Newer
Older
barebox / drivers / video / edid.c
/*
 * drivers/video/edid.c
 *
 * Copyright (C) 2002 James Simmons <jsimmons@users.sf.net>
 *
 * Credits:
 *
 * The EDID Parser is a conglomeration from the following sources:
 *
 *   1. SciTech SNAP Graphics Architecture
 *      Copyright (C) 1991-2002 SciTech Software, Inc. All rights reserved.
 *
 *   2. XFree86 4.3.0, interpret_edid.c
 *      Copyright 1998 by Egbert Eich <Egbert.Eich@Physik.TU-Darmstadt.DE>
 *
 *   3. John Fremlin <vii@users.sourceforge.net> and
 *      Ani Joshi <ajoshi@unixbox.com>
 *
 * Generalized Timing Formula is derived from:
 *
 *      GTF Spreadsheet by Andy Morrish (1/5/97)
 *      available at http://www.vesa.org
 *
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file COPYING in the main directory of this archive
 * for more details.
 *
 */

#define pr_fmt(fmt)  "EDID: " fmt

#include <common.h>
#include <fb.h>
#include <malloc.h>
#include <i2c/i2c.h>

#include "edid.h"

#define FBMON_FIX_HEADER  1
#define FBMON_FIX_INPUT   2
#define FBMON_FIX_TIMINGS 3

struct broken_edid {
	u8  manufacturer[4];
	u32 model;
	u32 fix;
};

static const unsigned char edid_v1_header[] = { 0x00, 0xff, 0xff, 0xff,
	0xff, 0xff, 0xff, 0x00
};

static int edid_is_serial_block(unsigned char *block)
{
	if ((block[0] == 0x00) && (block[1] == 0x00) &&
	    (block[2] == 0x00) && (block[3] == 0xff) &&
	    (block[4] == 0x00))
		return 1;
	else
		return 0;
}

static int edid_is_ascii_block(unsigned char *block)
{
	if ((block[0] == 0x00) && (block[1] == 0x00) &&
	    (block[2] == 0x00) && (block[3] == 0xfe) &&
	    (block[4] == 0x00))
		return 1;
	else
		return 0;
}

static int edid_is_limits_block(unsigned char *block)
{
	if ((block[0] == 0x00) && (block[1] == 0x00) &&
	    (block[2] == 0x00) && (block[3] == 0xfd) &&
	    (block[4] == 0x00))
		return 1;
	else
		return 0;
}

static int edid_is_monitor_block(unsigned char *block)
{
	if ((block[0] == 0x00) && (block[1] == 0x00) &&
	    (block[2] == 0x00) && (block[3] == 0xfc) &&
	    (block[4] == 0x00))
		return 1;
	else
		return 0;
}

static int edid_is_timing_block(unsigned char *block)
{
	if ((block[0] != 0x00) || (block[1] != 0x00) ||
	    (block[2] != 0x00) || (block[4] != 0x00))
		return 1;
	else
		return 0;
}

static int check_edid(unsigned char *edid)
{
	unsigned char *block = edid + ID_MANUFACTURER_NAME, manufacturer[4];
	unsigned char *b;
	u32 model;
	int i, fix = 0, ret = 0;

	manufacturer[0] = ((block[0] & 0x7c) >> 2) + '@';
	manufacturer[1] = ((block[0] & 0x03) << 3) +
		((block[1] & 0xe0) >> 5) + '@';
	manufacturer[2] = (block[1] & 0x1f) + '@';
	manufacturer[3] = 0;
	model = block[2] + (block[3] << 8);

	switch (fix) {
	case FBMON_FIX_HEADER:
		for (i = 0; i < 8; i++) {
			if (edid[i] != edid_v1_header[i]) {
				ret = fix;
				break;
			}
		}
		break;
	case FBMON_FIX_INPUT:
		b = edid + EDID_STRUCT_DISPLAY;
		/* Only if display is GTF capable will
		   the input type be reset to analog */
		if (b[4] & 0x01 && b[0] & 0x80)
			ret = fix;
		break;
	case FBMON_FIX_TIMINGS:
		b = edid + DETAILED_TIMING_DESCRIPTIONS_START;
		ret = fix;

