HandleTypeDef *hnand, NAND_DeviceConfigTypeDef *pDeviceConfig)
{
  hnand->Config.PageSize           = pDeviceConfig->PageSize;
  hnand->Config.SpareAreaSize      = pDeviceConfig->SpareAreaSize;
  hnand->Config.BlockSize          = pDeviceConfig->BlockSize;
  hnand->Config.BlockNbr           = pDeviceConfig->BlockNbr;
  hnand->Config.PlaneSize          = pDeviceConfig->PlaneSize;
  hnand->Config.PlaneNbr           = pDeviceConfig->PlaneNbr;
  hnand->Config.ExtraCommandEnable = pDeviceConfig->ExtraCommandEnable;

  return HAL_OK;
}


/**
  * @brief  Read Page(s) from NAND memory block (8-bits addressing)
  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
  *                the configuration information for NAND module.
  * @param  pAddress  pointer to NAND address structure
  * @param  pBuffer  pointer to destination read buffer
  * @param  NumPageToRead  number of pages to read from block
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_NAND_Read_Page_8b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint8_t *pBuffer, uint32_t NumPageToRead)
{
  __IO uint32_t index  = 0;
  uint32_t tickstart = 0U;
  uint32_t deviceAddress = 0, size = 0, numPagesRead = 0, nandAddress = 0;

  /* Process Locked */
  __HAL_LOCK(hnand);

  /* Check the NAND controller state */
  if(hnand->State == HAL_NAND_STATE_BUSY)
  {
     return HAL_BUSY;
  }

  /* Identify the device address */
  deviceAddress = NAND_DEVICE;

  /* Update the NAND controller state */
  hnand->State = HAL_NAND_STATE_BUSY;

  /* NAND raw address calculation */
  nandAddress = ARRAY_ADDRESS(pAddress, hnand);

  /* Page(s) read loop */
  while ((NumPageToRead != 0) && (nandAddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr))))
  {
    /* update the buffer size */
    size = (hnand->Config.PageSize) + ((hnand->Config.PageSize) * numPagesRead);

    /* Send read page command sequence */
    *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_AREA_A;
    __DSB();

    /* Cards with page size <= 512 bytes */
    if ((hnand->Config.PageSize) <= 512)
    {
      if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535)
      {
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00;
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress);
        __DSB();
      }
      else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
      {
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00;
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandAddress);
        __DSB();
      }
    }
    else /* (hnand->Config.PageSize) > 512 */
    {
      if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535)
      {
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00;
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00;
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress);
        __DSB();
      }
      else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
      {
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00;
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00;
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandAddress);
        __DSB();
      }
    }

    *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA))  = NAND_CMD_AREA_TRUE1;
    __DSB();


    if (hnand->Config.ExtraCommandEnable == ENABLE)
    {
      /* Get tick */
      tickstart = HAL_GetTick();

      /* Read status until NAND is ready */
      while (HAL_NAND_Read_Status(hnand) != NAND_READY)
      {
        if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT)
        {
          return HAL_TIMEOUT;
        }
      }

      /* Go back to read mode */
      *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = ((uint8_t)0x00U);
      __DSB();
    }

    /* Get Data into Buffer */
    for(; index < size; index++)
    {
      *(uint8_t *)pBuffer++ = *(uint8_t *)deviceAddress;
    }

    /* Increment read pages number */
    numPagesRead++;

    /* Decrement pages to read */
    NumPageToRead--;

    /* Increment the NAND address */
    nandAddress = (uint32_t)(nandAddress + 1);
  }

  /* Update the NAND controller state */
  hnand->State = HAL_NAND_STATE_READY;

  /* Process unlocked */
  __HAL_UNLOCK(hnand);

  return HAL_OK;
}

/**
  * @brief  Read Page(s) from NAND memory block (16-bits addressing)
  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
  *                the configuration information for NAND module.
  * @param  pAddress  pointer to NAND address structure
  * @param  pBuffer  pointer to destination read buffer. pBuffer should be 16bits aligned
  * @param  NumPageToRead  number of pages to read from block
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_NAND_Read_Page_16b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint16_t *pBuffer, uint32_t NumPageToRead)
{
  __IO uint32_t index  = 0;
  uint32_t tickstart = 0;
  uint32_t deviceAddress = 0, size = 0, numPagesRead = 0, nandAddress = 0;

