Newer
Older
barebox / drivers / net / fec_imx27.c
@Juergen Beisert Juergen Beisert on 9 Nov 2007 16 KB adding and correcting driver's doc
/*
 * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
 * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of
 * the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
 * MA 02111-1307 USA
 */

#include <common.h>
#include <malloc.h>
#include <net.h>
#include <init.h>
#include <miiphy.h>
#include <driver.h>
#include <miiphy.h>
#include <fec.h>
#include "fec_imx27.h"

#include <asm/io.h>
#include <asm/arch/imx-regs.h>
#include <clock.h>
#include <asm/arch/clock.h>
#include <xfuncs.h>

#define CONFIG_PHY_ADDR 1 /* FIXME */

typedef struct {
	uint8_t data[1500];	/**< actual data */
	int length;		/**< actual length */
	int used;		/**< buffer in use or not */
	uint8_t head[16];	/**< MAC header(6 + 6 + 2) + 2(aligned) */
} NBUF;

/*
 * MII-interface related functions
 */
static int fec_miiphy_read(struct miiphy_device *mdev, uint8_t phyAddr,
	uint8_t regAddr, uint16_t * retVal)
{
	struct eth_device *edev = mdev->edev;
	fec_priv *fec = (fec_priv *)edev->priv;

	uint32_t reg;		/* convenient holder for the PHY register */
	uint32_t phy;		/* convenient holder for the PHY */
	uint64_t start;

	/*
	 * reading from any PHY's register is done by properly
	 * programming the FEC's MII data register.
	 */
	writel(FEC_IEVENT_MII, &fec->eth->ievent);
	reg = regAddr << FEC_MII_DATA_RA_SHIFT;
	phy = phyAddr << FEC_MII_DATA_PA_SHIFT;

	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA | phy | reg, &fec->eth->mii_data);

	/*
	 * wait for the related interrupt
	 */
	start = get_time_ns();
	while (!(readl(&fec->eth->ievent) & FEC_IEVENT_MII)) {
		if (is_timeout(start, MSECOND)) {
			printf("Read MDIO failed...\n");
			return -1;
		}
	}

	/*
	 * clear mii interrupt bit
	 */
	writel(FEC_IEVENT_MII, &fec->eth->ievent);

	/*
	 * it's now safe to read the PHY's register
	 */
	*retVal = readl(&fec->eth->mii_data);

	return 0;
}

static int fec_miiphy_write(struct miiphy_device *mdev, uint8_t phyAddr,
	uint8_t regAddr, uint16_t data)
{
	struct eth_device *edev = mdev->edev;
	fec_priv *fec = (fec_priv *)edev->priv;

	uint32_t reg;		/* convenient holder for the PHY register */
	uint32_t phy;		/* convenient holder for the PHY */
	uint64_t start;

	reg = regAddr << FEC_MII_DATA_RA_SHIFT;
	phy = phyAddr << FEC_MII_DATA_PA_SHIFT;

	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
		FEC_MII_DATA_TA | phy | reg | data, &fec->eth->mii_data);

	/*
	 * wait for the MII interrupt
	 */
	start = get_time_ns();
	while (!(readl(&fec->eth->ievent) & FEC_IEVENT_MII)) {
		if (is_timeout(start, MSECOND)) {
			printf("Write MDIO failed...\n");
			return -1;
		}
	}

	/*
	 * clear MII interrupt bit
	 */
	writel(FEC_IEVENT_MII, &fec->eth->ievent);

	return 0;
}

static int fec_rx_task_enable(fec_priv *fec)
{
	writel(1 << 24, &fec->eth->r_des_active);
	return 0;
}

static int fec_rx_task_disable(fec_priv *fec)
{
	return 0;
}

static int fec_tx_task_enable(fec_priv *fec)
{
	writel(1 << 24, &fec->eth->x_des_active);
	return 0;
}