		for (i = 0; i < 4; i++) {
			if (edid_is_limits_block(b)) {
				ret = 0;
				break;
			}

			b += DETAILED_TIMING_DESCRIPTION_SIZE;
		}

		break;
	}

	if (ret)
		printk("fbmon: The EDID Block of "
		       "Manufacturer: %s Model: 0x%x is known to "
		       "be broken,\n",  manufacturer, model);

	return ret;
}

static void fix_edid(unsigned char *edid, int fix)
{
	int i;
	unsigned char *b, csum = 0;

	switch (fix) {
	case FBMON_FIX_HEADER:
		printk("fbmon: trying a header reconstruct\n");
		memcpy(edid, edid_v1_header, 8);
		break;
	case FBMON_FIX_INPUT:
		printk("fbmon: trying to fix input type\n");
		b = edid + EDID_STRUCT_DISPLAY;
		b[0] &= ~0x80;
		edid[127] += 0x80;
		break;
	case FBMON_FIX_TIMINGS:
		printk("fbmon: trying to fix monitor timings\n");
		b = edid + DETAILED_TIMING_DESCRIPTIONS_START;
		for (i = 0; i < 4; i++) {
			if (!(edid_is_serial_block(b) ||
			      edid_is_ascii_block(b) ||
			      edid_is_monitor_block(b) ||
			      edid_is_timing_block(b))) {
				b[0] = 0x00;
				b[1] = 0x00;
				b[2] = 0x00;
				b[3] = 0xfd;
				b[4] = 0x00;
				b[5] = 60;   /* vfmin */
				b[6] = 60;   /* vfmax */
				b[7] = 30;   /* hfmin */
				b[8] = 75;   /* hfmax */
				b[9] = 17;   /* pixclock - 170 MHz*/
				b[10] = 0;   /* GTF */
				break;
			}

			b += DETAILED_TIMING_DESCRIPTION_SIZE;
		}

		for (i = 0; i < EDID_LENGTH - 1; i++)
			csum += edid[i];

		edid[127] = 256 - csum;
		break;
	}
}

static int edid_checksum(unsigned char *edid)
{
	unsigned char csum = 0, all_null = 0;
	int i, err = 0, fix = check_edid(edid);

	if (fix)
		fix_edid(edid, fix);

	for (i = 0; i < EDID_LENGTH; i++) {
		csum += edid[i];
		all_null |= edid[i];
	}

	if (csum == 0x00 && all_null) {
		/* checksum passed, everything's good */
		err = 1;
	}

	return err;
}

static int edid_check_header(unsigned char *edid)
{
	int i, err = 1, fix = check_edid(edid);

	if (fix)
		fix_edid(edid, fix);

	for (i = 0; i < 8; i++) {
		if (edid[i] != edid_v1_header[i])
			err = 0;
	}

	return err;
}

/*
 * VESA Generalized Timing Formula (GTF)
 */

#define FLYBACK                     550
#define V_FRONTPORCH                1
#define H_OFFSET                    40
#define H_SCALEFACTOR               20
#define H_BLANKSCALE                128
#define H_GRADIENT                  600
#define C_VAL                       30
#define M_VAL                       300

struct __fb_timings {
	u32 dclk;
	u32 hfreq;
	u32 vfreq;
	u32 hactive;
	u32 vactive;
	u32 hblank;
	u32 vblank;
	u32 htotal;
	u32 vtotal;
};

/**
 * fb_get_vblank - get vertical blank time
 * @hfreq: horizontal freq
 *
 * DESCRIPTION:
 * vblank = right_margin + vsync_len + left_margin
 *
 *    given: right_margin = 1 (V_FRONTPORCH)
 *           vsync_len    = 3
 *           flyback      = 550
 *
 *                          flyback * hfreq
 *           left_margin  = --------------- - vsync_len
 *                           1000000
 */
static u32 fb_get_vblank(u32 hfreq)
{
	u32 vblank;

	vblank = (hfreq * FLYBACK)/1000;
	vblank = (vblank + 500)/1000;
	return (vblank + V_FRONTPORCH);
}

