Newer
Older
barebox / common / cmd_mem.c
@Sascha Hauer Sascha Hauer on 5 Jul 2007 19 KB svn_rev_118
/*
 * (C) Copyright 2000
 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
 *
 * See file CREDITS for list of people who contributed to this
 * project.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of
 * the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
 * MA 02111-1307 USA
 */

/*
 * Memory Functions
 *
 * Copied from FADS ROM, Dan Malek (dmalek@jlc.net)
 */

#include <common.h>
#include <command.h>
#include <driver.h>
#include <malloc.h>

#ifdef	CMD_MEM_DEBUG
#define	PRINTF(fmt,args...)	printf (fmt ,##args)
#else
#define PRINTF(fmt,args...)
#endif

#define RW_BUF_SIZE	(ulong)4096
static char *rw_buf;

/* Memory Display
 *
 * Syntax:
 *	md{.b, .w, .l} {addr} {len}
 */
#define DISP_LINE_LEN	16

void memory_display(char *addr, ulong offs, ulong nbytes, int size)
{
	ulong linebytes, i;
	u_char	*cp;

        /* Print the lines.
	 *
	 * We buffer all read data, so we can make sure data is read only
	 * once, and all accesses are with the specified bus width.
	 */
	do {
		char	linebuf[DISP_LINE_LEN];
		uint	*uip = (uint   *)linebuf;
		ushort	*usp = (ushort *)linebuf;
		u_char	*ucp = (u_char *)linebuf;

                printf("%08lx:", offs);
		linebytes = (nbytes>DISP_LINE_LEN)?DISP_LINE_LEN:nbytes;

		for (i=0; i<linebytes; i+= size) {
			if (size == 4) {
				printf(" %08x", (*uip++ = *((uint *)addr)));
			} else if (size == 2) {
				printf(" %04x", (*usp++ = *((ushort *)addr)));
			} else {
				printf(" %02x", (*ucp++ = *((u_char *)addr)));
			}
			addr += size;
                        offs += size;
		}

                puts ("    ");
		cp = (u_char *)linebuf;
		for (i=0; i<linebytes; i++) {
			if ((*cp < 0x20) || (*cp > 0x7e))
				putc ('.');
			else
				printf("%c", *cp);
			cp++;
		}
		putc ('\n');
		nbytes -= linebytes;
		if (ctrlc()) {
			return;
		}
	} while (nbytes > 0);

}

int do_mem_md ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
	ulong	offs, now;
	ulong	nbytes = 0x100;
        struct memarea_info mem;
	int	size, r;
	int rc = 0;

	if (argc < 2) {
		printf ("Usage:\n%s\n", cmdtp->usage);
		return 1;
	}

        if (spec_str_to_info(argv[1], &mem)) {
                printf("-ENOPARSE\n");
                return -1;
        }

        if (mem.flags & MEMAREA_SIZE_SPECIFIED)
                nbytes = mem.size;
        else
                nbytes = min((ulong)0x100, mem.size);

	if ((size = cmd_get_data_size(argv[0], 4)) < 0)
		return 1;

	offs = mem.start;

	do {
		now = min(RW_BUF_SIZE, nbytes);
		r = read(mem.device, rw_buf, now, offs, RW_SIZE(size));
		if (r <= 0)
			return r;

		memory_display(rw_buf, offs, r, size);

		if (r < now)
			return 0;

		nbytes -= now;
		offs += now;
	} while (nbytes > 0);

	return (rc);
}

int do_mem_mw ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
	ulong	addr, writeval, count;

        struct memarea_info mem;
	ulong	size;

	if ((argc < 3) || (argc > 4)) {
		printf ("Usage:\n%s\n", cmdtp->usage);
		return 1;
	}

	/* Check for size specification.
	*/
	if ((size = cmd_get_data_size(argv[0], 4)) < 1)
		return 1;

        if (spec_str_to_info(argv[1], &mem)) {
                printf("-ENOPARSE\n");
                return -1;
        }
        addr = mem.start;

	/* Get the value to write.
	*/
	writeval = simple_strtoul(argv[2], NULL, 16);