static int fec_tx_task_disable(fec_priv *fec)
{
	return 0;
}

/**
 * Initialize receive task's buffer descriptors
 * @param[in] fec all we know about the device yet
 * @param[in] count receive buffer count to be allocated
 * @param[in] size size of each receive buffer
 * @return 0 on success
 *
 * For this task we need additional memory for the data buffers. And each
 * data buffer requires some alignment. Thy must be aligned to a specific
 * boundary each (DB_DATA_ALIGNMENT).
 */
static int fec_rbd_init(fec_priv *fec, int count, int size)
{
	int ix;
	static int once = 0;
	uint32_t p=0;

	if (!once) {
		/* reserve data memory and consider alignment */
		p = (uint32_t)xzalloc(size * count + DB_DATA_ALIGNMENT) +
				(DB_DATA_ALIGNMENT-1);
		p &= ~(DB_DATA_ALIGNMENT-1);
	}

	for (ix = 0; ix < count; ix++) {
		if (!once) {
			writel(p, &fec->rbd_base[ix].data_pointer);
			p += size;
		}
		writew(FEC_RBD_EMPTY, &fec->rbd_base[ix].status);
		writew(0, &fec->rbd_base[ix].data_length);
	}
	once = 1;	/* malloc done now (and once) */
	/*
	 * mark the last RBD to close the ring
	 */
	writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &fec->rbd_base[ix - 1].status);
	fec->rbd_index = 0;

	return 0;
}

/**
 * Initialize transmit task's buffer descriptors
 * @param[in] fec all we know about the device yet
 *
 * Transmit buffers are created externally. We only have to init the BDs here.\n
 * Note: There is a race condition in the hardware. When only one BD is in
 * use it must be marked with the WRAP bit to use it for every transmitt.
 * This bit in combination with the READY bit results into double transmit
 * of each data buffer. It seems the state machine checks READY earlier then
 * resetting it after the first transfer.
 * Using two BDs solves this issue.
 */
static void fec_tbd_init(fec_priv *fec)
{
	writew(0x0000, &fec->tbd_base[0].status);
	writew(FEC_TBD_WRAP, &fec->tbd_base[1].status);
	fec->tbd_index = 0;
}

/**
 * Mark the given read buffer descriptor as free
 * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
 * @param[in] pRbd buffer descriptor to mark free again
 */
static void fec_rbd_clean(int last, FEC_BD *pRbd)
{
	/*
	 * Reset buffer descriptor as empty
	 */
	if (last)
		writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &pRbd->status);
	else
		writew(FEC_RBD_EMPTY, &pRbd->status);
	/*
	 * no data in it
	 */
	writew(0, &pRbd->data_length);
}

static int fec_get_hwaddr(struct eth_device *dev, unsigned char *mac)
{
	/* no eeprom */
	return -1;
}

static int fec_set_hwaddr(struct eth_device *dev, unsigned char *mac)
{
	fec_priv *fec = (fec_priv *)dev->priv;
//#define WTF_IS_THIS
#ifdef WTF_IS_THIS
	uint32_t crc = 0xffffffff;	/* initial value */
	uint8_t currByte;			/* byte for which to compute the CRC */
	int byte;			/* loop - counter */
	int bit;			/* loop - counter */

	/*
	 * The algorithm used is the following:
	 * we loop on each of the six bytes of the provided address,
	 * and we compute the CRC by left-shifting the previous
	 * value by one position, so that each bit in the current
	 * byte of the address may contribute the calculation. If
	 * the latter and the MSB in the CRC are different, then
	 * the CRC value so computed is also ex-ored with the
	 * "polynomium generator". The current byte of the address
	 * is also shifted right by one bit at each iteration.
	 * This is because the CRC generatore in hardware is implemented
	 * as a shift-register with as many ex-ores as the radixes
	 * in the polynomium. This suggests that we represent the
	 * polynomiumm itself as a 32-bit constant.
	 */
	for (byte = 0; byte < 6; byte++) {
		currByte = mac[byte];
		for (bit = 0; bit < 8; bit++) {
			if ((currByte & 0x01) ^ (crc & 0x01)) {
				crc >>= 1;
				crc = crc ^ 0xedb88320;
			} else {
				crc >>= 1;
			}
			currByte >>= 1;
		}
	}

	crc = crc >> 26;