/**
 * fb_get_hblank_by_freq - get horizontal blank time given hfreq
 * @hfreq: horizontal freq
 * @xres: horizontal resolution in pixels
 *
 * DESCRIPTION:
 *
 *           xres * duty_cycle
 * hblank = ------------------
 *           100 - duty_cycle
 *
 * duty cycle = percent of htotal assigned to inactive display
 * duty cycle = C - (M/Hfreq)
 *
 * where: C = ((offset - scale factor) * blank_scale)
 *            -------------------------------------- + scale factor
 *                        256
 *        M = blank_scale * gradient
 *
 */
static u32 fb_get_hblank_by_hfreq(u32 hfreq, u32 xres)
{
	u32 c_val, m_val, duty_cycle, hblank;

	c_val = (((H_OFFSET - H_SCALEFACTOR) * H_BLANKSCALE)/256 +
		 H_SCALEFACTOR) * 1000;
	m_val = (H_BLANKSCALE * H_GRADIENT)/256;
	m_val = (m_val * 1000000)/hfreq;
	duty_cycle = c_val - m_val;
	hblank = (xres * duty_cycle)/(100000 - duty_cycle);
	return (hblank);
}

/**
 * fb_get_hfreq - estimate hsync
 * @vfreq: vertical refresh rate
 * @yres: vertical resolution
 *
 * DESCRIPTION:
 *
 *          (yres + front_port) * vfreq * 1000000
 * hfreq = -------------------------------------
 *          (1000000 - (vfreq * FLYBACK)
 *
 */

static u32 fb_get_hfreq(u32 vfreq, u32 yres)
{
	u32 divisor, hfreq;

	divisor = (1000000 - (vfreq * FLYBACK))/1000;
	hfreq = (yres + V_FRONTPORCH) * vfreq  * 1000;
	return (hfreq/divisor);
}

static void fb_timings_vfreq(struct __fb_timings *timings)
{
	timings->hfreq = fb_get_hfreq(timings->vfreq, timings->vactive);
	timings->vblank = fb_get_vblank(timings->hfreq);
	timings->vtotal = timings->vactive + timings->vblank;
	timings->hblank = fb_get_hblank_by_hfreq(timings->hfreq,
						 timings->hactive);
	timings->htotal = timings->hactive + timings->hblank;
	timings->dclk = timings->htotal * timings->hfreq;
}

/*
 * fb_get_mode - calculates video mode using VESA GTF
 * @flags: if: 0 - maximize vertical refresh rate
 *             1 - vrefresh-driven calculation;
 *             2 - hscan-driven calculation;
 *             3 - pixelclock-driven calculation;
 * @val: depending on @flags, ignored, vrefresh, hsync or pixelclock
 * @var: pointer to fb_var_screeninfo
 * @info: pointer to fb_info
 *
 * DESCRIPTION:
 * Calculates video mode based on monitor specs using VESA GTF.
 * The GTF is best for VESA GTF compliant monitors but is
 * specifically formulated to work for older monitors as well.
 *
 * If @flag==0, the function will attempt to maximize the
 * refresh rate.  Otherwise, it will calculate timings based on
 * the flag and accompanying value.
 *
 * If FB_IGNOREMON bit is set in @flags, monitor specs will be
 * ignored and @var will be filled with the calculated timings.
 *
 * All calculations are based on the VESA GTF Spreadsheet
 * available at VESA's public ftp (http://www.vesa.org).
 *
 * NOTES:
 * The timings generated by the GTF will be different from VESA
 * DMT.  It might be a good idea to keep a table of standard
 * VESA modes as well.  The GTF may also not work for some displays,
 * such as, and especially, analog TV.
 *
 * REQUIRES:
 * A valid info->monspecs, otherwise 'safe numbers' will be used.
 */
static int fb_get_mode(int flags, u32 val, struct fb_videomode *var)
{
	struct __fb_timings *timings;
	u32 interlace = 1, dscan = 1;
	u32 hfmin, hfmax, vfmin, vfmax, dclkmin, dclkmax, err = 0;

	timings = xzalloc(sizeof(struct __fb_timings));

