Newer
Older
mbed-os / targets / TARGET_STM / TARGET_STM32L4 / device / stm32l4xx_hal_pwr_ex.c
/**
  ******************************************************************************
  * @file    stm32l4xx_hal_pwr_ex.c
  * @author  MCD Application Team
  * @brief   Extended PWR HAL module driver.
  *          This file provides firmware functions to manage the following
  *          functionalities of the Power Controller (PWR) peripheral:
  *           + Extended Initialization and de-initialization functions
  *           + Extended Peripheral Control functions
  *
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; Copyright (c) 2017 STMicroelectronics.
  * All rights reserved.</center></h2>
  *
  * This software component is licensed by ST under BSD 3-Clause license,
  * the "License"; You may not use this file except in compliance with the
  * License. You may obtain a copy of the License at:
  *                        opensource.org/licenses/BSD-3-Clause
  *
  ******************************************************************************
  */

/* Includes ------------------------------------------------------------------*/
#include "stm32l4xx_hal.h"

/** @addtogroup STM32L4xx_HAL_Driver
  * @{
  */

/** @defgroup PWREx PWREx
  * @brief PWR Extended HAL module driver
  * @{
  */

#ifdef HAL_PWR_MODULE_ENABLED

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/

#if defined (STM32L412xx) || defined (STM32L422xx) || defined (STM32L431xx) || defined (STM32L432xx) || defined (STM32L433xx) || defined (STM32L442xx) || defined (STM32L443xx)
#define PWR_PORTH_AVAILABLE_PINS   ((uint32_t)0x0000000B) /* PH0/PH1/PH3 */
#elif defined (STM32L451xx) || defined (STM32L452xx) || defined (STM32L462xx)
#define PWR_PORTH_AVAILABLE_PINS   ((uint32_t)0x0000000B) /* PH0/PH1/PH3 */
#elif defined (STM32L471xx) || defined (STM32L475xx) || defined (STM32L476xx) || defined (STM32L485xx) || defined (STM32L486xx)
#define PWR_PORTH_AVAILABLE_PINS   ((uint32_t)0x00000003) /* PH0/PH1 */
#elif defined (STM32L496xx) || defined (STM32L4A6xx) || defined (STM32L4R5xx) || defined (STM32L4R7xx) || defined (STM32L4R9xx) || defined (STM32L4S5xx) || defined (STM32L4S7xx) || defined (STM32L4S9xx)
#define PWR_PORTH_AVAILABLE_PINS   ((uint32_t)0x0000FFFF) /* PH0..PH15 */
#endif

#if defined (STM32L496xx) || defined (STM32L4A6xx) || defined (STM32L4R5xx) || defined (STM32L4R7xx) || defined (STM32L4R9xx) || defined (STM32L4S5xx) || defined (STM32L4S7xx) || defined (STM32L4S9xx)
#define PWR_PORTI_AVAILABLE_PINS   ((uint32_t)0x00000FFF) /* PI0..PI11 */
#endif

/** @defgroup PWR_Extended_Private_Defines PWR Extended Private Defines
  * @{
  */

/** @defgroup PWREx_PVM_Mode_Mask PWR PVM Mode Mask
  * @{
  */
#define PVM_MODE_IT               ((uint32_t)0x00010000)  /*!< Mask for interruption yielded by PVM threshold crossing */
#define PVM_MODE_EVT              ((uint32_t)0x00020000)  /*!< Mask for event yielded by PVM threshold crossing        */
#define PVM_RISING_EDGE           ((uint32_t)0x00000001)  /*!< Mask for rising edge set as PVM trigger                 */
#define PVM_FALLING_EDGE          ((uint32_t)0x00000002)  /*!< Mask for falling edge set as PVM trigger                */
/**
  * @}
  */

/** @defgroup PWREx_TimeOut_Value PWR Extended Flag Setting Time Out Value
  * @{
  */
#define PWR_FLAG_SETTING_DELAY_US                      50UL   /*!< Time out value for REGLPF and VOSF flags setting */
/**
  * @}
  */



/**
  * @}
  */



/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/

/** @defgroup PWREx_Exported_Functions PWR Extended Exported Functions
  * @{
  */

/** @defgroup PWREx_Exported_Functions_Group1 Extended Peripheral Control functions
  *  @brief   Extended Peripheral Control functions
  *
@verbatim
 ===============================================================================
              ##### Extended Peripheral Initialization and de-initialization functions #####
 ===============================================================================
    [..]

@endverbatim
  * @{
  */


/**
  * @brief Return Voltage Scaling Range.
  * @retval VOS bit field (PWR_REGULATOR_VOLTAGE_RANGE1 or PWR_REGULATOR_VOLTAGE_RANGE2
  *         or PWR_REGULATOR_VOLTAGE_SCALE1_BOOST when applicable)
  */
uint32_t HAL_PWREx_GetVoltageRange(void)
{
#if defined(PWR_CR5_R1MODE)
    if (READ_BIT(PWR->CR1, PWR_CR1_VOS) == PWR_REGULATOR_VOLTAGE_SCALE2)
    {
      return PWR_REGULATOR_VOLTAGE_SCALE2;
    }
    else if (READ_BIT(PWR->CR5, PWR_CR5_R1MODE) == PWR_CR5_R1MODE)
    {
      /* PWR_CR5_R1MODE bit set means that Range 1 Boost is disabled */
      return PWR_REGULATOR_VOLTAGE_SCALE1;
    }
    else
    {
      return PWR_REGULATOR_VOLTAGE_SCALE1_BOOST;
    }
#else
  return  (PWR->CR1 & PWR_CR1_VOS);
#endif
}



/**
  * @brief Configure the main internal regulator output voltage.
  * @param  VoltageScaling: specifies the regulator output voltage to achieve
  *         a tradeoff between performance and power consumption.
  *          This parameter can be one of the following values:
  @if STM32L4S9xx
  *            @arg @ref PWR_REGULATOR_VOLTAGE_SCALE1_BOOST when available, Regulator voltage output range 1 boost mode,
  *                                                typical output voltage at 1.2 V,
  *                                                system frequency up to 120 MHz.
  @endif
  *            @arg @ref PWR_REGULATOR_VOLTAGE_SCALE1 Regulator voltage output range 1 mode,
  *                                                typical output voltage at 1.2 V,
  *                                                system frequency up to 80 MHz.
  *            @arg @ref PWR_REGULATOR_VOLTAGE_SCALE2 Regulator voltage output range 2 mode,
  *                                                typical output voltage at 1.0 V,
  *                                                system frequency up to 26 MHz.
  * @note  When moving from Range 1 to Range 2, the system frequency must be decreased to
  *        a value below 26 MHz before calling HAL_PWREx_ControlVoltageScaling() API.
  *        When moving from Range 2 to Range 1, the system frequency can be increased to
  *        a value up to 80 MHz after calling HAL_PWREx_ControlVoltageScaling() API. For
  *        some devices, the system frequency can be increased up to 120 MHz.
  * @note  When moving from Range 2 to Range 1, the API waits for VOSF flag to be
  *        cleared before returning the status. If the flag is not cleared within
  *        50 microseconds, HAL_TIMEOUT status is reported.
  * @retval HAL Status
  */
HAL_StatusTypeDef HAL_PWREx_ControlVoltageScaling(uint32_t VoltageScaling)
{
  uint32_t wait_loop_index;

  assert_param(IS_PWR_VOLTAGE_SCALING_RANGE(VoltageScaling));