	/*
	 * Set individual hash table register
	 */
	if (crc >= 32) {
		fec->eth->iaddr1 = (1 << (crc - 32));
		fec->eth->iaddr2 = 0;
	} else {
		fec->eth->iaddr1 = 0;
		fec->eth->iaddr2 = (1 << crc);
	}
#else
	writel(0, &fec->eth->iaddr1);
	writel(0, &fec->eth->iaddr2);
	writel(0, &fec->eth->gaddr1);
	writel(0, &fec->eth->gaddr2);
#endif
	/*
	 * Set physical address
	 */
	writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3], &fec->eth->paddr1);
	writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);

        return 0;
}

static int fec_init(struct eth_device *dev)
{
	fec_priv *fec = (fec_priv *)dev->priv;

	/*
	 * Initialize RxBD/TxBD rings
	 */
	fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE);
	fec_tbd_init(fec);

	/*
	 * Clear FEC-Lite interrupt event register(IEVENT)
	 */
	writel(0xffffffff, &fec->eth->ievent);

	/*
	 * Set interrupt mask register
	 */
	writel(0x00000000, &fec->eth->imask);

	/*
	 * Set FEC-Lite receive control register(R_CNTRL):
	 */
	if (fec->xcv_type == SEVENWIRE) {
		/*
		 * Frame length=1518; 7-wire mode
		 */
		writel(0x05ee0020, &fec->eth->r_cntrl);	/* FIXME 0x05ee0000 */
	} else {
		/*
		 * Frame length=1518; MII mode;
		 */
		writel(0x05ee0024, &fec->eth->r_cntrl);	/* FIXME 0x05ee0004 */
		/*
		 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
		 * and do not drop the Preamble.
		 */
		writel(((imx_get_ahbclk() >> 20) / 5) << 1, &fec->eth->mii_speed);	/* No MII for 7-wire mode */
	}
	/*
	 * Set Opcode/Pause Duration Register
	 */
	writel(0x00010020, &fec->eth->op_pause);	/* FIXME 0xffff0020; */
	writel(0x2, &fec->eth->x_wmrk);
	/*
	 * Set multicast address filter
	 */
	writel(0x00000000, &fec->eth->gaddr1);
	writel(0x00000000, &fec->eth->gaddr2);

	/* size of each buffer */
	writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);

	if (fec->xcv_type != SEVENWIRE)
		miiphy_restart_aneg(&fec->miiphy);

	return 0;
}

/**
 * Start the FEC engine
 * @param[in] dev Our device to handle
 */
static int fec_open(struct eth_device *edev)
{
	fec_priv *fec = (fec_priv *)edev->priv;

	writel(1 << 2, &fec->eth->x_cntrl);	/* full-duplex, heartbeat disabled */
	fec->rbd_index = 0;

	/*
	 * Enable FEC-Lite controller
	 */
	writel(FEC_ECNTRL_ETHER_EN, &fec->eth->ecntrl);
	/*
	 * Enable SmartDMA receive task
	 */
	fec_rx_task_enable(fec);

	if (fec->xcv_type != SEVENWIRE) {
		miiphy_wait_aneg(&fec->miiphy);
		miiphy_print_status(&fec->miiphy);
	}

	return 0;
}

/**
 * Halt the FEC engine
 * @param[in] dev Our device to handle
 */
static void fec_halt(struct eth_device *dev)
{
	fec_priv *fec = (fec_priv *)dev->priv;
	int counter = 0xffff;

	/*
	 * issue graceful stop command to the FEC transmitter if necessary
	 */
	writel(FEC_ECNTRL_RESET | readl(&fec->eth->x_cntrl), &fec->eth->x_cntrl);

	/*
	 * wait for graceful stop to register
	 */
	while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
		;	/* FIXME ensure time */