	/* Count ? */
	if (argc == 4)
		count = simple_strtoul(argv[3], NULL, 16);
	else
		count = size;

	if (count == size) {
		return write(mem.device, (uchar *)&writeval, count, mem.start, RW_SIZE(size));
	} else {
		printf("write multiple not yet implemented\n");
	}

	return 0;
}

int do_mem_cmp (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
	ulong	addr1, addr2, count, ngood;
	int	size;
	int     rcode = 0;

	if (argc != 4) {
		printf ("Usage:\n%s\n", cmdtp->usage);
		return 1;
	}

	/* Check for size specification.
	*/
	if ((size = cmd_get_data_size(argv[0], 4)) < 0)
		return 1;

	addr1 = simple_strtoul(argv[1], NULL, 16);

	addr2 = simple_strtoul(argv[2], NULL, 16);

	count = simple_strtoul(argv[3], NULL, 16);

	ngood = 0;

	while (count-- > 0) {
		if (size == 4) {
			ulong word1 = *(ulong *)addr1;
			ulong word2 = *(ulong *)addr2;
			if (word1 != word2) {
				printf("word at 0x%08lx (0x%08lx) "
					"!= word at 0x%08lx (0x%08lx)\n",
					addr1, word1, addr2, word2);
				rcode = 1;
				break;
			}
		}
		else if (size == 2) {
			ushort hword1 = *(ushort *)addr1;
			ushort hword2 = *(ushort *)addr2;
			if (hword1 != hword2) {
				printf("halfword at 0x%08lx (0x%04x) "
					"!= halfword at 0x%08lx (0x%04x)\n",
					addr1, hword1, addr2, hword2);
				rcode = 1;
				break;
			}
		}
		else {
			u_char byte1 = *(u_char *)addr1;
			u_char byte2 = *(u_char *)addr2;
			if (byte1 != byte2) {
				printf("byte at 0x%08lx (0x%02x) "
					"!= byte at 0x%08lx (0x%02x)\n",
					addr1, byte1, addr2, byte2);
				rcode = 1;
				break;
			}
		}
		ngood++;
		addr1 += size;
		addr2 += size;
	}

	printf("Total of %ld %s%s were the same\n",
		ngood, size == 4 ? "word" : size == 2 ? "halfword" : "byte",
		ngood == 1 ? "" : "s");
	return rcode;
}

int do_mem_cp ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
	ulong count, offset, now;
	int ret;
        struct memarea_info dst, src;

	int	size;

	if (argc != 3) {
		printf ("Usage:\n%s\n", cmdtp->usage);
		return 1;
	}

	/* Check for size specification.
	*/
	if ((size = cmd_get_data_size(argv[0], 4)) < 0)
		return 1;

        if (spec_str_to_info(argv[1], &src)) {
                printf("-ENOPARSE\n");
                return -1;
        }

        if (spec_str_to_info(argv[2], &dst)) {
                printf("-ENOPARSE\n");
                return -1;
        }

        if (!src.size || !dst.size)
                count = dst.size | src.size;
        else
                count = min(src.size, dst.size);

	printf("copy from 0x%08x to 0x%08x count %d\n",src.start, dst.start, count);

	offset = 0;
	while (count > 0) {
		now = min(RW_BUF_SIZE, count);

		ret = read(src.device, rw_buf, now, src.start + offset, RW_SIZE(size));
		if (ret <= 0)
			return ret;

		ret = write(dst.device, rw_buf, ret, dst.start + offset, RW_SIZE(size));
		if (ret <= 0)
			return ret;
		if (ret < now)
			return 0;
		offset += now;
		count -= now;
	}

	return 0;
}

/*
 * Perform a memory test. A more complete alternative test can be
 * configured using CFG_ALT_MEMTEST. The complete test loops until
 * interrupted by ctrl-c or by a failure of one of the sub-tests.
 */
int do_mem_mtest (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
	vu_long	*addr, *start, *end;
	ulong	val;
	ulong	readback;