	/*
	 * If monspecs are invalid, use values that are enough
	 * for 640x480@60
	 */
	hfmin = 29000; hfmax = 30000;
	vfmin = 60; vfmax = 60;
	dclkmin = 0; dclkmax = 25000000;

	timings->hactive = var->xres;
	timings->vactive = var->yres;
	if (var->vmode & FB_VMODE_INTERLACED) {
		timings->vactive /= 2;
		interlace = 2;
	}
	if (var->vmode & FB_VMODE_DOUBLE) {
		timings->vactive *= 2;
		dscan = 2;
	}

	/* vrefresh driven */
	timings->vfreq = val;
	fb_timings_vfreq(timings);

	if (timings->dclk)
		var->pixclock = KHZ2PICOS(timings->dclk / 1000);
	var->hsync_len = (timings->htotal * 8) / 100;
	var->right_margin = (timings->hblank / 2) - var->hsync_len;
	var->left_margin = timings->hblank - var->right_margin -
		var->hsync_len;
	var->vsync_len = (3 * interlace) / dscan;
	var->lower_margin = (1 * interlace) / dscan;
	var->upper_margin = (timings->vblank * interlace) / dscan -
		(var->vsync_len + var->lower_margin);

	free(timings);
	return err;
}

static void calc_mode_timings(int xres, int yres, int refresh,
			      struct fb_videomode *mode)
{
	mode->xres = xres;
	mode->yres = yres;
	mode->refresh = refresh;
	fb_get_mode(0, refresh, mode);
	mode->name = basprintf("%dx%d@%d-calc", mode->xres, mode->yres,
				 mode->refresh);
	pr_debug("      %s\n", mode->name);
}