#if defined(PWR_CR5_R1MODE)
  if (VoltageScaling == PWR_REGULATOR_VOLTAGE_SCALE1_BOOST)
  {
    /* If current range is range 2 */
    if (READ_BIT(PWR->CR1, PWR_CR1_VOS) == PWR_REGULATOR_VOLTAGE_SCALE2)
    {
      /* Make sure Range 1 Boost is enabled */
      CLEAR_BIT(PWR->CR5, PWR_CR5_R1MODE);

      /* Set Range 1 */
      MODIFY_REG(PWR->CR1, PWR_CR1_VOS, PWR_REGULATOR_VOLTAGE_SCALE1);

      /* Wait until VOSF is cleared */
      wait_loop_index = ((PWR_FLAG_SETTING_DELAY_US * SystemCoreClock) / 1000000U) + 1;
      while ((HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_VOSF)) && (wait_loop_index != 0U))
      {
        wait_loop_index--;
      }
      if (HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_VOSF))
      {
        return HAL_TIMEOUT;
      }
    }
    /* If current range is range 1 normal or boost mode */
    else
    {
      /* Enable Range 1 Boost (no issue if bit already reset) */
      CLEAR_BIT(PWR->CR5, PWR_CR5_R1MODE);
    }
  }
  else if (VoltageScaling == PWR_REGULATOR_VOLTAGE_SCALE1)
  {
    /* If current range is range 2 */
    if (READ_BIT(PWR->CR1, PWR_CR1_VOS) == PWR_REGULATOR_VOLTAGE_SCALE2)
    {
      /* Make sure Range 1 Boost is disabled */
      SET_BIT(PWR->CR5, PWR_CR5_R1MODE);

      /* Set Range 1 */
      MODIFY_REG(PWR->CR1, PWR_CR1_VOS, PWR_REGULATOR_VOLTAGE_SCALE1);

      /* Wait until VOSF is cleared */
      wait_loop_index = ((PWR_FLAG_SETTING_DELAY_US * SystemCoreClock) / 1000000U) + 1;
      while ((HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_VOSF)) && (wait_loop_index != 0U))
      {
        wait_loop_index--;
      }
      if (HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_VOSF))
      {
        return HAL_TIMEOUT;
      }
    }
     /* If current range is range 1 normal or boost mode */
    else
    {
      /* Disable Range 1 Boost (no issue if bit already set) */
      SET_BIT(PWR->CR5, PWR_CR5_R1MODE);
    }
  }
  else
  {
    /* Set Range 2 */
    MODIFY_REG(PWR->CR1, PWR_CR1_VOS, PWR_REGULATOR_VOLTAGE_SCALE2);
    /* No need to wait for VOSF to be cleared for this transition */
    /* PWR_CR5_R1MODE bit setting has no effect in Range 2        */
  }

#else

  /* If Set Range 1 */
  if (VoltageScaling == PWR_REGULATOR_VOLTAGE_SCALE1)
  {
    if (READ_BIT(PWR->CR1, PWR_CR1_VOS) != PWR_REGULATOR_VOLTAGE_SCALE1)
    {
      /* Set Range 1 */
      MODIFY_REG(PWR->CR1, PWR_CR1_VOS, PWR_REGULATOR_VOLTAGE_SCALE1);

      /* Wait until VOSF is cleared */
      wait_loop_index = ((PWR_FLAG_SETTING_DELAY_US * SystemCoreClock) / 1000000U) + 1U;
      while ((HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_VOSF)) && (wait_loop_index != 0U))
      {
        wait_loop_index--;
      }
      if (HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_VOSF))
      {
        return HAL_TIMEOUT;
      }
    }
  }
  else
  {
    if (READ_BIT(PWR->CR1, PWR_CR1_VOS) != PWR_REGULATOR_VOLTAGE_SCALE2)
    {
      /* Set Range 2 */
      MODIFY_REG(PWR->CR1, PWR_CR1_VOS, PWR_REGULATOR_VOLTAGE_SCALE2);
      /* No need to wait for VOSF to be cleared for this transition */
    }
  }
#endif

  return HAL_OK;
}


/**
  * @brief Enable battery charging.
  *        When VDD is present, charge the external battery on VBAT thru an internal resistor.
  * @param  ResistorSelection: specifies the resistor impedance.
  *          This parameter can be one of the following values:
  *            @arg @ref PWR_BATTERY_CHARGING_RESISTOR_5     5 kOhms resistor
  *            @arg @ref PWR_BATTERY_CHARGING_RESISTOR_1_5 1.5 kOhms resistor
  * @retval None
  */
void HAL_PWREx_EnableBatteryCharging(uint32_t ResistorSelection)
{
  assert_param(IS_PWR_BATTERY_RESISTOR_SELECT(ResistorSelection));

  /* Specify resistor selection */
  MODIFY_REG(PWR->CR4, PWR_CR4_VBRS, ResistorSelection);

  /* Enable battery charging */
  SET_BIT(PWR->CR4, PWR_CR4_VBE);
}


/**
  * @brief Disable battery charging.
  * @retval None
  */
void HAL_PWREx_DisableBatteryCharging(void)
{
  CLEAR_BIT(PWR->CR4, PWR_CR4_VBE);
}


#if defined(PWR_CR2_USV)
/**
  * @brief Enable VDDUSB supply.
  * @note  Remove VDDUSB electrical and logical isolation, once VDDUSB supply is present.
  * @retval None
  */
void HAL_PWREx_EnableVddUSB(void)
{
  SET_BIT(PWR->CR2, PWR_CR2_USV);
}


/**
  * @brief Disable VDDUSB supply.
  * @retval None
  */
void HAL_PWREx_DisableVddUSB(void)
{
  CLEAR_BIT(PWR->CR2, PWR_CR2_USV);
}
#endif /* PWR_CR2_USV */

#if defined(PWR_CR2_IOSV)
/**
  * @brief Enable VDDIO2 supply.
  * @note  Remove VDDIO2 electrical and logical isolation, once VDDIO2 supply is present.
  * @retval None
  */
void HAL_PWREx_EnableVddIO2(void)
{
  SET_BIT(PWR->CR2, PWR_CR2_IOSV);
}


/**
  * @brief Disable VDDIO2 supply.
  * @retval None
  */
void HAL_PWREx_DisableVddIO2(void)
{
  CLEAR_BIT(PWR->CR2, PWR_CR2_IOSV);
}
#endif /* PWR_CR2_IOSV */


/**
  * @brief Enable Internal Wake-up Line.
  * @retval None
  */
void HAL_PWREx_EnableInternalWakeUpLine(void)
{
  SET_BIT(PWR->CR3, PWR_CR3_EIWF);
}


