Newer
Older
mbed-os / targets / TARGET_STM / TARGET_STM32F3 / STM32Cube_FW / STM32F3xx_HAL_Driver / stm32f3xx_hal_rtc.c
@jeromecoutant jeromecoutant on 5 Nov 2020 61 KB STM32F3: CUBE V1.11.1
/**
  ******************************************************************************
  * @file    stm32f3xx_hal_rtc.c
  * @author  MCD Application Team
  * @brief   RTC HAL module driver.
  *          This file provides firmware functions to manage the following
  *          functionalities of the Real-Time Clock (RTC) peripheral:
  *           + Initialization
  *           + Calendar (Time and Date) configuration
  *           + Alarms (Alarm A and Alarm B) configuration
  *           + WakeUp Timer configuration
  *           + TimeStamp configuration
  *           + Tampers configuration
  *           + Backup Data Registers configuration
  *           + RTC Tamper and TimeStamp Pins Selection
  *           + Interrupts and flags management
  *
  @verbatim

 ===============================================================================
                          ##### RTC Operating Condition #####
 ===============================================================================
    [..] The real-time clock (RTC) and the RTC backup registers can be powered
         from the VBAT voltage when the main VDD supply is powered off.
         To retain the content of the RTC backup registers and supply the RTC
         when VDD is turned off, VBAT pin can be connected to an optional
         standby voltage supplied by a battery or by another source.

    [..] To allow the RTC to operate even when the main digital supply (VDD)
         is turned off, the VBAT pin powers the following blocks:
           (#) The RTC
           (#) The LSE oscillator
           (#) PC13 to PC15 I/Os (when available)

    [..] When the backup domain is supplied by VDD (analog switch connected
         to VDD), the following functions are available:
           (#) PC14 and PC15 can be used as either GPIO or LSE pins
           (#) PC13 can be used as a GPIO or as the RTC_OUT pin

    [..] When the backup domain is supplied by VBAT (analog switch connected
         to VBAT because VDD is not present), the following functions are available:
           (#) PC14 and PC15 can be used as LSE pins only
           (#) PC13 can be used as the RTC_OUT pin

                        ##### Backup Domain Reset #####
 ===============================================================================
    [..] The backup domain reset sets all RTC registers and the RCC_BDCR
         register to their reset values.
         A backup domain reset is generated when one of the following events
         occurs:
           (#) Software reset, triggered by setting the BDRST bit in the
               RCC Backup domain control register (RCC_BDCR).
           (#) VDD or VBAT power on, if both supplies have previously been
               powered off.

                   ##### Backup Domain Access #####
 ===================================================================
    [..] After reset, the backup domain (RTC registers, RTC backup data
         registers and backup SRAM) is protected against possible unwanted write
         accesses.

    [..] To enable access to the RTC Domain and RTC registers, proceed as follows:
           (#) Enable the Power Controller (PWR) APB1 interface clock using the
               __HAL_RCC_PWR_CLK_ENABLE() function.
           (#) Enable access to RTC domain using the HAL_PWR_EnableBkUpAccess() function.
           (#) Select the RTC clock source using the __HAL_RCC_RTC_CONFIG() function.
           (#) Enable RTC Clock using the __HAL_RCC_RTC_ENABLE() function.


                  ##### How to use RTC Driver #####
 ===================================================================
    [..]
        (+) Enable the RTC domain access (see description in the section above).
        (+) Configure the RTC Prescaler (Asynchronous and Synchronous) and RTC hour
            format using the HAL_RTC_Init() function.

    *** Time and Date configuration ***
    ===================================
    [..]
        (+) To configure the RTC Calendar (Time and Date) use the HAL_RTC_SetTime()
            and HAL_RTC_SetDate() functions.
        (+) To read the RTC Calendar, use the HAL_RTC_GetTime() and HAL_RTC_GetDate() functions.

    *** Alarm configuration ***
    ===========================
    [..]
        (+) To configure the RTC Alarm use the HAL_RTC_SetAlarm() function.
            You can also configure the RTC Alarm with interrupt mode using the
            HAL_RTC_SetAlarm_IT() function.
        (+) To read the RTC Alarm, use the HAL_RTC_GetAlarm() function.

    *** RTC Wakeup configuration ***
    ================================
    [..]
        (+) To configure the RTC Wakeup Clock source and Counter use the HAL_RTC_SetWakeUpTimer()
            function. You can also configure the RTC Wakeup timer with interrupt mode
            using the HAL_RTC_SetWakeUpTimer_IT() function.
        (+) To read the RTC WakeUp Counter register, use the HAL_RTC_GetWakeUpTimer()
            function.