#if defined(CFG_ALT_MEMTEST)
	vu_long	addr_mask;
	vu_long	offset;
	vu_long	test_offset;
	vu_long	pattern;
	vu_long	temp;
	vu_long	anti_pattern;
	vu_long	num_words;
#if defined(CFG_MEMTEST_SCRATCH)
	vu_long *dummy = (vu_long*)CFG_MEMTEST_SCRATCH;
#else
	vu_long *dummy = 0;	/* yes, this is address 0x0, not NULL */
#endif
	int	j;
	int iterations = 1;

	static const ulong bitpattern[] = {
		0x00000001,	/* single bit */
		0x00000003,	/* two adjacent bits */
		0x00000007,	/* three adjacent bits */
		0x0000000F,	/* four adjacent bits */
		0x00000005,	/* two non-adjacent bits */
		0x00000015,	/* three non-adjacent bits */
		0x00000055,	/* four non-adjacent bits */
		0xaaaaaaaa,	/* alternating 1/0 */
	};
#else
	ulong	incr;
	ulong	pattern;
	int     rcode = 0;
#endif

	if (argc > 1) {
		start = (ulong *)simple_strtoul(argv[1], NULL, 16);
	} else {
		start = (ulong *)CFG_MEMTEST_START;
	}

	if (argc > 2) {
		end = (ulong *)simple_strtoul(argv[2], NULL, 16);
	} else {
		end = (ulong *)(CFG_MEMTEST_END);
	}

	if (argc > 3) {
		pattern = (ulong)simple_strtoul(argv[3], NULL, 16);
	} else {
		pattern = 0;
	}

#if defined(CFG_ALT_MEMTEST)
	printf ("Testing %08x ... %08x:\n", (uint)start, (uint)end);
	PRINTF("%s:%d: start 0x%p end 0x%p\n",
		__FUNCTION__, __LINE__, start, end);

	for (;;) {
		if (ctrlc()) {
			putc ('\n');
			return 1;
		}

		printf("Iteration: %6d\r", iterations);
		PRINTF("Iteration: %6d\n", iterations);
		iterations++;

		/*
		 * Data line test: write a pattern to the first
		 * location, write the 1's complement to a 'parking'
		 * address (changes the state of the data bus so a
		 * floating bus doen't give a false OK), and then
		 * read the value back. Note that we read it back
		 * into a variable because the next time we read it,
		 * it might be right (been there, tough to explain to
		 * the quality guys why it prints a failure when the
		 * "is" and "should be" are obviously the same in the
		 * error message).
		 *
		 * Rather than exhaustively testing, we test some
		 * patterns by shifting '1' bits through a field of
		 * '0's and '0' bits through a field of '1's (i.e.
		 * pattern and ~pattern).
		 */
		addr = start;
		for (j = 0; j < sizeof(bitpattern)/sizeof(bitpattern[0]); j++) {
		    val = bitpattern[j];
		    for(; val != 0; val <<= 1) {
			*addr  = val;
			*dummy  = ~val; /* clear the test data off of the bus */
			readback = *addr;
			if(readback != val) {
			     printf ("FAILURE (data line): "
				"expected %08lx, actual %08lx\n",
					  val, readback);
			}
			*addr  = ~val;
			*dummy  = val;
			readback = *addr;
			if(readback != ~val) {
			    printf ("FAILURE (data line): "
				"Is %08lx, should be %08lx\n",
					readback, ~val);
			}
		    }
		}

		/*
		 * Based on code whose Original Author and Copyright
		 * information follows: Copyright (c) 1998 by Michael
		 * Barr. This software is placed into the public
		 * domain and may be used for any purpose. However,
		 * this notice must not be changed or removed and no
		 * warranty is either expressed or implied by its
		 * publication or distribution.
		 */