const struct fb_videomode vesa_modes[] = {
	/* 0 640x350-85 VESA */
	{ NULL, 85, 640, 350, 31746,  96, 32, 60, 32, 64, 3,
	  FB_SYNC_HOR_HIGH_ACT, FB_VMODE_NONINTERLACED, 0},
	/* 1 640x400-85 VESA */
	{ NULL, 85, 640, 400, 31746,  96, 32, 41, 01, 64, 3,
	  FB_SYNC_VERT_HIGH_ACT, FB_VMODE_NONINTERLACED, 0 },
	/* 2 720x400-85 VESA */
	{ NULL, 85, 721, 400, 28169, 108, 36, 42, 01, 72, 3,
	  FB_SYNC_VERT_HIGH_ACT, FB_VMODE_NONINTERLACED, 0 },
	/* 3 640x480-60 VESA */
	{ NULL, 60, 640, 480, 39682,  48, 16, 33, 10, 96, 2,
	  0, FB_VMODE_NONINTERLACED, 0 },
	/* 4 640x480-72 VESA */
	{ NULL, 72, 640, 480, 31746, 128, 24, 29, 9, 40, 2,
	  0, FB_VMODE_NONINTERLACED, 0 },
	/* 5 640x480-75 VESA */
	{ NULL, 75, 640, 480, 31746, 120, 16, 16, 01, 64, 3,
	  0, FB_VMODE_NONINTERLACED, 0 },
	/* 6 640x480-85 VESA */
	{ NULL, 85, 640, 480, 27777, 80, 56, 25, 01, 56, 3,
	  0, FB_VMODE_NONINTERLACED, 0 },
	/* 7 800x600-56 VESA */
	{ NULL, 56, 800, 600, 27777, 128, 24, 22, 01, 72, 2,
	  FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
	  FB_VMODE_NONINTERLACED, 0 },
	/* 8 800x600-60 VESA */
	{ NULL, 60, 800, 600, 25000, 88, 40, 23, 01, 128, 4,
	  FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
	  FB_VMODE_NONINTERLACED, 0 },
	/* 9 800x600-72 VESA */
	{ NULL, 72, 800, 600, 20000, 64, 56, 23, 37, 120, 6,
	  FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
	  FB_VMODE_NONINTERLACED, 0 },
	/* 10 800x600-75 VESA */
	{ NULL, 75, 800, 600, 20202, 160, 16, 21, 01, 80, 3,
	  FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
	  FB_VMODE_NONINTERLACED, 0 },
	/* 11 800x600-85 VESA */
	{ NULL, 85, 800, 600, 17761, 152, 32, 27, 01, 64, 3,
	  FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
	  FB_VMODE_NONINTERLACED, 0 },
        /* 12 1024x768i-43 VESA */
	{ NULL, 43, 1024, 768, 22271, 56, 8, 41, 0, 176, 8,
	  FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
	  FB_VMODE_INTERLACED, 0 },
	/* 13 1024x768-60 VESA */
	{ NULL, 60, 1024, 768, 15384, 160, 24, 29, 3, 136, 6,
	  0, FB_VMODE_NONINTERLACED, 0 },
	/* 14 1024x768-70 VESA */
	{ NULL, 70, 1024, 768, 13333, 144, 24, 29, 3, 136, 6,
	  0, FB_VMODE_NONINTERLACED, 0 },
	/* 15 1024x768-75 VESA */
	{ NULL, 75, 1024, 768, 12690, 176, 16, 28, 1, 96, 3,
	  FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
	  FB_VMODE_NONINTERLACED, 0 },
	/* 16 1024x768-85 VESA */
	{ NULL, 85, 1024, 768, 10582, 208, 48, 36, 1, 96, 3,
	  FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
	  FB_VMODE_NONINTERLACED, 0 },
	/* 17 1152x864-75 VESA */
	{ NULL, 75, 1152, 864, 9259, 256, 64, 32, 1, 128, 3,
	  FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
	  FB_VMODE_NONINTERLACED, 0 },
	/* 18 1280x960-60 VESA */
	{ NULL, 60, 1280, 960, 9259, 312, 96, 36, 1, 112, 3,
	  FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
	  FB_VMODE_NONINTERLACED, 0 },
	/* 19 1280x960-85 VESA */
	{ NULL, 85, 1280, 960, 6734, 224, 64, 47, 1, 160, 3,
	  FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
	  FB_VMODE_NONINTERLACED, 0 },
	/* 20 1280x1024-60 VESA */
	{ NULL, 60, 1280, 1024, 9259, 248, 48, 38, 1, 112, 3,
	  FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
	  FB_VMODE_NONINTERLACED, 0 },
	/* 21 1280x1024-75 VESA */
	{ NULL, 75, 1280, 1024, 7407, 248, 16, 38, 1, 144, 3,
	  FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
	  FB_VMODE_NONINTERLACED, 0 },
	/* 22 1280x1024-85 VESA */
	{ NULL, 85, 1280, 1024, 6349, 224, 64, 44, 1, 160, 3,
	  FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
	  FB_VMODE_NONINTERLACED, 0 },
	/* 23 1600x1200-60 VESA */
	{ NULL, 60, 1600, 1200, 6172, 304, 64, 46, 1, 192, 3,
	  FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
	  FB_VMODE_NONINTERLACED, 0 },
	/* 24 1600x1200-65 VESA */
	{ NULL, 65, 1600, 1200, 5698, 304,  64, 46, 1, 192, 3,
	  FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
	  FB_VMODE_NONINTERLACED, 0 },
	/* 25 1600x1200-70 VESA */
	{ NULL, 70, 1600, 1200, 5291, 304, 64, 46, 1, 192, 3,
	  FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
	  FB_VMODE_NONINTERLACED, 0 },
	/* 26 1600x1200-75 VESA */
	{ NULL, 75, 1600, 1200, 4938, 304, 64, 46, 1, 192, 3,
	  FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
	  FB_VMODE_NONINTERLACED, 0 },
	/* 27 1600x1200-85 VESA */
	{ NULL, 85, 1600, 1200, 4357, 304, 64, 46, 1, 192, 3,
	  FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
	  FB_VMODE_NONINTERLACED, 0 },
	/* 28 1792x1344-60 VESA */
	{ NULL, 60, 1792, 1344, 4882, 328, 128, 46, 1, 200, 3,
	  FB_SYNC_VERT_HIGH_ACT, FB_VMODE_NONINTERLACED, 0 },
	/* 29 1792x1344-75 VESA */
	{ NULL, 75, 1792, 1344, 3831, 352, 96, 69, 1, 216, 3,
	  FB_SYNC_VERT_HIGH_ACT, FB_VMODE_NONINTERLACED, 0 },
	/* 30 1856x1392-60 VESA */
	{ NULL, 60, 1856, 1392, 4580, 352, 96, 43, 1, 224, 3,
	  FB_SYNC_VERT_HIGH_ACT, FB_VMODE_NONINTERLACED, 0 },
	/* 31 1856x1392-75 VESA */
	{ NULL, 75, 1856, 1392, 3472, 352, 128, 104, 1, 224, 3,
	  FB_SYNC_VERT_HIGH_ACT, FB_VMODE_NONINTERLACED, 0 },
	/* 32 1920x1440-60 VESA */
	{ NULL, 60, 1920, 1440, 4273, 344, 128, 56, 1, 200, 3,
	  FB_SYNC_VERT_HIGH_ACT, FB_VMODE_NONINTERLACED, 0 },
	/* 33 1920x1440-75 VESA */
	{ NULL, 75, 1920, 1440, 3367, 352, 144, 56, 1, 224, 3,
	  FB_SYNC_VERT_HIGH_ACT, FB_VMODE_NONINTERLACED, 0 },
};