  /* Process Locked */
  __HAL_LOCK(hnand);

  /* Check the NAND controller state */
  if (hnand->State == HAL_NAND_STATE_BUSY)
  {
    return HAL_BUSY;
  }

  /* Identify the device address */
  deviceAddress = NAND_DEVICE;

  /* Update the NAND controller state */
  hnand->State = HAL_NAND_STATE_BUSY;

  /* NAND raw address calculation */
  nandAddress = ARRAY_ADDRESS(pAddress, hnand);

  /* Page(s) read loop */
  while ((NumPageToRead != 0) && (nandAddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr))))
  {
    /* update the buffer size */
    size = (hnand->Config.PageSize) + ((hnand->Config.PageSize) * numPagesRead);

    /* Send read page command sequence */
    *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_AREA_A;
    __DSB();

    /* Cards with page size <= 512 bytes */
    if ((hnand->Config.PageSize) <= 512)
    {
      if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535)
      {
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00;
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress);
        __DSB();
      }
      else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
      {
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00;
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandAddress);
        __DSB();
      }
    }
    else /* (hnand->Config.PageSize) > 512 */
    {
      if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535)
      {
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00;
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00;
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress);
        __DSB();
      }
      else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
      {
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00;
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00;
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandAddress);
        __DSB();
      }
    }

    *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA))  = NAND_CMD_AREA_TRUE1;
    __DSB();

    if (hnand->Config.ExtraCommandEnable == ENABLE)
    {
      /* Get tick */
      tickstart = HAL_GetTick();

      /* Read status until NAND is ready */
      while (HAL_NAND_Read_Status(hnand) != NAND_READY)
      {
        if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT)
        {
          return HAL_TIMEOUT;
        }
      }

      /* Go back to read mode */
      *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = ((uint8_t)0x00U);
      __DSB();
    }

    /* Get Data into Buffer */
    for (; index < size; index++)
    {
      *(uint16_t *)pBuffer++ = *(uint16_t *)deviceAddress;
    }

    /* Increment read pages number */
    numPagesRead++;

    /* Decrement pages to read */
    NumPageToRead--;

    /* Increment the NAND address */
    nandAddress = (uint32_t)(nandAddress + 1);
  }

  /* Update the NAND controller state */
  hnand->State = HAL_NAND_STATE_READY;

  /* Process unlocked */
  __HAL_UNLOCK(hnand);

  return HAL_OK;
}

/**
  * @brief  Write Page(s) to NAND memory block (8-bits addressing)
  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
  *                the configuration information for NAND module.
  * @param  pAddress  pointer to NAND address structure
  * @param  pBuffer  pointer to source buffer to write
  * @param  NumPageToWrite   number of pages to write to block
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_NAND_Write_Page_8b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint8_t *pBuffer, uint32_t NumPageToWrite)
{
  __IO uint32_t index = 0;
  uint32_t tickstart = 0;
  uint32_t deviceAddress = 0, size = 0, numPagesWritten = 0, nandAddress = 0;

  /* Process Locked */
  __HAL_LOCK(hnand);

  /* Check the NAND controller state */
  if(hnand->State == HAL_NAND_STATE_BUSY)
  {
     return HAL_BUSY;
  }

  /* Identify the device address */
  deviceAddress = NAND_DEVICE;

  /* Update the NAND controller state */
  hnand->State = HAL_NAND_STATE_BUSY;

  /* NAND raw address calculation */
  nandAddress = ARRAY_ADDRESS(pAddress, hnand);

  /* Page(s) write loop */
  while ((NumPageToWrite != 0) && (nandAddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr))))
  {
    /* update the buffer size */
    size = (hnand->Config.PageSize) + ((hnand->Config.PageSize) * numPagesWritten);

    /* Send write page command sequence */
    *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_AREA_A;
    __DSB();
    *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_WRITE0;
    __DSB();