		/*
		 * Address line test
		 *
		 * Description: Test the address bus wiring in a
		 *              memory region by performing a walking
		 *              1's test on the relevant bits of the
		 *              address and checking for aliasing.
		 *              This test will find single-bit
		 *              address failures such as stuck -high,
		 *              stuck-low, and shorted pins. The base
		 *              address and size of the region are
		 *              selected by the caller.
		 *
		 * Notes:	For best results, the selected base
		 *              address should have enough LSB 0's to
		 *              guarantee single address bit changes.
		 *              For example, to test a 64-Kbyte
		 *              region, select a base address on a
		 *              64-Kbyte boundary. Also, select the
		 *              region size as a power-of-two if at
		 *              all possible.
		 *
		 * Returns:     0 if the test succeeds, 1 if the test fails.
		 *
		 * ## NOTE ##	Be sure to specify start and end
		 *              addresses such that addr_mask has
		 *              lots of bits set. For example an
		 *              address range of 01000000 02000000 is
		 *              bad while a range of 01000000
		 *              01ffffff is perfect.
		 */
		addr_mask = ((ulong)end - (ulong)start)/sizeof(vu_long);
		pattern = (vu_long) 0xaaaaaaaa;
		anti_pattern = (vu_long) 0x55555555;

		PRINTF("%s:%d: addr mask = 0x%.8lx\n",
			__FUNCTION__, __LINE__,
			addr_mask);
		/*
		 * Write the default pattern at each of the
		 * power-of-two offsets.
		 */
		for (offset = 1; (offset & addr_mask) != 0; offset <<= 1) {
			start[offset] = pattern;
		}

		/*
		 * Check for address bits stuck high.
		 */
		test_offset = 0;
		start[test_offset] = anti_pattern;

		for (offset = 1; (offset & addr_mask) != 0; offset <<= 1) {
		    temp = start[offset];
		    if (temp != pattern) {
			printf ("\nFAILURE: Address bit stuck high @ 0x%.8lx:"
				" expected 0x%.8lx, actual 0x%.8lx\n",
				(ulong)&start[offset], pattern, temp);
			return 1;
		    }
		}
		start[test_offset] = pattern;

		/*
		 * Check for addr bits stuck low or shorted.
		 */
		for (test_offset = 1; (test_offset & addr_mask) != 0; test_offset <<= 1) {
		    start[test_offset] = anti_pattern;

		    for (offset = 1; (offset & addr_mask) != 0; offset <<= 1) {
			temp = start[offset];
			if ((temp != pattern) && (offset != test_offset)) {
			    printf ("\nFAILURE: Address bit stuck low or shorted @"
				" 0x%.8lx: expected 0x%.8lx, actual 0x%.8lx\n",
				(ulong)&start[offset], pattern, temp);
			    return 1;
			}
		    }
		    start[test_offset] = pattern;
		}

		/*
		 * Description: Test the integrity of a physical
		 *		memory device by performing an
		 *		increment/decrement test over the
		 *		entire region. In the process every
		 *		storage bit in the device is tested
		 *		as a zero and a one. The base address
		 *		and the size of the region are
		 *		selected by the caller.
		 *
		 * Returns:     0 if the test succeeds, 1 if the test fails.
		 */
		num_words = ((ulong)end - (ulong)start)/sizeof(vu_long) + 1;

		/*
		 * Fill memory with a known pattern.
		 */
		for (pattern = 1, offset = 0; offset < num_words; pattern++, offset++) {
			start[offset] = pattern;
		}

		/*
		 * Check each location and invert it for the second pass.
		 */
		for (pattern = 1, offset = 0; offset < num_words; pattern++, offset++) {
		    temp = start[offset];
		    if (temp != pattern) {
			printf ("\nFAILURE (read/write) @ 0x%.8lx:"
				" expected 0x%.8lx, actual 0x%.8lx)\n",
				(ulong)&start[offset], pattern, temp);
			return 1;
		    }

		    anti_pattern = ~pattern;
		    start[offset] = anti_pattern;
		}

		/*
		 * Check each location for the inverted pattern and zero it.
		 */
		for (pattern = 1, offset = 0; offset < num_words; pattern++, offset++) {
		    anti_pattern = ~pattern;
		    temp = start[offset];
		    if (temp != anti_pattern) {
			printf ("\nFAILURE (read/write): @ 0x%.8lx:"
				" expected 0x%.8lx, actual 0x%.8lx)\n",
				(ulong)&start[offset], anti_pattern, temp);
			return 1;
		    }
		    start[offset] = 0;
		}
	}