#define VESA_MODEDB_SIZE ARRAY_SIZE(vesa_modes)

static void add_vesa_mode(struct fb_videomode *mode, int num)
{
	*mode = vesa_modes[num];
	mode->name = basprintf("%dx%d@%d-vesa", mode->xres, mode->yres,
				 mode->refresh);
	pr_debug("      %s\n", mode->name);
}

static int get_est_timing(unsigned char *block, struct fb_videomode *mode)
{
	int num = 0;
	unsigned char c;

	c = block[0];
	if (c & 0x80)
		calc_mode_timings(720, 400, 70, &mode[num++]);
	if (c & 0x40)
		calc_mode_timings(720, 400, 88, &mode[num++]);
	if (c & 0x20)
		add_vesa_mode(&mode[num++], 3);
	if (c & 0x10)
		calc_mode_timings(640, 480, 67, &mode[num++]);
	if (c & 0x08)
		add_vesa_mode(&mode[num++], 4);
	if (c & 0x04)
		add_vesa_mode(&mode[num++], 5);
	if (c & 0x02)
		add_vesa_mode(&mode[num++], 7);
	if (c & 0x01)
		add_vesa_mode(&mode[num++], 8);

	c = block[1];
	if (c & 0x80)
		add_vesa_mode(&mode[num++], 9);
	if (c & 0x40)
		add_vesa_mode(&mode[num++], 10);
	if (c & 0x20)
		calc_mode_timings(832, 624, 75, &mode[num++]);
	if (c & 0x10)
		add_vesa_mode(&mode[num++], 12);
	if (c & 0x08)
		add_vesa_mode(&mode[num++], 13);
	if (c & 0x04)
		add_vesa_mode(&mode[num++], 14);
	if (c & 0x02)
		add_vesa_mode(&mode[num++], 15);
	if (c & 0x01)
		add_vesa_mode(&mode[num++], 21);
	c = block[2];

	if (c & 0x80)
		add_vesa_mode(&mode[num++], 17);

	pr_debug("      Manufacturer's mask: %x\n",c & 0x7F);
	return num;
}

static int get_std_timing(unsigned char *block, struct fb_videomode *mode,
		int ver, int rev)
{
	int xres, yres = 0, refresh, ratio, i;

	xres = (block[0] + 31) * 8;
	if (xres <= 256)
		return 0;