	/*
	 * Disable SmartDMA tasks
	 */
	fec_tx_task_disable(fec);
	fec_rx_task_disable(fec);

	/*
	 * Disable the Ethernet Controller
	 * Note: this will also reset the BD index counter!
	 */
	writel(0, &fec->eth->ecntrl);
	fec->rbd_index = 0;
	fec->tbd_index = 0;
}

/**
 * Transmit one frame
 * @param[in] dev Our ethernet device to handle
 * @param[in] eth_data Pointer to the data to be transmitted
 * @param[in] data_length Data count in bytes
 * @return 0 on success
 */
static int fec_send(struct eth_device *dev, void *eth_data, int data_length)
{
	unsigned int status;

	/*
	 * This routine transmits one frame.  This routine only accepts
	 * 6-byte Ethernet addresses.
	 */
	fec_priv *fec = (fec_priv *)dev->priv;

	/*
	 * Check for valid length of data.
	 */
	if ((data_length > 1500) || (data_length <= 0)) {
		printf("Payload (%d) to large!\n");
		return -1;
	}

	if ((uint32_t)eth_data & ~(DB_DATA_ALIGNMENT-1))
		printf("%s: Warning: Transmitt data not aligned!\n", __FUNCTION__);

	/*
	 * Setup the transmitt buffer
	 * Note: We are always using the first buffer for transmission,
	 * the second will be empty and only used to stop the DMA engine
	 */
	writew(data_length, &fec->tbd_base[fec->tbd_index].data_length);
	writel((uint32_t)eth_data, &fec->tbd_base[fec->tbd_index].data_pointer);
	/*
	 * update BD's status now
	 * This block:
	 * - is always the last in a chain (means no chain)
	 * - should transmitt the CRC
	 * - might be the last BD in the list, so the address counter should
	 *   wrap (-> keep the WRAP flag)
	 */
	status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
	status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
	writew(status, &fec->tbd_base[fec->tbd_index].status);
	/*
	 * Enable SmartDMA transmit task
	 */
	fec_tx_task_enable(fec);

	/*
	 * wait until frame is sent .
	 */
	while (readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_READY) {
		/* FIXME: Timeout */
	}

	/* for next transmission use the other buffer */
	if (fec->tbd_index)
		fec->tbd_index = 0;
	else
		fec->tbd_index = 1;

	return 0;
}

/**
 * Pull one frame from the card
 * @param[in] dev Our ethernet device to handle
 * @return Length of packet read
 */
static int fec_recv(struct eth_device *dev)
{
	fec_priv *fec = (fec_priv *)dev->priv;
	FEC_BD *rbd = &fec->rbd_base[fec->rbd_index];
	unsigned long ievent;
	int frame_length, len = 0;
	NBUF *frame;
	uint16_t bd_status;
	uchar buff[FEC_MAX_PKT_SIZE];

	/*
	 * Check if any critical events have happened
	 */
	ievent = readl(&fec->eth->ievent);
	writel(ievent, &fec->eth->ievent);
	if (ievent & (FEC_IEVENT_BABT | FEC_IEVENT_XFIFO_ERROR |
				FEC_IEVENT_RFIFO_ERROR)) {
		/* BABT, Rx/Tx FIFO errors */
		fec_halt(dev);
		fec_init(dev);
		printf("some error: 0x%08x\n", ievent);
		return 0;
	}
	if (ievent & FEC_IEVENT_HBERR) {
		/* Heartbeat error */
		writel(0x00000001 | readl(&fec->eth->x_cntrl), &fec->eth->x_cntrl);
	}
	if (ievent & FEC_IEVENT_GRA) {
		/* Graceful stop complete */
		if (readl(&fec->eth->x_cntrl) & 0x00000001) {
			fec_halt(dev);
			writel(~0x00000001 & readl(&fec->eth->x_cntrl), &fec->eth->x_cntrl);
			fec_init(dev);
		}
	}