    /* Cards with page size <= 512 bytes */
    if ((hnand->Config.PageSize) <= 512)
    {
      if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535)
      {
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00;
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress);
        __DSB();
      }
      else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
      {
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00;
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandAddress);
        __DSB();
      }
    }
    else /* (hnand->Config.PageSize) > 512 */
    {
      if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535)
      {
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00;
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00;
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress);
        __DSB();
      }
      else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
      {
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00;
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00;
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandAddress);
        __DSB();
      }
    }

    /* Write data to memory */
    for (; index < size; index++)
    {
      *(__IO uint8_t *)deviceAddress = *(uint8_t *)pBuffer++;
      __DSB();
    }

    *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1;
    __DSB();

    /* Get tick */
    tickstart = HAL_GetTick();

    /* Read status until NAND is ready */
    while (HAL_NAND_Read_Status(hnand) != NAND_READY)
    {
      if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT)
      {
        return HAL_TIMEOUT;
      }
    }

    /* Increment written pages number */
    numPagesWritten++;

    /* Decrement pages to write */
    NumPageToWrite--;

    /* Increment the NAND address */
    nandAddress = (uint32_t)(nandAddress + 1);
  }

  /* Update the NAND controller state */
  hnand->State = HAL_NAND_STATE_READY;

  /* Process unlocked */
  __HAL_UNLOCK(hnand);

  return HAL_OK;
}

/**
  * @brief  Write Page(s) to NAND memory block (16-bits addressing)
  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
  *                the configuration information for NAND module.
  * @param  pAddress  pointer to NAND address structure
  * @param  pBuffer  pointer to source buffer to write. pBuffer should be 16bits aligned
  * @param  NumPageToWrite   number of pages to write to block
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_NAND_Write_Page_16b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint16_t *pBuffer, uint32_t NumPageToWrite)
{
  __IO uint32_t index = 0;
  uint32_t tickstart = 0;
  uint32_t deviceAddress = 0, size = 0, numPagesWritten = 0, nandAddress = 0;

  /* Process Locked */
  __HAL_LOCK(hnand);

  /* Check the NAND controller state */
  if (hnand->State == HAL_NAND_STATE_BUSY)
  {
    return HAL_BUSY;
  }

  /* Identify the device address */
  deviceAddress = NAND_DEVICE;

  /* Update the NAND controller state */
  hnand->State = HAL_NAND_STATE_BUSY;

  /* NAND raw address calculation */
  nandAddress = ARRAY_ADDRESS(pAddress, hnand);

  /* Page(s) write loop */
  while ((NumPageToWrite != 0) && (nandAddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr))))
  {
    /* update the buffer size */
    size = (hnand->Config.PageSize) + ((hnand->Config.PageSize) * numPagesWritten);

    /* Send write page command sequence */
    *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_AREA_A;
    __DSB();
    *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_WRITE0;
    __DSB();

    /* Cards with page size <= 512 bytes */
    if ((hnand->Config.PageSize) <= 512)
    {
      if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535)
      {
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00;
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress);
        __DSB();
      }
      else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
      {
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00;
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandAddress);
        __DSB();
      }
    }
    else /* (hnand->Config.PageSize) > 512 */
    {
      if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535)
      {
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00;
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00;
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress);
        __DSB();
      }
      else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
      {
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00;
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00;
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandAddress);
        __DSB();
      }
    }

    /* Write data to memory */
    for(; index < size; index++)
    {
      *(__IO uint16_t *)deviceAddress = *(uint16_t *)pBuffer++;
      __DSB();
    }

    *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1;
    __DSB();

    /* Get tick */
    tickstart = HAL_GetTick();

    /* Read status until NAND is ready */
    while(HAL_NAND_Read_Status(hnand) != NAND_READY)
    {
      if((HAL_GetTick() - tickstart ) > NAND_WRITE_TIMEOUT)
      {
        return HAL_TIMEOUT;
      }
    }

    /* Increment written pages number */
    numPagesWritten++;

    /* Decrement pages to write */
    NumPageToWrite--;

    /* Increment the NAND address */
    nandAddress = (uint32_t)(nandAddress + 1);
  }