	ratio = (block[1] & 0xc0) >> 6;
	switch (ratio) {
	case 0:
		/* in EDID 1.3 the meaning of 0 changed to 16:10 (prior 1:1) */
		if (ver < 1 || (ver == 1 && rev < 3))
			yres = xres;
		else
			yres = (xres * 10) / 16;
		break;
	case 1:
		yres = (xres * 3) / 4;
		break;
	case 2:
		yres = (xres * 4) / 5;
		break;
	case 3:
		yres = (xres * 9) / 16;
		break;
	}
	refresh = (block[1] & 0x3f) + 60;

	for (i = 0; i < VESA_MODEDB_SIZE; i++) {
		if (vesa_modes[i].xres == xres &&
		    vesa_modes[i].yres == yres &&
		    vesa_modes[i].refresh == refresh) {
			add_vesa_mode(mode, i);
			return 1;
		}
	}

	calc_mode_timings(xres, yres, refresh, mode);

	return 1;
}

static int get_dst_timing(unsigned char *block,
			  struct fb_videomode *mode, int ver, int rev)
{
	int j, num = 0;

	for (j = 0; j < 6; j++, block += STD_TIMING_DESCRIPTION_SIZE)
		num += get_std_timing(block, &mode[num], ver, rev);

	return num;
}

static void get_detailed_timing(unsigned char *block,
				struct fb_videomode *mode)
{
	mode->xres = H_ACTIVE;
	mode->yres = V_ACTIVE;
	mode->pixclock = PIXEL_CLOCK;
	mode->pixclock /= 1000;
	mode->pixclock = KHZ2PICOS(mode->pixclock);
	mode->right_margin = H_SYNC_OFFSET;
	mode->left_margin = (H_ACTIVE + H_BLANKING) -
		(H_ACTIVE + H_SYNC_OFFSET + H_SYNC_WIDTH);
	mode->upper_margin = V_BLANKING - V_SYNC_OFFSET -
		V_SYNC_WIDTH;
	mode->lower_margin = V_SYNC_OFFSET;
	mode->hsync_len = H_SYNC_WIDTH;
	mode->vsync_len = V_SYNC_WIDTH;
	if (HSYNC_POSITIVE)
		mode->sync |= FB_SYNC_HOR_HIGH_ACT;
	if (VSYNC_POSITIVE)
		mode->sync |= FB_SYNC_VERT_HIGH_ACT;
	mode->refresh = PIXEL_CLOCK/((H_ACTIVE + H_BLANKING) *
				     (V_ACTIVE + V_BLANKING));
	if (INTERLACED) {
		mode->yres *= 2;
		mode->upper_margin *= 2;
		mode->lower_margin *= 2;
		mode->vsync_len *= 2;
		mode->vmode |= FB_VMODE_INTERLACED;
	}

	pr_debug("      %d MHz ",  PIXEL_CLOCK/1000000);
	pr_debug("%d %d %d %d ", H_ACTIVE, H_ACTIVE + H_SYNC_OFFSET,
	       H_ACTIVE + H_SYNC_OFFSET + H_SYNC_WIDTH, H_ACTIVE + H_BLANKING);
	pr_debug("%d %d %d %d ", V_ACTIVE, V_ACTIVE + V_SYNC_OFFSET,
	       V_ACTIVE + V_SYNC_OFFSET + V_SYNC_WIDTH, V_ACTIVE + V_BLANKING);
	pr_debug("%sHSync %sVSync\n", (HSYNC_POSITIVE) ? "+" : "-",
	       (VSYNC_POSITIVE) ? "+" : "-");

	mode->name = basprintf("%dx%d@%d", mode->xres, mode->yres,
				 mode->refresh);
}