/**
  * @brief Disable Internal Wake-up Line.
  * @retval None
  */
void HAL_PWREx_DisableInternalWakeUpLine(void)
{
  CLEAR_BIT(PWR->CR3, PWR_CR3_EIWF);
}



/**
  * @brief Enable GPIO pull-up state in Standby and Shutdown modes.
  * @note  Set the relevant PUy bits of PWR_PUCRx register to configure the I/O in
  *        pull-up state in Standby and Shutdown modes.
  * @note  This state is effective in Standby and Shutdown modes only if APC bit
  *        is set through HAL_PWREx_EnablePullUpPullDownConfig() API.
  * @note  The configuration is lost when exiting the Shutdown mode due to the
  *        power-on reset, maintained when exiting the Standby mode.
  * @note  To avoid any conflict at Standby and Shutdown modes exits, the corresponding
  *        PDy bit of PWR_PDCRx register is cleared unless it is reserved.
  * @note  Even if a PUy bit to set is reserved, the other PUy bits entered as input
  *        parameter at the same time are set.
  * @param  GPIO: Specify the IO port. This parameter can be PWR_GPIO_A, ..., PWR_GPIO_H
  *         (or PWR_GPIO_I depending on the devices) to select the GPIO peripheral.
  * @param  GPIONumber: Specify the I/O pins numbers.
  *         This parameter can be one of the following values:
  *         PWR_GPIO_BIT_0, ..., PWR_GPIO_BIT_15 (except for the port where less
  *         I/O pins are available) or the logical OR of several of them to set
  *         several bits for a given port in a single API call.
  * @retval HAL Status
  */
HAL_StatusTypeDef HAL_PWREx_EnableGPIOPullUp(uint32_t GPIO, uint32_t GPIONumber)
{
  HAL_StatusTypeDef status = HAL_OK;

  assert_param(IS_PWR_GPIO(GPIO));
  assert_param(IS_PWR_GPIO_BIT_NUMBER(GPIONumber));

  switch (GPIO)
  {
    case PWR_GPIO_A:
       SET_BIT(PWR->PUCRA, (GPIONumber & (~(PWR_GPIO_BIT_14))));
       CLEAR_BIT(PWR->PDCRA, (GPIONumber & (~(PWR_GPIO_BIT_13|PWR_GPIO_BIT_15))));
       break;
    case PWR_GPIO_B:
       SET_BIT(PWR->PUCRB, GPIONumber);
       CLEAR_BIT(PWR->PDCRB, (GPIONumber & (~(PWR_GPIO_BIT_4))));
       break;
    case PWR_GPIO_C:
       SET_BIT(PWR->PUCRC, GPIONumber);
       CLEAR_BIT(PWR->PDCRC, GPIONumber);
       break;
#if defined(GPIOD)
    case PWR_GPIO_D:
       SET_BIT(PWR->PUCRD, GPIONumber);
       CLEAR_BIT(PWR->PDCRD, GPIONumber);
       break;
#endif
#if defined(GPIOE)
    case PWR_GPIO_E:
       SET_BIT(PWR->PUCRE, GPIONumber);
       CLEAR_BIT(PWR->PDCRE, GPIONumber);
       break;
#endif
#if defined(GPIOF)
    case PWR_GPIO_F:
       SET_BIT(PWR->PUCRF, GPIONumber);
       CLEAR_BIT(PWR->PDCRF, GPIONumber);
       break;
#endif
#if defined(GPIOG)
    case PWR_GPIO_G:
       SET_BIT(PWR->PUCRG, GPIONumber);
       CLEAR_BIT(PWR->PDCRG, GPIONumber);
       break;
#endif
    case PWR_GPIO_H:
       SET_BIT(PWR->PUCRH, (GPIONumber & PWR_PORTH_AVAILABLE_PINS));
#if defined (STM32L496xx) || defined (STM32L4A6xx)
       CLEAR_BIT(PWR->PDCRH, ((GPIONumber & PWR_PORTH_AVAILABLE_PINS) & (~(PWR_GPIO_BIT_3))));
#else
       CLEAR_BIT(PWR->PDCRH, (GPIONumber & PWR_PORTH_AVAILABLE_PINS));
#endif
       break;
#if defined(GPIOI)
    case PWR_GPIO_I:
       SET_BIT(PWR->PUCRI, (GPIONumber & PWR_PORTI_AVAILABLE_PINS));
       CLEAR_BIT(PWR->PDCRI, (GPIONumber & PWR_PORTI_AVAILABLE_PINS));
       break;
#endif
    default:
      status = HAL_ERROR;
      break;
  }

  return status;
}


/**
  * @brief Disable GPIO pull-up state in Standby mode and Shutdown modes.
  * @note  Reset the relevant PUy bits of PWR_PUCRx register used to configure the I/O
  *        in pull-up state in Standby and Shutdown modes.
  * @note  Even if a PUy bit to reset is reserved, the other PUy bits entered as input
  *        parameter at the same time are reset.
  * @param  GPIO: Specifies the IO port. This parameter can be PWR_GPIO_A, ..., PWR_GPIO_H
  *          (or PWR_GPIO_I depending on the devices) to select the GPIO peripheral.
  * @param  GPIONumber: Specify the I/O pins numbers.
  *         This parameter can be one of the following values:
  *         PWR_GPIO_BIT_0, ..., PWR_GPIO_BIT_15 (except for the port where less
  *         I/O pins are available) or the logical OR of several of them to reset
  *         several bits for a given port in a single API call.
  * @retval HAL Status
  */
HAL_StatusTypeDef HAL_PWREx_DisableGPIOPullUp(uint32_t GPIO, uint32_t GPIONumber)
{
  HAL_StatusTypeDef status = HAL_OK;

  assert_param(IS_PWR_GPIO(GPIO));
  assert_param(IS_PWR_GPIO_BIT_NUMBER(GPIONumber));

  switch (GPIO)
  {
    case PWR_GPIO_A:
       CLEAR_BIT(PWR->PUCRA, (GPIONumber & (~(PWR_GPIO_BIT_14))));
       break;
    case PWR_GPIO_B:
       CLEAR_BIT(PWR->PUCRB, GPIONumber);
       break;
    case PWR_GPIO_C:
       CLEAR_BIT(PWR->PUCRC, GPIONumber);
       break;
#if defined(GPIOD)
    case PWR_GPIO_D:
       CLEAR_BIT(PWR->PUCRD, GPIONumber);
       break;
#endif
#if defined(GPIOE)
    case PWR_GPIO_E:
       CLEAR_BIT(PWR->PUCRE, GPIONumber);
       break;
#endif
#if defined(GPIOF)
    case PWR_GPIO_F:
       CLEAR_BIT(PWR->PUCRF, GPIONumber);
       break;
#endif
#if defined(GPIOG)
    case PWR_GPIO_G:
       CLEAR_BIT(PWR->PUCRG, GPIONumber);
       break;
#endif
    case PWR_GPIO_H:
       CLEAR_BIT(PWR->PUCRH, (GPIONumber & PWR_PORTH_AVAILABLE_PINS));
       break;
#if defined(GPIOI)
    case PWR_GPIO_I:
       CLEAR_BIT(PWR->PUCRI, (GPIONumber & PWR_PORTI_AVAILABLE_PINS));
       break;
#endif
    default:
       status = HAL_ERROR;
       break;
  }