  /* Update the NAND controller state */
  hnand->State = HAL_NAND_STATE_READY;

  /* Process unlocked */
  __HAL_UNLOCK(hnand);

  return HAL_OK;
}

/**
  * @brief  Read Spare area(s) from NAND memory (8-bits addressing)
  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
  *                the configuration information for NAND module.
  * @param  pAddress  pointer to NAND address structure
  * @param  pBuffer pointer to source buffer to write
  * @param  NumSpareAreaToRead Number of spare area to read
  * @retval HAL status
*/
HAL_StatusTypeDef HAL_NAND_Read_SpareArea_8b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint8_t *pBuffer, uint32_t NumSpareAreaToRead)
{
  __IO uint32_t index   = 0;
  uint32_t tickstart = 0U;
  uint32_t deviceAddress = 0, size = 0, numSpareAreaRead = 0, nandAddress = 0, columnAddress = 0;

  /* Process Locked */
  __HAL_LOCK(hnand);

  /* Check the NAND controller state */
  if (hnand->State == HAL_NAND_STATE_BUSY)
  {
    return HAL_BUSY;
  }

  /* Identify the device address */
  deviceAddress = NAND_DEVICE;

  /* Update the NAND controller state */
  hnand->State = HAL_NAND_STATE_BUSY;

  /* NAND raw address calculation */
  nandAddress = ARRAY_ADDRESS(pAddress, hnand);

  /* Column in page address */
  columnAddress = COLUMN_ADDRESS(hnand);

  /* Spare area(s) read loop */
  while ((NumSpareAreaToRead != 0) && (nandAddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr))))
  {
    /* update the buffer size */
    size = (hnand->Config.SpareAreaSize) + ((hnand->Config.SpareAreaSize) * numSpareAreaRead);

    /* Cards with page size <= 512 bytes */
    if ((hnand->Config.PageSize) <= 512)
    {
      /* Send read spare area command sequence */
      *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_AREA_C;
      __DSB();

      if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535)
      {
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00;
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress);
        __DSB();
      }
      else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
      {
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00;
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandAddress);
        __DSB();
      }
    }
    else /* (hnand->Config.PageSize) > 512 */
    {
      /* Send read spare area command sequence */
      *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_AREA_A;
      __DSB();

      if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535)
      {
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress);
        __DSB();
      }
      else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
      {
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandAddress);
        __DSB();
      }
    }

    *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_AREA_TRUE1;
    __DSB();

    if (hnand->Config.ExtraCommandEnable == ENABLE)
    {
      /* Get tick */
      tickstart = HAL_GetTick();

      /* Read status until NAND is ready */
      while (HAL_NAND_Read_Status(hnand) != NAND_READY)
      {
        if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT)
        {
          return HAL_TIMEOUT;
        }
      }

      /* Go back to read mode */
      *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = ((uint8_t)0x00U);
      __DSB();
    }

    /* Get Data into Buffer */
    for (; index < size; index++)
    {
      *(uint8_t *)pBuffer++ = *(uint8_t *)deviceAddress;
    }

    /* Increment read spare areas number */
    numSpareAreaRead++;

    /* Decrement spare areas to read */
    NumSpareAreaToRead--;

    /* Increment the NAND address */
    nandAddress = (uint32_t)(nandAddress + 1);
  }

  /* Update the NAND controller state */
  hnand->State = HAL_NAND_STATE_READY;

  /* Process unlocked */
  __HAL_UNLOCK(hnand);

  return HAL_OK;
}

/**
  * @brief  Read Spare area(s) from NAND memory (16-bits addressing)
  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
  *                the configuration information for NAND module.
  * @param  pAddress  pointer to NAND address structure
  * @param  pBuffer pointer to source buffer to write. pBuffer should be 16bits aligned.
  * @param  NumSpareAreaToRead Number of spare area to read
  * @retval HAL status
*/
HAL_StatusTypeDef HAL_NAND_Read_SpareArea_16b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint16_t *pBuffer, uint32_t NumSpareAreaToRead)
{
  __IO uint32_t index = 0;
  uint32_t tickstart = 0U;
  uint32_t deviceAddress = 0, size = 0, numSpareAreaRead = 0, nandAddress = 0, columnAddress = 0;