    *** TimeStamp configuration ***
    ===============================
    [..]
        (+) Configure the RTC_AF trigger and enables the RTC TimeStamp using the
            HAL_RTC_SetTimeStamp() function. You can also configure the RTC TimeStamp with
            interrupt mode using the HAL_RTC_SetTimeStamp_IT() function.
        (+) To read the RTC TimeStamp Time and Date register, use the HAL_RTC_GetTimeStamp()
            function.

    *** Tamper configuration ***
    ============================
    [..]
        (+) Enable the RTC Tamper and Configure the Tamper filter count, trigger Edge
            or Level according to the Tamper filter (if equal to 0 Edge else Level)
            value, sampling frequency, precharge or discharge and Pull-UP using the
            HAL_RTC_SetTamper() function. You can configure RTC Tamper with interrupt
            mode using HAL_RTC_SetTamper_IT() function.

    *** Backup Data Registers configuration ***
    ===========================================
    [..]
        (+) To write to the RTC Backup Data registers, use the HAL_RTC_BKUPWrite()
            function.
        (+) To read the RTC Backup Data registers, use the HAL_RTC_BKUPRead()
            function.


                  ##### RTC and low power modes #####
 ===================================================================
    [..] The MCU can be woken up from a low power mode by an RTC alternate
         function.
    [..] The RTC alternate functions are the RTC alarms (Alarm A and Alarm B),
         RTC wakeup, RTC tamper event detection and RTC time stamp event detection.
         These RTC alternate functions can wake up the system from the Stop and
         Standby low power modes.
    [..] The system can also wake up from low power modes without depending
         on an external interrupt (Auto-wakeup mode), by using the RTC alarm
         or the RTC wakeup events.
    [..] The RTC provides a programmable time base for waking up from the
         Stop or Standby mode at regular intervals.
         Wakeup from STOP and Standby modes is possible only when the RTC clock source
         is LSE or LSI.

  *** Callback registration ***
  =============================================

  The compilation define  USE_HAL_RTC_REGISTER_CALLBACKS when set to 1
  allows the user to configure dynamically the driver callbacks.
  Use Function @ref HAL_RTC_RegisterCallback() to register an interrupt callback.

  Function @ref HAL_RTC_RegisterCallback() allows to register following callbacks:
    (+) AlarmAEventCallback          : RTC Alarm A Event callback.
    (+) AlarmBEventCallback          : RTC Alarm B Event callback.
    (+) TimeStampEventCallback       : RTC TimeStamp Event callback.
    (+) WakeUpTimerEventCallback     : RTC WakeUpTimer Event callback.
    (+) Tamper1EventCallback         : RTC Tamper 1 Event callback.
    (+) Tamper2EventCallback         : RTC Tamper 2 Event callback.
    (+) Tamper3EventCallback         : RTC Tamper 3 Event callback.
    (+) MspInitCallback              : RTC MspInit callback.
    (+) MspDeInitCallback            : RTC MspDeInit callback.
  This function takes as parameters the HAL peripheral handle, the Callback ID
  and a pointer to the user callback function.

  Use function @ref HAL_RTC_UnRegisterCallback() to reset a callback to the default
  weak function.
  @ref HAL_RTC_UnRegisterCallback() takes as parameters the HAL peripheral handle,
  and the Callback ID.
  This function allows to reset following callbacks:
    (+) AlarmAEventCallback          : RTC Alarm A Event callback.
    (+) AlarmBEventCallback          : RTC Alarm B Event callback.
    (+) TimeStampEventCallback       : RTC TimeStamp Event callback.
    (+) WakeUpTimerEventCallback     : RTC WakeUpTimer Event callback.
    (+) Tamper1EventCallback         : RTC Tamper 1 Event callback.
    (+) Tamper2EventCallback         : RTC Tamper 2 Event callback.
    (+) Tamper3EventCallback         : RTC Tamper 3 Event callback.
    (+) MspInitCallback              : RTC MspInit callback.
    (+) MspDeInitCallback            : RTC MspDeInit callback.