#else /* The original, quickie test */
	incr = 1;
	for (;;) {
		if (ctrlc()) {
			putc ('\n');
			return 1;
		}

		printf ("\rPattern %08lX  Writing..."
			"%12s"
			"\b\b\b\b\b\b\b\b\b\b",
			pattern, "");

		for (addr=start,val=pattern; addr<end; addr++) {
			*addr = val;
			val  += incr;
		}

		puts ("Reading...");

		for (addr=start,val=pattern; addr<end; addr++) {
			readback = *addr;
			if (readback != val) {
				printf ("\nMem error @ 0x%08X: "
					"found %08lX, expected %08lX\n",
					(uint)addr, readback, val);
				rcode = 1;
			}
			val += incr;
		}

		/*
		 * Flip the pattern each time to make lots of zeros and
		 * then, the next time, lots of ones.  We decrement
		 * the "negative" patterns and increment the "positive"
		 * patterns to preserve this feature.
		 */
		if(pattern & 0x80000000) {
			pattern = -pattern;	/* complement & increment */
		}
		else {
			pattern = ~pattern;
		}
		incr = -incr;
	}
	return rcode;
#endif
}

#ifndef CONFIG_CRC32_VERIFY

int do_mem_crc (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
	ulong addr, length;
	ulong crc;
	ulong *ptr;

	if (argc < 3) {
		printf ("Usage:\n%s\n", cmdtp->usage);
		return 1;
	}

	addr = simple_strtoul (argv[1], NULL, 16);

	length = simple_strtoul (argv[2], NULL, 16);

	crc = crc32 (0, (const uchar *) addr, length);

	printf ("CRC32 for %08lx ... %08lx ==> %08lx\n",
			addr, addr + length - 1, crc);

	if (argc > 3) {
		ptr = (ulong *) simple_strtoul (argv[3], NULL, 16);
		*ptr = crc;
	}

	return 0;
}

#else	/* CONFIG_CRC32_VERIFY */

int do_mem_crc (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
	ulong addr, length;
	ulong crc;
	ulong *ptr;
	ulong vcrc;
	int verify;
	int ac;
	char **av;

	if (argc < 3) {
  usage:
		printf ("Usage:\n%s\n", cmdtp->usage);
		return 1;
	}

	av = argv + 1;
	ac = argc - 1;
	if (strcmp(*av, "-v") == 0) {
		verify = 1;
		av++;
		ac--;
		if (ac < 3)
			goto usage;
	} else
		verify = 0;

	addr = simple_strtoul(*av++, NULL, 16);
	length = simple_strtoul(*av++, NULL, 16);

	crc = crc32(0, (const uchar *) addr, length);

	if (!verify) {
		printf ("CRC32 for %08lx ... %08lx ==> %08lx\n",
				addr, addr + length - 1, crc);
		if (ac > 2) {
			ptr = (ulong *) simple_strtoul (*av++, NULL, 16);
			*ptr = crc;
		}
	} else {
		vcrc = simple_strtoul(*av++, NULL, 16);
		if (vcrc != crc) {
			printf ("CRC32 for %08lx ... %08lx ==> %08lx != %08lx ** ERROR **\n",
					addr, addr + length - 1, crc, vcrc);
			return 1;
		}
	}

	return 0;