	/*
	 * ensure reading the right buffer status
	 */
	bd_status = readw(&rbd->status);

	if (!(bd_status & FEC_RBD_EMPTY)) {
		if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
			((readw(&rbd->data_length) - 4) > 14)) {
			/*
			 * Get buffer address and size
			 */
			frame = (NBUF *)readl(&rbd->data_pointer);
			frame_length = readw(&rbd->data_length) - 4;
			/*
			 *  Fill the buffer and pass it to upper layers
			 */
			memcpy(buff, frame->data, frame_length);
			NetReceive(buff, frame_length);
			len = frame_length;
		} else {
			if (bd_status & FEC_RBD_ERR) {
				printf("error frame: 0x%08x 0x%08x\n", rbd, bd_status);
			}
		}
		/*
		 * free the current buffer, restart the engine
		 * and move forward to the next buffer
		 */
		fec_rbd_clean(fec->rbd_index == (FEC_RBD_NUM - 1) ? 1 : 0, rbd);
		fec_rx_task_enable(fec);
		fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
	}

	return len;
}

int fec_probe(struct device_d *dev)
{
        struct fec_platform_data *pdata = (struct fec_platform_data *)dev->platform_data;
        struct eth_device *edev;
	fec_priv *fec;
	uint32_t base;

	PCCR0 |= PCCR0_FEC_EN;
        edev = (struct eth_device *)malloc(sizeof(struct eth_device));
        dev->type_data = edev;
	fec = (fec_priv*)malloc(sizeof(*fec));
        edev->priv = fec;
        edev->dev  = dev;
	edev->open = fec_open,
	edev->init = fec_init,
	edev->send = fec_send,
	edev->recv = fec_recv,
	edev->halt = fec_halt,
	edev->get_ethaddr = fec_get_hwaddr,
	edev->set_ethaddr = fec_set_hwaddr,

	fec->eth = (ethernet_regs *)dev->map_base;

	/* Reset chip. */
	writel(FEC_ECNTRL_RESET, &fec->eth->ecntrl);
	while(readl(&fec->eth->ecntrl) & 1) {
		udelay(10);
	}

	/*
	 * reserve memory for both buffer descriptor chains at once
	 * Datasheet forces the startaddress of each chain is 16 byte aligned
	 */
	base = (uint32_t)xzalloc( (2 + FEC_RBD_NUM) * sizeof(FEC_BD) + 2 * DB_ALIGNMENT );
	base += (DB_ALIGNMENT-1);
	base &= ~(DB_ALIGNMENT-1);
	fec->rbd_base = (FEC_BD*)base;
	base += FEC_RBD_NUM * sizeof(FEC_BD) + (DB_ALIGNMENT-1);
	base &= ~(DB_ALIGNMENT-1);
	fec->tbd_base = (FEC_BD*)base;

	writel((uint32_t)fec->tbd_base, &fec->eth->etdsr);
	writel((uint32_t)fec->rbd_base, &fec->eth->erdsr);

	fec->xcv_type = pdata->xcv_type;

	sprintf(dev->name, "FEC ETHERNET");

	if (fec->xcv_type != SEVENWIRE) {
		fec->miiphy.read = fec_miiphy_read;
		fec->miiphy.write = fec_miiphy_write;
		fec->miiphy.address = CONFIG_PHY_ADDR;
		fec->miiphy.flags = pdata->xcv_type == MII10 ? MIIPHY_FORCE_10 : 0;
		fec->miiphy.edev = edev;

		miiphy_register(&fec->miiphy);
	}

	eth_register(edev);
	return 0;
}

/**
 * Driver description for registering
 */
static struct driver_d imx27_driver = {
        .name  = "fec_imx27",
        .probe = fec_probe,
        .type  = DEVICE_TYPE_ETHER,
};

static int fec_register(void)
{
        register_driver(&imx27_driver);
        return 0;
}

device_initcall(fec_register);

/**
 * @file
 * @brief Network driver for FreeScale's FEC implementation.
 * This type of hardware can be found on i.MX27 CPUs
 */