  /* Process Locked */
  __HAL_LOCK(hnand);

  /* Check the NAND controller state */
  if(hnand->State == HAL_NAND_STATE_BUSY)
  {
     return HAL_BUSY;
  }

  /* Identify the device address */
  deviceAddress = NAND_DEVICE;

  /* Update the NAND controller state */
  hnand->State = HAL_NAND_STATE_BUSY;

  /* NAND raw address calculation */
  nandAddress = ARRAY_ADDRESS(pAddress, hnand);

  /* Column in page address */
  columnAddress = (uint32_t)(COLUMN_ADDRESS(hnand) * 2);

  /* Spare area(s) read loop */
  while ((NumSpareAreaToRead != 0) && (nandAddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr))))
  {
    /* update the buffer size */
    size = (hnand->Config.SpareAreaSize) + ((hnand->Config.SpareAreaSize) * numSpareAreaRead);

    /* Cards with page size <= 512 bytes */
    if ((hnand->Config.PageSize) <= 512)
    {
      /* Send read spare area command sequence */
      *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_AREA_C;
      __DSB();

      if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535)
      {
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00;
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress);
        __DSB();
      }
      else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
      {
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00;
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandAddress);
        __DSB();
      }
    }
    else /* (hnand->Config.PageSize) > 512 */
    {
      /* Send read spare area command sequence */
      *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_AREA_A;
      __DSB();

      if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535)
      {
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress);
        __DSB();
      }
      else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
      {
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandAddress);
        __DSB();
      }
    }

    *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_AREA_TRUE1;
    __DSB();

    if (hnand->Config.ExtraCommandEnable == ENABLE)
    {
      /* Get tick */
      tickstart = HAL_GetTick();

      /* Read status until NAND is ready */
      while (HAL_NAND_Read_Status(hnand) != NAND_READY)
      {
        if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT)
        {
          return HAL_TIMEOUT;
        }
      }

      /* Go back to read mode */
      *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = ((uint8_t)0x00U);
      __DSB();
    }

    /* Get Data into Buffer */
    for ( ;index < size; index++)
    {
      *(uint16_t *)pBuffer++ = *(uint16_t *)deviceAddress;
    }

    /* Increment read spare areas number */
    numSpareAreaRead++;

    /* Decrement spare areas to read */
    NumSpareAreaToRead--;

    /* Increment the NAND address */
    nandAddress = (uint32_t)(nandAddress + 1);
  }

  /* Update the NAND controller state */
  hnand->State = HAL_NAND_STATE_READY;

  /* Process unlocked */
  __HAL_UNLOCK(hnand);

  return HAL_OK;
}

/**
  * @brief  Write Spare area(s) to NAND memory (8-bits addressing)
  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
  *                the configuration information for NAND module.
  * @param  pAddress  pointer to NAND address structure
  * @param  pBuffer  pointer to source buffer to write
  * @param  NumSpareAreaTowrite   number of spare areas to write to block
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_NAND_Write_SpareArea_8b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint8_t *pBuffer, uint32_t NumSpareAreaTowrite)
{
  __IO uint32_t index = 0;
  uint32_t tickstart = 0;
  uint32_t deviceAddress = 0, size = 0, numSpareAreaWritten = 0, nandAddress = 0, columnAddress = 0;

  /* Process Locked */
  __HAL_LOCK(hnand);

  /* Check the NAND controller state */
  if(hnand->State == HAL_NAND_STATE_BUSY)
  {
     return HAL_BUSY;
  }

  /* Identify the device address */
  deviceAddress = NAND_DEVICE;

  /* Update the FMC_NAND controller state */
  hnand->State = HAL_NAND_STATE_BUSY;

  /* Page address calculation */
  nandAddress = ARRAY_ADDRESS(pAddress, hnand);

  /* Column in page address */
  columnAddress = COLUMN_ADDRESS(hnand);

  /* Spare area(s) write loop */
  while ((NumSpareAreaTowrite != 0) && (nandAddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr))))
  {
    /* update the buffer size */
    size = (hnand->Config.SpareAreaSize) + ((hnand->Config.SpareAreaSize) * numSpareAreaWritten);