}
#endif	/* CONFIG_CRC32_VERIFY */

int mem_probe(struct device_d *dev)
{
        return 0;
}

static void memcpy_sz(void *_dst, void *_src, ulong count, ulong rwsize)
{
	ulong dst = (ulong)_dst;
	ulong src = (ulong)_src;

	if (!rwsize) {
		memcpy(_dst, _src, count);
		return;
	}

	count /= rwsize;

	while (count-- > 0) {
		switch (rwsize) {
		case 1:
			*((u_char *)dst) = *((u_char *)src);
			break;
		case 2:
			*((ushort *)dst) = *((ushort *)src);
			break;
		case 4:
			*((ulong  *)dst) = *((ulong  *)src);
			break;
		}
		dst += rwsize;
		src += rwsize;
	}
}

ssize_t mem_read(struct device_d *dev, void *buf, size_t count, ulong offset, ulong rwflags)
{
	memcpy_sz(buf, (void *)(dev->map_base + offset), count, rwflags & RW_SIZE_MASK);
	return count;
}

ssize_t mem_write(struct device_d *dev, void *buf, size_t count, ulong offset, ulong rwflags)
{
	memcpy_sz((void *)(dev->map_base + offset), buf, count, rwflags & RW_SIZE_MASK);
	return count;
}

struct device_d mem_dev = {
        .name  = "mem",
	.id    = "mem",
        .map_base = 0,
        .size   = ~0, /* FIXME: should be 0x100000000, ahem... */
};

struct driver_d mem_drv = {
        .name  = "mem",
        .probe = mem_probe,
	.read  = mem_read,
	.write = mem_write,
};

struct driver_d ram_drv = {
        .name  = "ram",
        .probe = mem_probe,
	.read  = mem_read,
	.write = mem_write,
};

int mem_init(void)
{
	rw_buf = malloc(RW_BUF_SIZE);
	if(!rw_buf) {
		printf("Out of memory\n");
		return -1;
	}

        register_device(&mem_dev);
        register_driver(&mem_drv);
        register_driver(&ram_drv);
        return 0;
}

U_BOOT_CMD(
	md,     3,     0,      do_mem_md,
	"md      - memory display\n",
	"[.b, .w, .l] address [# of objects]\n    - memory display\n"
);

U_BOOT_CMD(
	mw,    4,    0,     do_mem_mw,
	"mw      - memory write (fill)\n",
	"[.b, .w, .l] address value [count]\n    - write memory\n"
);

U_BOOT_CMD(
	cp,    4,    0,    do_mem_cp,
	"cp      - memory copy\n",
	"[.b, .w, .l] source target count\n    - copy memory\n"
);

U_BOOT_CMD(
	cmp,    4,     0,     do_mem_cmp,
	"cmp     - memory compare\n",
	"[.b, .w, .l] addr1 addr2 count\n    - compare memory\n"
);

#ifndef CONFIG_CRC32_VERIFY

U_BOOT_CMD(
	crc32,    4,    0,     do_mem_crc,
	"crc32   - checksum calculation\n",
	"address count [addr]\n    - compute CRC32 checksum [save at addr]\n"
);

#else	/* CONFIG_CRC32_VERIFY */

U_BOOT_CMD(
	crc32,    5,    0,     do_mem_crc,
	"crc32   - checksum calculation\n",
	"address count [addr]\n    - compute CRC32 checksum [save at addr]\n"
	"-v address count crc\n    - verify crc of memory area\n"
);

#endif	/* CONFIG_CRC32_VERIFY */

#ifdef CONFIG_LOOPW
U_BOOT_CMD(
	loopw,    4,    0,    do_mem_loopw,
	"loopw   - infinite write loop on address range\n",
	"[.b, .w, .l] address number_of_objects data_to_write\n"
	"    - loop on a set of addresses\n"
);
#endif /* CONFIG_LOOPW */

U_BOOT_CMD(
	mtest,    4,    0,     do_mem_mtest,
	"mtest   - simple RAM test\n",
	"[start [end [pattern]]]\n"
	"    - simple RAM read/write test\n"
);

#ifdef CONFIG_MX_CYCLIC
U_BOOT_CMD(
	mdc,     4,     0,      do_mem_mdc,
	"mdc     - memory display cyclic\n",
	"[.b, .w, .l] address count delay(ms)\n    - memory display cyclic\n"
);

U_BOOT_CMD(
	mwc,     4,     0,      do_mem_mwc,
	"mwc     - memory write cyclic\n",
	"[.b, .w, .l] address value delay(ms)\n    - memory write cyclic\n"
);
#endif /* CONFIG_MX_CYCLIC */