  return status;
}



/**
  * @brief Enable GPIO pull-down state in Standby and Shutdown modes.
  * @note  Set the relevant PDy bits of PWR_PDCRx register to configure the I/O in
  *        pull-down state in Standby and Shutdown modes.
  * @note  This state is effective in Standby and Shutdown modes only if APC bit
  *        is set through HAL_PWREx_EnablePullUpPullDownConfig() API.
  * @note  The configuration is lost when exiting the Shutdown mode due to the
  *        power-on reset, maintained when exiting the Standby mode.
  * @note  To avoid any conflict at Standby and Shutdown modes exits, the corresponding
  *        PUy bit of PWR_PUCRx register is cleared unless it is reserved.
  * @note  Even if a PDy bit to set is reserved, the other PDy bits entered as input
  *        parameter at the same time are set.
  * @param  GPIO: Specify the IO port. This parameter can be PWR_GPIO_A..PWR_GPIO_H
  *         (or PWR_GPIO_I depending on the devices) to select the GPIO peripheral.
  * @param  GPIONumber: Specify the I/O pins numbers.
  *         This parameter can be one of the following values:
  *         PWR_GPIO_BIT_0, ..., PWR_GPIO_BIT_15 (except for the port where less
  *         I/O pins are available) or the logical OR of several of them to set
  *         several bits for a given port in a single API call.
  * @retval HAL Status
  */
HAL_StatusTypeDef HAL_PWREx_EnableGPIOPullDown(uint32_t GPIO, uint32_t GPIONumber)
{
  HAL_StatusTypeDef status = HAL_OK;

  assert_param(IS_PWR_GPIO(GPIO));
  assert_param(IS_PWR_GPIO_BIT_NUMBER(GPIONumber));

  switch (GPIO)
  {
    case PWR_GPIO_A:
       SET_BIT(PWR->PDCRA, (GPIONumber & (~(PWR_GPIO_BIT_13|PWR_GPIO_BIT_15))));
       CLEAR_BIT(PWR->PUCRA, (GPIONumber & (~(PWR_GPIO_BIT_14))));
       break;
    case PWR_GPIO_B:
       SET_BIT(PWR->PDCRB, (GPIONumber & (~(PWR_GPIO_BIT_4))));
       CLEAR_BIT(PWR->PUCRB, GPIONumber);
       break;
    case PWR_GPIO_C:
       SET_BIT(PWR->PDCRC, GPIONumber);
       CLEAR_BIT(PWR->PUCRC, GPIONumber);
       break;
#if defined(GPIOD)
    case PWR_GPIO_D:
       SET_BIT(PWR->PDCRD, GPIONumber);
       CLEAR_BIT(PWR->PUCRD, GPIONumber);
       break;
#endif
#if defined(GPIOE)
    case PWR_GPIO_E:
       SET_BIT(PWR->PDCRE, GPIONumber);
       CLEAR_BIT(PWR->PUCRE, GPIONumber);
       break;
#endif
#if defined(GPIOF)
    case PWR_GPIO_F:
       SET_BIT(PWR->PDCRF, GPIONumber);
       CLEAR_BIT(PWR->PUCRF, GPIONumber);
       break;
#endif
#if defined(GPIOG)
    case PWR_GPIO_G:
       SET_BIT(PWR->PDCRG, GPIONumber);
       CLEAR_BIT(PWR->PUCRG, GPIONumber);
       break;
#endif
    case PWR_GPIO_H:
#if defined (STM32L496xx) || defined (STM32L4A6xx)
       SET_BIT(PWR->PDCRH, ((GPIONumber & PWR_PORTH_AVAILABLE_PINS) & (~(PWR_GPIO_BIT_3))));
#else
       SET_BIT(PWR->PDCRH, (GPIONumber & PWR_PORTH_AVAILABLE_PINS));
#endif
       CLEAR_BIT(PWR->PUCRH, (GPIONumber & PWR_PORTH_AVAILABLE_PINS));
       break;
#if defined(GPIOI)
    case PWR_GPIO_I:
       SET_BIT(PWR->PDCRI, (GPIONumber & PWR_PORTI_AVAILABLE_PINS));
       CLEAR_BIT(PWR->PUCRI, (GPIONumber & PWR_PORTI_AVAILABLE_PINS));
       break;
#endif
    default:
      status = HAL_ERROR;
      break;
  }

  return status;
}


/**
  * @brief Disable GPIO pull-down state in Standby and Shutdown modes.
  * @note  Reset the relevant PDy bits of PWR_PDCRx register used to configure the I/O
  *        in pull-down state in Standby and Shutdown modes.
  * @note  Even if a PDy bit to reset is reserved, the other PDy bits entered as input
  *        parameter at the same time are reset.
  * @param  GPIO: Specifies the IO port. This parameter can be PWR_GPIO_A..PWR_GPIO_H
  *         (or PWR_GPIO_I depending on the devices) to select the GPIO peripheral.
  * @param  GPIONumber: Specify the I/O pins numbers.
  *         This parameter can be one of the following values:
  *         PWR_GPIO_BIT_0, ..., PWR_GPIO_BIT_15 (except for the port where less
  *         I/O pins are available) or the logical OR of several of them to reset
  *         several bits for a given port in a single API call.
  * @retval HAL Status
  */
HAL_StatusTypeDef HAL_PWREx_DisableGPIOPullDown(uint32_t GPIO, uint32_t GPIONumber)
{
  HAL_StatusTypeDef status = HAL_OK;

  assert_param(IS_PWR_GPIO(GPIO));
  assert_param(IS_PWR_GPIO_BIT_NUMBER(GPIONumber));

  switch (GPIO)
  {
    case PWR_GPIO_A:
       CLEAR_BIT(PWR->PDCRA, (GPIONumber & (~(PWR_GPIO_BIT_13|PWR_GPIO_BIT_15))));
       break;
    case PWR_GPIO_B:
       CLEAR_BIT(PWR->PDCRB, (GPIONumber & (~(PWR_GPIO_BIT_4))));
       break;
    case PWR_GPIO_C:
       CLEAR_BIT(PWR->PDCRC, GPIONumber);
       break;
#if defined(GPIOD)
    case PWR_GPIO_D:
       CLEAR_BIT(PWR->PDCRD, GPIONumber);
       break;
#endif
#if defined(GPIOE)
    case PWR_GPIO_E:
       CLEAR_BIT(PWR->PDCRE, GPIONumber);
       break;
#endif
#if defined(GPIOF)
    case PWR_GPIO_F:
       CLEAR_BIT(PWR->PDCRF, GPIONumber);
       break;
#endif
#if defined(GPIOG)
    case PWR_GPIO_G:
       CLEAR_BIT(PWR->PDCRG, GPIONumber);
       break;
#endif
    case PWR_GPIO_H:
#if defined (STM32L496xx) || defined (STM32L4A6xx)
       CLEAR_BIT(PWR->PDCRH, ((GPIONumber & PWR_PORTH_AVAILABLE_PINS) & (~(PWR_GPIO_BIT_3))));
#else
       CLEAR_BIT(PWR->PDCRH, (GPIONumber & PWR_PORTH_AVAILABLE_PINS));
#endif
       break;
#if defined(GPIOI)
    case PWR_GPIO_I:
       CLEAR_BIT(PWR->PDCRI, (GPIONumber & PWR_PORTI_AVAILABLE_PINS));
       break;
#endif
    default:
      status = HAL_ERROR;
      break;
  }