    /* Cards with page size <= 512 bytes */
    if ((hnand->Config.PageSize) <= 512)
    {
      /* Send write Spare area command sequence */
      *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_AREA_C;
      __DSB();
      *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_WRITE0;
      __DSB();

      if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535)
      {
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00;
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress);
        __DSB();
      }
      else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
      {
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00;
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandAddress);
        __DSB();
      }
    }
    else /* (hnand->Config.PageSize) > 512 */
    {
      /* Send write Spare area command sequence */
      *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_AREA_A;
      __DSB();
      *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_WRITE0;
      __DSB();

      if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535)
      {
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress);
        __DSB();
      }
      else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
      {
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandAddress);
        __DSB();
      }
    }

    /* Write data to memory */
    for(; index < size; index++)
    {
      *(__IO uint8_t *)deviceAddress = *(uint8_t *)pBuffer++;
      __DSB();
    }

    *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1;
    __DSB();

    /* Get tick */
    tickstart = HAL_GetTick();

    /* Read status until NAND is ready */
    while(HAL_NAND_Read_Status(hnand) != NAND_READY)
    {
      if((HAL_GetTick() - tickstart ) > NAND_WRITE_TIMEOUT)
      {
        return HAL_TIMEOUT;
      }
    }

    /* Increment written spare areas number */
    numSpareAreaWritten++;

    /* Decrement spare areas to write */
    NumSpareAreaTowrite--;

    /* Increment the NAND address */
    nandAddress = (uint32_t)(nandAddress + 1);
  }

  /* Update the NAND controller state */
  hnand->State = HAL_NAND_STATE_READY;

  /* Process unlocked */
  __HAL_UNLOCK(hnand);

  return HAL_OK;
}

/**
  * @brief  Write Spare area(s) to NAND memory (16-bits addressing)
  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
  *                the configuration information for NAND module.
  * @param  pAddress  pointer to NAND address structure
  * @param  pBuffer  pointer to source buffer to write. pBuffer should be 16bits aligned.
  * @param  NumSpareAreaTowrite   number of spare areas to write to block
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_NAND_Write_SpareArea_16b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint16_t *pBuffer, uint32_t NumSpareAreaTowrite)
{
  __IO uint32_t index = 0;
  uint32_t tickstart = 0;
  uint32_t deviceAddress = 0, size = 0, numSpareAreaWritten = 0, nandAddress = 0, columnAddress = 0;

  /* Process Locked */
  __HAL_LOCK(hnand);

  /* Check the NAND controller state */
  if (hnand->State == HAL_NAND_STATE_BUSY)
  {
    return HAL_BUSY;
  }

  /* Identify the device address */
  deviceAddress = NAND_DEVICE;

  /* Update the FMC_NAND controller state */
  hnand->State = HAL_NAND_STATE_BUSY;

  /* NAND raw address calculation */
  nandAddress = ARRAY_ADDRESS(pAddress, hnand);

  /* Column in page address */
  columnAddress = (uint32_t)(COLUMN_ADDRESS(hnand) * 2);

  /* Spare area(s) write loop */
  while ((NumSpareAreaTowrite != 0) && (nandAddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr))))
  {
    /* update the buffer size */
    size = (hnand->Config.SpareAreaSize) + ((hnand->Config.SpareAreaSize) * numSpareAreaWritten);

    /* Cards with page size <= 512 bytes */
    if ((hnand->Config.PageSize) <= 512)
    {
      /* Send write Spare area command sequence */
      *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_AREA_C;
      __DSB();
      *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_WRITE0;
      __DSB();

      if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535)
      {
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00;
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress);
        __DSB();
      }
      else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
      {
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00;
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandAddress);
        __DSB();
      }
    }
    else /* (hnand->Config.PageSize) > 512 */
    {
      /* Send write Spare area command sequence */
      *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_AREA_A;
      __DSB();
      *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_WRITE0;
      __DSB();

      if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535)
      {
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress);
        __DSB();
      }
      else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
      {
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress);
        __DSB();
        *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandAddress);
        __DSB();
      }
    }