/**
 * edid_to_display_timings - create video mode database
 * @edid: EDID data
 * @dbsize: database size
 *
 * RETURNS: struct fb_videomode, @dbsize contains length of database
 *
 * DESCRIPTION:
 * This function builds a mode database using the contents of the EDID
 * data
 */
int edid_to_display_timings(struct display_timings *timings, unsigned char *edid)
{
	struct fb_videomode *mode;
	unsigned char *block;
	int num = 0, i, first = 1;
	int ver, rev, ret;

	ver = edid[EDID_STRUCT_VERSION];
	rev = edid[EDID_STRUCT_REVISION];

	mode = xzalloc(50 * sizeof(struct fb_videomode));

	if (!edid_checksum(edid) ||
	    !edid_check_header(edid)) {
		ret = -EINVAL;
		goto out;
	}

	pr_debug("   Detailed Timings\n");
	block = edid + DETAILED_TIMING_DESCRIPTIONS_START;
	for (i = 0; i < 4; i++, block+= DETAILED_TIMING_DESCRIPTION_SIZE) {
		if (!(block[0] == 0x00 && block[1] == 0x00)) {
			get_detailed_timing(block, &mode[num]);
			if (first) {
				first = 0;
			}
			num++;
		}
	}

	pr_debug("   Supported VESA Modes\n");
	block = edid + ESTABLISHED_TIMING_1;
	num += get_est_timing(block, &mode[num]);

	pr_debug("   Standard Timings\n");
	block = edid + STD_TIMING_DESCRIPTIONS_START;
	for (i = 0; i < STD_TIMING; i++, block += STD_TIMING_DESCRIPTION_SIZE)
		num += get_std_timing(block, &mode[num], ver, rev);

	block = edid + DETAILED_TIMING_DESCRIPTIONS_START;
	for (i = 0; i < 4; i++, block+= DETAILED_TIMING_DESCRIPTION_SIZE) {
		if (block[0] == 0x00 && block[1] == 0x00 && block[3] == 0xfa)
			num += get_dst_timing(block + 5, &mode[num], ver, rev);
	}

	/* Yikes, EDID data is totally useless */
	if (!num) {
		free(mode);
		return -EINVAL;
	}

	timings->num_modes = num;
	timings->modes = mode;

	return 0;
out:
	free(mode);
	return ret;
}

#define DDC_ADDR	0x50
#define DDC_SEGMENT_ADDR 0x30

/**
 * Get EDID information via I2C.
 *
 * \param adapter : i2c device adaptor
 * \param buf     : EDID data buffer to be filled
 * \param len     : EDID data buffer length
 * \return 0 on success or -1 on failure.
 *
 * Try to fetch EDID information by calling i2c driver function.
 */
static int
edid_do_read_i2c(struct i2c_adapter *adapter, unsigned char *buf,
		      int block, int len)
{
	unsigned char start = block * EDID_LENGTH;
	unsigned char segment = block >> 1;
	unsigned char xfers = segment ? 3 : 2;
	int ret, retries = 5;

	/* The core i2c driver will automatically retry the transfer if the
	 * adapter reports EAGAIN. However, we find that bit-banging transfers
	 * are susceptible to errors under a heavily loaded machine and
	 * generate spurious NAKs and timeouts. Retrying the transfer
	 * of the individual block a few times seems to overcome this.
	 */
	do {
		struct i2c_msg msgs[] = {
			{
				.addr	= DDC_SEGMENT_ADDR,
				.flags	= 0,
				.len	= 1,
				.buf	= &segment,
			}, {
				.addr	= DDC_ADDR,
				.flags	= 0,
				.len	= 1,
				.buf	= &start,
			}, {
				.addr	= DDC_ADDR,
				.flags	= I2C_M_RD,
				.len	= len,
				.buf	= buf,
			}
		};

	/*
	 * Avoid sending the segment addr to not upset non-compliant ddc
	 * monitors.
	 */
		ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
	} while (ret != xfers && --retries);

	return ret == xfers ? 0 : -1;
}

void *edid_read_i2c(struct i2c_adapter *adapter)
{
	u8 *block;

	block = xmalloc(EDID_LENGTH);

	if (edid_do_read_i2c(adapter, block, 0, EDID_LENGTH))
		goto out;

	return block;
out:
	free(block);

	return NULL;
}

void fb_edid_add_modes(struct fb_info *info)
{
	if (info->edid_i2c_adapter)
		info->edid_data = edid_read_i2c(info->edid_i2c_adapter);

	if (!info->edid_data)
		return;

	edid_to_display_timings(&info->edid_modes, info->edid_data);
}