  return status;
}



/**
  * @brief Enable pull-up and pull-down configuration.
  * @note  When APC bit is set, the I/O pull-up and pull-down configurations defined in
  *        PWR_PUCRx and PWR_PDCRx registers are applied in Standby and Shutdown modes.
  * @note  Pull-up set by PUy bit of PWR_PUCRx register is not activated if the corresponding
  *        PDy bit of PWR_PDCRx register is also set (pull-down configuration priority is higher).
  *        HAL_PWREx_EnableGPIOPullUp() and HAL_PWREx_EnableGPIOPullDown() API's ensure there
  *        is no conflict when setting PUy or PDy bit.
  * @retval None
  */
void HAL_PWREx_EnablePullUpPullDownConfig(void)
{
  SET_BIT(PWR->CR3, PWR_CR3_APC);
}


/**
  * @brief Disable pull-up and pull-down configuration.
  * @note  When APC bit is cleared, the I/O pull-up and pull-down configurations defined in
  *        PWR_PUCRx and PWR_PDCRx registers are not applied in Standby and Shutdown modes.
  * @retval None
  */
void HAL_PWREx_DisablePullUpPullDownConfig(void)
{
  CLEAR_BIT(PWR->CR3, PWR_CR3_APC);
}



/**
  * @brief Enable SRAM2 content retention in Standby mode.
  * @note  When RRS bit is set, SRAM2 is powered by the low-power regulator in
  *         Standby mode and its content is kept.
  * @retval None
  */
void HAL_PWREx_EnableSRAM2ContentRetention(void)
{
  SET_BIT(PWR->CR3, PWR_CR3_RRS);
}


/**
  * @brief Disable SRAM2 content retention in Standby mode.
  * @note  When RRS bit is reset, SRAM2 is powered off in Standby mode
  *        and its content is lost.
  * @retval None
  */
void HAL_PWREx_DisableSRAM2ContentRetention(void)
{
  CLEAR_BIT(PWR->CR3, PWR_CR3_RRS);
}


#if defined(PWR_CR3_ENULP)
/**
  * @brief Enable Ultra Low Power BORL, BORH and PVD for STOP2 and Standby modes.
  * @note  All the other modes are not affected by this bit.
  * @retval None
  */
void HAL_PWREx_EnableBORPVD_ULP(void)
{
  SET_BIT(PWR->CR3, PWR_CR3_ENULP);
}


/**
  * @brief Disable Ultra Low Power BORL, BORH and PVD for STOP2 and Standby modes.
  * @note  All the other modes are not affected by this bit
  * @retval None
  */
void HAL_PWREx_DisableBORPVD_ULP(void)
{
  CLEAR_BIT(PWR->CR3, PWR_CR3_ENULP);
}
#endif /* PWR_CR3_ENULP */


#if defined(PWR_CR4_EXT_SMPS_ON)
/**
  * @brief Enable the CFLDO working @ 0.95V.
  * @note  When external SMPS is used & CFLDO operating in Range 2, the regulated voltage of the
  *        internal CFLDO can be reduced to 0.95V.
  * @retval None
  */
void HAL_PWREx_EnableExtSMPS_0V95(void)
{
  SET_BIT(PWR->CR4, PWR_CR4_EXT_SMPS_ON);
}

/**
  * @brief Disable the CFLDO working @ 0.95V
  * @note  Before SMPS is switched off, the regulated voltage of the
  *        internal CFLDO shall be set to 1.00V.
  *        1.00V. is also default operating Range 2 voltage.
  * @retval None
  */
void HAL_PWREx_DisableExtSMPS_0V95(void)
{
  CLEAR_BIT(PWR->CR4, PWR_CR4_EXT_SMPS_ON);
}
#endif /* PWR_CR4_EXT_SMPS_ON */


#if defined(PWR_CR1_RRSTP)
/**
  * @brief Enable SRAM3 content retention in Stop 2 mode.
  * @note  When RRSTP bit is set, SRAM3 is powered by the low-power regulator in
  *        Stop 2 mode and its content is kept.
  * @retval None
  */
void HAL_PWREx_EnableSRAM3ContentRetention(void)
{
  SET_BIT(PWR->CR1, PWR_CR1_RRSTP);
}


/**
  * @brief Disable SRAM3 content retention in Stop 2 mode.
  * @note  When RRSTP bit is reset, SRAM3 is powered off in Stop 2 mode
  *        and its content is lost.
  * @retval None
  */
void HAL_PWREx_DisableSRAM3ContentRetention(void)
{
  CLEAR_BIT(PWR->CR1, PWR_CR1_RRSTP);
}
#endif /* PWR_CR1_RRSTP */

#if defined(PWR_CR3_DSIPDEN)
/**
  * @brief Enable pull-down activation on DSI pins.
  * @retval None
  */
void HAL_PWREx_EnableDSIPinsPDActivation(void)
{
  SET_BIT(PWR->CR3, PWR_CR3_DSIPDEN);
}


/**
  * @brief Disable pull-down activation on DSI pins.
  * @retval None
  */
void HAL_PWREx_DisableDSIPinsPDActivation(void)
{
  CLEAR_BIT(PWR->CR3, PWR_CR3_DSIPDEN);
}
#endif /* PWR_CR3_DSIPDEN */

#if defined(PWR_CR2_PVME1)
/**
  * @brief Enable the Power Voltage Monitoring 1: VDDUSB versus 1.2V.
  * @retval None
  */
void HAL_PWREx_EnablePVM1(void)
{
  SET_BIT(PWR->CR2, PWR_PVM_1);
}

/**
  * @brief Disable the Power Voltage Monitoring 1: VDDUSB versus 1.2V.
  * @retval None
  */
void HAL_PWREx_DisablePVM1(void)
{
  CLEAR_BIT(PWR->CR2, PWR_PVM_1);
}
#endif /* PWR_CR2_PVME1 */


#if defined(PWR_CR2_PVME2)
/**
  * @brief Enable the Power Voltage Monitoring 2: VDDIO2 versus 0.9V.
  * @retval None
  */
void HAL_PWREx_EnablePVM2(void)
{
  SET_BIT(PWR->CR2, PWR_PVM_2);
}

/**
  * @brief Disable the Power Voltage Monitoring 2: VDDIO2 versus 0.9V.
  * @retval None
  */
void HAL_PWREx_DisablePVM2(void)
{
  CLEAR_BIT(PWR->CR2, PWR_PVM_2);
}
#endif /* PWR_CR2_PVME2 */