    /* Write data to memory */
    for (; index < size; index++)
    {
      *(__IO uint16_t *)deviceAddress = *(uint16_t *)pBuffer++;
      __DSB();
    }

    *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1;
    __DSB();

    /* Get tick */
    tickstart = HAL_GetTick();

    /* Read status until NAND is ready */
    while (HAL_NAND_Read_Status(hnand) != NAND_READY)
    {
      if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT)
      {
        return HAL_TIMEOUT;
      }
    }

    /* Increment written spare areas number */
    numSpareAreaWritten++;

    /* Decrement spare areas to write */
    NumSpareAreaTowrite--;

    /* Increment the NAND address */
    nandAddress = (uint32_t)(nandAddress + 1);
  }

  /* Update the NAND controller state */
  hnand->State = HAL_NAND_STATE_READY;

  /* Process unlocked */
  __HAL_UNLOCK(hnand);

  return HAL_OK;
}

/**
  * @brief  NAND memory Block erase
  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
  *                the configuration information for NAND module.
  * @param  pAddress  pointer to NAND address structure
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_NAND_Erase_Block(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress)
{
  uint32_t DeviceAddress = 0;

  /* Process Locked */
  __HAL_LOCK(hnand);

  /* Check the NAND controller state */
  if(hnand->State == HAL_NAND_STATE_BUSY)
  {
     return HAL_BUSY;
  }

  /* Identify the device address */
  DeviceAddress = NAND_DEVICE;

  /* Update the NAND controller state */
  hnand->State = HAL_NAND_STATE_BUSY;

  /* Send Erase block command sequence */
  *(__IO uint8_t *)((uint32_t)(DeviceAddress | CMD_AREA)) = NAND_CMD_ERASE0;
  __DSB();
  *(__IO uint8_t *)((uint32_t)(DeviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(ARRAY_ADDRESS(pAddress, hnand));
  __DSB();
  *(__IO uint8_t *)((uint32_t)(DeviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(ARRAY_ADDRESS(pAddress, hnand));
  __DSB();
  *(__IO uint8_t *)((uint32_t)(DeviceAddress | ADDR_AREA)) = ADDR_3RD_CYCLE(ARRAY_ADDRESS(pAddress, hnand));
  __DSB();

  *(__IO uint8_t *)((uint32_t)(DeviceAddress | CMD_AREA)) = NAND_CMD_ERASE1;
  __DSB();

  /* Update the NAND controller state */
  hnand->State = HAL_NAND_STATE_READY;

  /* Process unlocked */
  __HAL_UNLOCK(hnand);

  return HAL_OK;
}

/**
  * @brief  Increment the NAND memory address
  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
  *                the configuration information for NAND module.
  * @param pAddress pointer to NAND address structure
  * @retval The new status of the increment address operation. It can be:
  *           - NAND_VALID_ADDRESS: When the new address is valid address
  *           - NAND_INVALID_ADDRESS: When the new address is invalid address
  */
uint32_t HAL_NAND_Address_Inc(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress)
{
  uint32_t status = NAND_VALID_ADDRESS;

  /* Increment page address */
  pAddress->Page++;

  /* Check NAND address is valid */
  if (pAddress->Page == hnand->Config.BlockSize)
  {
    pAddress->Page = 0;
    pAddress->Block++;

    if (pAddress->Block == hnand->Config.PlaneSize)
    {
      pAddress->Block = 0;
      pAddress->Plane++;

      if (pAddress->Plane == (hnand->Config.PlaneNbr))
      {
        status = NAND_INVALID_ADDRESS;
      }
    }
  }

  return (status);
}
/**
  * @}
  */

/** @defgroup NAND_Exported_Functions_Group3 Peripheral Control functions
 *  @brief   management functions
 *
@verbatim
  ==============================================================================
                         ##### NAND Control functions #####
  ==============================================================================
  [..]
    This subsection provides a set of functions allowing to control dynamically
    the NAND interface.