/**
  * @brief Enable the Power Voltage Monitoring 3: VDDA versus 1.62V.
  * @retval None
  */
void HAL_PWREx_EnablePVM3(void)
{
  SET_BIT(PWR->CR2, PWR_PVM_3);
}

/**
  * @brief Disable the Power Voltage Monitoring 3: VDDA versus 1.62V.
  * @retval None
  */
void HAL_PWREx_DisablePVM3(void)
{
  CLEAR_BIT(PWR->CR2, PWR_PVM_3);
}


/**
  * @brief Enable the Power Voltage Monitoring 4:  VDDA versus 2.2V.
  * @retval None
  */
void HAL_PWREx_EnablePVM4(void)
{
  SET_BIT(PWR->CR2, PWR_PVM_4);
}

/**
  * @brief Disable the Power Voltage Monitoring 4:  VDDA versus 2.2V.
  * @retval None
  */
void HAL_PWREx_DisablePVM4(void)
{
  CLEAR_BIT(PWR->CR2, PWR_PVM_4);
}




/**
  * @brief Configure the Peripheral Voltage Monitoring (PVM).
  * @param sConfigPVM: pointer to a PWR_PVMTypeDef structure that contains the
  *        PVM configuration information.
  * @note The API configures a single PVM according to the information contained
  *       in the input structure. To configure several PVMs, the API must be singly
  *       called for each PVM used.
  * @note Refer to the electrical characteristics of your device datasheet for
  *         more details about the voltage thresholds corresponding to each
  *         detection level and to each monitored supply.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_PWREx_ConfigPVM(PWR_PVMTypeDef *sConfigPVM)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check the parameters */
  assert_param(IS_PWR_PVM_TYPE(sConfigPVM->PVMType));
  assert_param(IS_PWR_PVM_MODE(sConfigPVM->Mode));


  /* Configure EXTI 35 to 38 interrupts if so required:
     scan thru PVMType to detect which PVMx is set and
     configure the corresponding EXTI line accordingly. */
  switch (sConfigPVM->PVMType)
  {
#if defined(PWR_CR2_PVME1)
    case PWR_PVM_1:
      /* Clear any previous config. Keep it clear if no event or IT mode is selected */
      __HAL_PWR_PVM1_EXTI_DISABLE_EVENT();
      __HAL_PWR_PVM1_EXTI_DISABLE_IT();
      __HAL_PWR_PVM1_EXTI_DISABLE_FALLING_EDGE();
      __HAL_PWR_PVM1_EXTI_DISABLE_RISING_EDGE();

      /* Configure interrupt mode */
      if((sConfigPVM->Mode & PVM_MODE_IT) == PVM_MODE_IT)
      {
        __HAL_PWR_PVM1_EXTI_ENABLE_IT();
      }

      /* Configure event mode */
      if((sConfigPVM->Mode & PVM_MODE_EVT) == PVM_MODE_EVT)
      {
        __HAL_PWR_PVM1_EXTI_ENABLE_EVENT();
      }

      /* Configure the edge */
      if((sConfigPVM->Mode & PVM_RISING_EDGE) == PVM_RISING_EDGE)
      {
        __HAL_PWR_PVM1_EXTI_ENABLE_RISING_EDGE();
      }

      if((sConfigPVM->Mode & PVM_FALLING_EDGE) == PVM_FALLING_EDGE)
      {
        __HAL_PWR_PVM1_EXTI_ENABLE_FALLING_EDGE();
      }
      break;
#endif /* PWR_CR2_PVME1 */

#if defined(PWR_CR2_PVME2)
    case PWR_PVM_2:
      /* Clear any previous config. Keep it clear if no event or IT mode is selected */
      __HAL_PWR_PVM2_EXTI_DISABLE_EVENT();
      __HAL_PWR_PVM2_EXTI_DISABLE_IT();
      __HAL_PWR_PVM2_EXTI_DISABLE_FALLING_EDGE();
      __HAL_PWR_PVM2_EXTI_DISABLE_RISING_EDGE();

      /* Configure interrupt mode */
      if((sConfigPVM->Mode & PVM_MODE_IT) == PVM_MODE_IT)
      {
        __HAL_PWR_PVM2_EXTI_ENABLE_IT();
      }

      /* Configure event mode */
      if((sConfigPVM->Mode & PVM_MODE_EVT) == PVM_MODE_EVT)
      {
        __HAL_PWR_PVM2_EXTI_ENABLE_EVENT();
      }

      /* Configure the edge */
      if((sConfigPVM->Mode & PVM_RISING_EDGE) == PVM_RISING_EDGE)
      {
        __HAL_PWR_PVM2_EXTI_ENABLE_RISING_EDGE();
      }

      if((sConfigPVM->Mode & PVM_FALLING_EDGE) == PVM_FALLING_EDGE)
      {
        __HAL_PWR_PVM2_EXTI_ENABLE_FALLING_EDGE();
      }
      break;
#endif /* PWR_CR2_PVME2 */

    case PWR_PVM_3:
      /* Clear any previous config. Keep it clear if no event or IT mode is selected */
      __HAL_PWR_PVM3_EXTI_DISABLE_EVENT();
      __HAL_PWR_PVM3_EXTI_DISABLE_IT();
      __HAL_PWR_PVM3_EXTI_DISABLE_FALLING_EDGE();
      __HAL_PWR_PVM3_EXTI_DISABLE_RISING_EDGE();

      /* Configure interrupt mode */
      if((sConfigPVM->Mode & PVM_MODE_IT) == PVM_MODE_IT)
      {
        __HAL_PWR_PVM3_EXTI_ENABLE_IT();
      }

      /* Configure event mode */
      if((sConfigPVM->Mode & PVM_MODE_EVT) == PVM_MODE_EVT)
      {
        __HAL_PWR_PVM3_EXTI_ENABLE_EVENT();
      }

      /* Configure the edge */
      if((sConfigPVM->Mode & PVM_RISING_EDGE) == PVM_RISING_EDGE)
      {
        __HAL_PWR_PVM3_EXTI_ENABLE_RISING_EDGE();
      }

      if((sConfigPVM->Mode & PVM_FALLING_EDGE) == PVM_FALLING_EDGE)
      {
        __HAL_PWR_PVM3_EXTI_ENABLE_FALLING_EDGE();
      }
      break;

    case PWR_PVM_4:
      /* Clear any previous config. Keep it clear if no event or IT mode is selected */
      __HAL_PWR_PVM4_EXTI_DISABLE_EVENT();
      __HAL_PWR_PVM4_EXTI_DISABLE_IT();
      __HAL_PWR_PVM4_EXTI_DISABLE_FALLING_EDGE();
      __HAL_PWR_PVM4_EXTI_DISABLE_RISING_EDGE();

      /* Configure interrupt mode */
      if((sConfigPVM->Mode & PVM_MODE_IT) == PVM_MODE_IT)
      {
        __HAL_PWR_PVM4_EXTI_ENABLE_IT();
      }

      /* Configure event mode */
      if((sConfigPVM->Mode & PVM_MODE_EVT) == PVM_MODE_EVT)
      {
        __HAL_PWR_PVM4_EXTI_ENABLE_EVENT();
      }

      /* Configure the edge */
      if((sConfigPVM->Mode & PVM_RISING_EDGE) == PVM_RISING_EDGE)
      {
        __HAL_PWR_PVM4_EXTI_ENABLE_RISING_EDGE();
      }

      if((sConfigPVM->Mode & PVM_FALLING_EDGE) == PVM_FALLING_EDGE)
      {
        __HAL_PWR_PVM4_EXTI_ENABLE_FALLING_EDGE();
      }
      break;

    default:
      status = HAL_ERROR;
      break;
  }

  return status;
}



/**
  * @brief Enter Low-power Run mode
  * @note  In Low-power Run mode, all I/O pins keep the same state as in Run mode.
  * @note  When Regulator is set to PWR_LOWPOWERREGULATOR_ON, the user can optionally configure the
  *        Flash in power-down monde in setting the RUN_PD bit in FLASH_ACR register.
  *        Additionally, the clock frequency must be reduced below 2 MHz.
  *        Setting RUN_PD in FLASH_ACR then appropriately reducing the clock frequency must
  *        be done before calling HAL_PWREx_EnableLowPowerRunMode() API.
  * @retval None
  */
void HAL_PWREx_EnableLowPowerRunMode(void)
{
  /* Set Regulator parameter */
  SET_BIT(PWR->CR1, PWR_CR1_LPR);
}


/**
  * @brief Exit Low-power Run mode.
  * @note  Before HAL_PWREx_DisableLowPowerRunMode() completion, the function checks that
  *        REGLPF has been properly reset (otherwise, HAL_PWREx_DisableLowPowerRunMode
  *        returns HAL_TIMEOUT status). The system clock frequency can then be
  *        increased above 2 MHz.
  * @retval HAL Status
  */
HAL_StatusTypeDef HAL_PWREx_DisableLowPowerRunMode(void)
{
  uint32_t wait_loop_index;

  /* Clear LPR bit */
  CLEAR_BIT(PWR->CR1, PWR_CR1_LPR);

  /* Wait until REGLPF is reset */
  wait_loop_index = ((PWR_FLAG_SETTING_DELAY_US * SystemCoreClock) / 1000000U) + 1U;
  while ((HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_REGLPF)) && (wait_loop_index != 0U))
  {
    wait_loop_index--;
  }
  if (HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_REGLPF))
  {
    return HAL_TIMEOUT;
  }

  return HAL_OK;
}


/**
  * @brief Enter Stop 0 mode.
  * @note  In Stop 0 mode, main and low voltage regulators are ON.
  * @note  In Stop 0 mode, all I/O pins keep the same state as in Run mode.
  * @note  All clocks in the VCORE domain are stopped; the PLL, the MSI,
  *        the HSI and the HSE oscillators are disabled. Some peripherals with the wakeup capability
  *        (I2Cx, USARTx and LPUART) can switch on the HSI to receive a frame, and switch off the HSI
  *        after receiving the frame if it is not a wakeup frame. In this case, the HSI clock is propagated
  *        only to the peripheral requesting it.
  *        SRAM1, SRAM2 and register contents are preserved.
  *        The BOR is available.
  * @note  When exiting Stop 0 mode by issuing an interrupt or a wakeup event,
  *         the HSI RC oscillator is selected as system clock if STOPWUCK bit in RCC_CFGR register
  *         is set; the MSI oscillator is selected if STOPWUCK is cleared.
  * @note  By keeping the internal regulator ON during Stop 0 mode, the consumption
  *         is higher although the startup time is reduced.
  * @param STOPEntry  specifies if Stop mode in entered with WFI or WFE instruction.
  *          This parameter can be one of the following values:
  *            @arg @ref PWR_STOPENTRY_WFI  Enter Stop mode with WFI instruction
  *            @arg @ref PWR_STOPENTRY_WFE  Enter Stop mode with WFE instruction
  * @retval None
  */
void HAL_PWREx_EnterSTOP0Mode(uint8_t STOPEntry)
{
  /* Check the parameters */
  assert_param(IS_PWR_STOP_ENTRY(STOPEntry));

  /* Stop 0 mode with Main Regulator */
  MODIFY_REG(PWR->CR1, PWR_CR1_LPMS, PWR_CR1_LPMS_STOP0);

  /* Set SLEEPDEEP bit of Cortex System Control Register */
  SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));

  /* Select Stop mode entry --------------------------------------------------*/
  if(STOPEntry == PWR_STOPENTRY_WFI)
  {
    /* Request Wait For Interrupt */
    __WFI();
  }
  else
  {
    /* Request Wait For Event */
    __SEV();
    __WFE();
    __WFE();
  }

  /* Reset SLEEPDEEP bit of Cortex System Control Register */
  CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
}


/**
  * @brief Enter Stop 1 mode.
  * @note  In Stop 1 mode, only low power voltage regulator is ON.
  * @note  In Stop 1 mode, all I/O pins keep the same state as in Run mode.
  * @note  All clocks in the VCORE domain are stopped; the PLL, the MSI,
  *        the HSI and the HSE oscillators are disabled. Some peripherals with the wakeup capability
  *        (I2Cx, USARTx and LPUART) can switch on the HSI to receive a frame, and switch off the HSI
  *        after receiving the frame if it is not a wakeup frame. In this case, the HSI clock is propagated
  *        only to the peripheral requesting it.
  *        SRAM1, SRAM2 and register contents are preserved.
  *        The BOR is available.
  * @note  When exiting Stop 1 mode by issuing an interrupt or a wakeup event,
  *         the HSI RC oscillator is selected as system clock if STOPWUCK bit in RCC_CFGR register
  *         is set; the MSI oscillator is selected if STOPWUCK is cleared.
  * @note  Due to low power mode, an additional startup delay is incurred when waking up from Stop 1 mode.
  * @param STOPEntry  specifies if Stop mode in entered with WFI or WFE instruction.
  *          This parameter can be one of the following values:
  *            @arg @ref PWR_STOPENTRY_WFI  Enter Stop mode with WFI instruction
  *            @arg @ref PWR_STOPENTRY_WFE  Enter Stop mode with WFE instruction
  * @retval None
  */
void HAL_PWREx_EnterSTOP1Mode(uint8_t STOPEntry)
{
  /* Check the parameters */
  assert_param(IS_PWR_STOP_ENTRY(STOPEntry));

  /* Stop 1 mode with Low-Power Regulator */
  MODIFY_REG(PWR->CR1, PWR_CR1_LPMS, PWR_CR1_LPMS_STOP1);

  /* Set SLEEPDEEP bit of Cortex System Control Register */
  SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));

  /* Select Stop mode entry --------------------------------------------------*/
  if(STOPEntry == PWR_STOPENTRY_WFI)
  {
    /* Request Wait For Interrupt */
    __WFI();
  }
  else
  {
    /* Request Wait For Event */
    __SEV();
    __WFE();
    __WFE();
  }

  /* Reset SLEEPDEEP bit of Cortex System Control Register */
  CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
}