@endverbatim
  * @{
  */


/**
  * @brief  Enable dynamically NAND ECC feature.
  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
  *                the configuration information for NAND module.
  * @retval HAL status
  */
HAL_StatusTypeDef  HAL_NAND_ECC_Enable(NAND_HandleTypeDef *hnand)
{
  /* Check the NAND controller state */
  if(hnand->State == HAL_NAND_STATE_BUSY)
  {
     return HAL_BUSY;
  }

  /* Update the NAND state */
  hnand->State = HAL_NAND_STATE_BUSY;

  /* Enable ECC feature */
  FMC_NAND_ECC_Enable(hnand->Instance, hnand->Init.NandBank);

  /* Update the NAND state */
  hnand->State = HAL_NAND_STATE_READY;

  return HAL_OK;
}

/**
  * @brief  Disable dynamically NAND ECC feature
  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
  *                the configuration information for NAND module.
  * @retval HAL status
  */
HAL_StatusTypeDef  HAL_NAND_ECC_Disable(NAND_HandleTypeDef *hnand)
{
  /* Check the NAND controller state */
  if(hnand->State == HAL_NAND_STATE_BUSY)
  {
     return HAL_BUSY;
  }

  /* Update the NAND state */
  hnand->State = HAL_NAND_STATE_BUSY;

  /* Disable ECC feature */
  FMC_NAND_ECC_Disable(hnand->Instance, hnand->Init.NandBank);

  /* Update the NAND state */
  hnand->State = HAL_NAND_STATE_READY;

  return HAL_OK;
}

/**
  * @brief  Get NAND ECC value
  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
  *                the configuration information for NAND module.
  * @param  ECCval pointer to ECC value
  * @param  Timeout maximum timeout to wait
  * @retval HAL status
  */
HAL_StatusTypeDef  HAL_NAND_GetECC(NAND_HandleTypeDef *hnand, uint32_t *ECCval, uint32_t Timeout)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check the NAND controller state */
  if(hnand->State == HAL_NAND_STATE_BUSY)
  {
     return HAL_BUSY;
  }

  /* Update the NAND state */
  hnand->State = HAL_NAND_STATE_BUSY;

  /* Get NAND ECC value */
  status = FMC_NAND_GetECC(hnand->Instance, ECCval, hnand->Init.NandBank, Timeout);

  /* Update the NAND state */
  hnand->State = HAL_NAND_STATE_READY;

  return status;
}

/**
  * @}
  */


/** @defgroup NAND_Exported_Functions_Group4 Peripheral State functions
 *  @brief   Peripheral State functions
 *
@verbatim
  ==============================================================================
                         ##### NAND State functions #####
  ==============================================================================
  [..]
    This subsection permits to get in run-time the status of the NAND controller
    and the data flow.

@endverbatim
  * @{
  */

/**
  * @brief  Return the NAND state
  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
  *                the configuration information for NAND module.
  * @retval HAL state
  */
HAL_NAND_StateTypeDef HAL_NAND_GetState(NAND_HandleTypeDef *hnand)
{
  /* Return NAND handle state */
  return hnand->State;
}

/**
  * @brief  NAND memory read status
  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
  *                the configuration information for NAND module.
  * @retval NAND status
  */
uint32_t HAL_NAND_Read_Status(NAND_HandleTypeDef *hnand)
{
  uint32_t data = 0;
  uint32_t DeviceAddress = 0;

  /* Identify the device address */
  DeviceAddress = NAND_DEVICE;

  /* Send Read status operation command */
  *(__IO uint8_t *)((uint32_t)(DeviceAddress | CMD_AREA)) = NAND_CMD_STATUS;

  /* Read status register data */
  data = *(__IO uint8_t *)DeviceAddress;

  /* Return the status */
  if ((data & NAND_ERROR) == NAND_ERROR)
  {
    return NAND_ERROR;
  }
  else if ((data & NAND_READY) == NAND_READY)
  {
    return NAND_READY;
  }

  return NAND_BUSY;
}

/**
  * @}
  */

/**
  * @}
  */

/**
  * @}
  */

#endif /* HAL_NAND_MODULE_ENABLED  */

/**
  * @}
  */

#endif /* FMC_BANK3 */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/