/**
  * @brief Enter Stop 2 mode.
  * @note  In Stop 2 mode, only low power voltage regulator is ON.
  * @note  In Stop 2 mode, all I/O pins keep the same state as in Run mode.
  * @note  All clocks in the VCORE domain are stopped, the PLL, the MSI,
  *        the HSI and the HSE oscillators are disabled. Some peripherals with wakeup capability
  *        (LCD, LPTIM1, I2C3 and LPUART) can switch on the HSI to receive a frame, and switch off the HSI after
  *        receiving the frame if it is not a wakeup frame. In this case the HSI clock is propagated only
  *        to the peripheral requesting it.
  *        SRAM1, SRAM2 and register contents are preserved.
  *        The BOR is available.
  *        The voltage regulator is set in low-power mode but LPR bit must be cleared to enter stop 2 mode.
  *        Otherwise, Stop 1 mode is entered.
  * @note  When exiting Stop 2 mode by issuing an interrupt or a wakeup event,
  *         the HSI RC oscillator is selected as system clock if STOPWUCK bit in RCC_CFGR register
  *         is set; the MSI oscillator is selected if STOPWUCK is cleared.
  * @param STOPEntry  specifies if Stop mode in entered with WFI or WFE instruction.
  *          This parameter can be one of the following values:
  *            @arg @ref PWR_STOPENTRY_WFI  Enter Stop mode with WFI instruction
  *            @arg @ref PWR_STOPENTRY_WFE  Enter Stop mode with WFE instruction
  * @retval None
  */
void HAL_PWREx_EnterSTOP2Mode(uint8_t STOPEntry)
{
  /* Check the parameter */
  assert_param(IS_PWR_STOP_ENTRY(STOPEntry));

  /* Set Stop mode 2 */
  MODIFY_REG(PWR->CR1, PWR_CR1_LPMS, PWR_CR1_LPMS_STOP2);

  /* Set SLEEPDEEP bit of Cortex System Control Register */
  SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));

  /* Select Stop mode entry --------------------------------------------------*/
  if(STOPEntry == PWR_STOPENTRY_WFI)
  {
    /* Request Wait For Interrupt */
    __WFI();
  }
  else
  {
    /* Request Wait For Event */
    __SEV();
    __WFE();
    __WFE();
  }

  /* Reset SLEEPDEEP bit of Cortex System Control Register */
  CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
}





/**
  * @brief Enter Shutdown mode.
  * @note  In Shutdown mode, the PLL, the HSI, the MSI, the LSI and the HSE oscillators are switched
  *        off. The voltage regulator is disabled and Vcore domain is powered off.
  *        SRAM1, SRAM2 and registers contents are lost except for registers in the Backup domain.
  *        The BOR is not available.
  * @note  The I/Os can be configured either with a pull-up or pull-down or can be kept in analog state.
  * @retval None
  */
void HAL_PWREx_EnterSHUTDOWNMode(void)
{

  /* Set Shutdown mode */
  MODIFY_REG(PWR->CR1, PWR_CR1_LPMS, PWR_CR1_LPMS_SHUTDOWN);

  /* Set SLEEPDEEP bit of Cortex System Control Register */
  SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));

/* This option is used to ensure that store operations are completed */
#if defined ( __CC_ARM)
  __force_stores();
#endif
  /* Request Wait For Interrupt */
  __WFI();
}




/**
  * @brief This function handles the PWR PVD/PVMx interrupt request.
  * @note This API should be called under the PVD_PVM_IRQHandler().
  * @retval None
  */
void HAL_PWREx_PVD_PVM_IRQHandler(void)
{
  /* Check PWR exti flag */
  if(__HAL_PWR_PVD_EXTI_GET_FLAG() != 0x0U)
  {
    /* PWR PVD interrupt user callback */
    HAL_PWR_PVDCallback();

    /* Clear PVD exti pending bit */
    __HAL_PWR_PVD_EXTI_CLEAR_FLAG();
  }
  /* Next, successively check PVMx exti flags */
#if defined(PWR_CR2_PVME1)
  if(__HAL_PWR_PVM1_EXTI_GET_FLAG() != 0x0U)
  {
    /* PWR PVM1 interrupt user callback */
    HAL_PWREx_PVM1Callback();

    /* Clear PVM1 exti pending bit */
    __HAL_PWR_PVM1_EXTI_CLEAR_FLAG();
  }
#endif /* PWR_CR2_PVME1 */
#if defined(PWR_CR2_PVME2)
  if(__HAL_PWR_PVM2_EXTI_GET_FLAG() != 0x0U)
  {
    /* PWR PVM2 interrupt user callback */
    HAL_PWREx_PVM2Callback();

    /* Clear PVM2 exti pending bit */
    __HAL_PWR_PVM2_EXTI_CLEAR_FLAG();
  }
#endif /* PWR_CR2_PVME2 */
  if(__HAL_PWR_PVM3_EXTI_GET_FLAG() != 0x0U)
  {
    /* PWR PVM3 interrupt user callback */
    HAL_PWREx_PVM3Callback();

    /* Clear PVM3 exti pending bit */
    __HAL_PWR_PVM3_EXTI_CLEAR_FLAG();
  }
  if(__HAL_PWR_PVM4_EXTI_GET_FLAG() != 0x0U)
  {
    /* PWR PVM4 interrupt user callback */
    HAL_PWREx_PVM4Callback();

    /* Clear PVM4 exti pending bit */
    __HAL_PWR_PVM4_EXTI_CLEAR_FLAG();
  }
}


#if defined(PWR_CR2_PVME1)
/**
  * @brief PWR PVM1 interrupt callback
  * @retval None
  */
__weak void HAL_PWREx_PVM1Callback(void)
{
  /* NOTE : This function should not be modified; when the callback is needed,
            HAL_PWREx_PVM1Callback() API can be implemented in the user file
   */
}
#endif /* PWR_CR2_PVME1 */

#if defined(PWR_CR2_PVME2)
/**
  * @brief PWR PVM2 interrupt callback
  * @retval None
  */
__weak void HAL_PWREx_PVM2Callback(void)
{
  /* NOTE : This function should not be modified; when the callback is needed,
            HAL_PWREx_PVM2Callback() API can be implemented in the user file
   */
}
#endif /* PWR_CR2_PVME2 */

/**
  * @brief PWR PVM3 interrupt callback
  * @retval None
  */
__weak void HAL_PWREx_PVM3Callback(void)
{
  /* NOTE : This function should not be modified; when the callback is needed,
            HAL_PWREx_PVM3Callback() API can be implemented in the user file
   */
}

/**
  * @brief PWR PVM4 interrupt callback
  * @retval None
  */
__weak void HAL_PWREx_PVM4Callback(void)
{
  /* NOTE : This function should not be modified; when the callback is needed,
            HAL_PWREx_PVM4Callback() API can be implemented in the user file
   */
}


/**
  * @}
  */

/**
  * @}
  */

#endif /* HAL_PWR_MODULE_ENABLED */
/**
  * @}
  */

/**
  * @}
  */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/