  By default, after the @ref HAL_RTC_Init() and when the state is HAL_RTC_STATE_RESET,
  all callbacks are set to the corresponding weak functions :
  examples @ref AlarmAEventCallback(), @ref WakeUpTimerEventCallback().
  Exception done for MspInit and MspDeInit callbacks that are reset to the legacy weak function
  in the @ref HAL_RTC_Init()/@ref HAL_RTC_DeInit() only when these callbacks are null
  (not registered beforehand).
  If not, MspInit or MspDeInit are not null, @ref HAL_RTC_Init()/@ref HAL_RTC_DeInit()
  keep and use the user MspInit/MspDeInit callbacks (registered beforehand)

  Callbacks can be registered/unregistered in HAL_RTC_STATE_READY state only.
  Exception done MspInit/MspDeInit that can be registered/unregistered
  in HAL_RTC_STATE_READY or HAL_RTC_STATE_RESET state,
  thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit.
  In that case first register the MspInit/MspDeInit user callbacks
  using @ref HAL_RTC_RegisterCallback() before calling @ref HAL_RTC_DeInit()
  or @ref HAL_RTC_Init() function.

  When The compilation define USE_HAL_RTC_REGISTER_CALLBACKS is set to 0 or
  not defined, the callback registration feature is not available and all callbacks
  are set to the corresponding weak functions.
  @endverbatim

  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
  * All rights reserved.</center></h2>
  *
  * This software component is licensed by ST under BSD 3-Clause license,
  * the "License"; You may not use this file except in compliance with the
  * License. You may obtain a copy of the License at:
  *                        opensource.org/licenses/BSD-3-Clause
  *
  ******************************************************************************
  */

/* Includes ------------------------------------------------------------------*/
#include "stm32f3xx_hal.h"

/** @addtogroup STM32F3xx_HAL_Driver
  * @{
  */

/** @addtogroup RTC
  * @brief RTC HAL module driver
  * @{
  */

#ifdef HAL_RTC_MODULE_ENABLED

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions ---------------------------------------------------------*/

/** @addtogroup RTC_Exported_Functions
  * @{
  */

/** @addtogroup RTC_Exported_Functions_Group1
 *  @brief    Initialization and Configuration functions
 *
@verbatim
 ===============================================================================
              ##### Initialization and de-initialization functions #####
 ===============================================================================
   [..] This section provides functions allowing to initialize and configure the
         RTC Prescaler (Synchronous and Asynchronous), RTC Hour format, disable
         RTC registers Write protection, enter and exit the RTC initialization mode,
         RTC registers synchronization check and reference clock detection enable.
         (#) The RTC Prescaler is programmed to generate the RTC 1Hz time base.
             It is split into 2 programmable prescalers to minimize power consumption.
             (++) A 7-bit asynchronous prescaler and a 15-bit synchronous prescaler.
             (++) When both prescalers are used, it is recommended to configure the
                 asynchronous prescaler to a high value to minimize power consumption.
         (#) All RTC registers are Write protected. Writing to the RTC registers
             is enabled by writing a key into the Write Protection register, RTC_WPR.
         (#) To configure the RTC Calendar, user application should enter
             initialization mode. In this mode, the calendar counter is stopped
             and its value can be updated. When the initialization sequence is
             complete, the calendar restarts counting after 4 RTCCLK cycles.
         (#) To read the calendar through the shadow registers after Calendar
             initialization, calendar update or after wakeup from low power modes
             the software must first clear the RSF flag. The software must then
             wait until it is set again before reading the calendar, which means
             that the calendar registers have been correctly copied into the
             RTC_TR and RTC_DR shadow registers.The HAL_RTC_WaitForSynchro() function
             implements the above software sequence (RSF clear and RSF check).

@endverbatim
  * @{
  */

/**
  * @brief  Initialize the RTC according to the specified parameters
  *         in the RTC_InitTypeDef structure and initialize the associated handle.
  * @param  hrtc RTC handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RTC_Init(RTC_HandleTypeDef *hrtc)
{
  /* Check the RTC peripheral state */
  if (hrtc == NULL)
  {
    return HAL_ERROR;
  }

  /* Check the parameters */
  assert_param(IS_RTC_ALL_INSTANCE(hrtc->Instance));
  assert_param(IS_RTC_HOUR_FORMAT(hrtc->Init.HourFormat));
  assert_param(IS_RTC_ASYNCH_PREDIV(hrtc->Init.AsynchPrediv));
  assert_param(IS_RTC_SYNCH_PREDIV(hrtc->Init.SynchPrediv));
  assert_param(IS_RTC_OUTPUT(hrtc->Init.OutPut));
  assert_param(IS_RTC_OUTPUT_POL(hrtc->Init.OutPutPolarity));
  assert_param(IS_RTC_OUTPUT_TYPE(hrtc->Init.OutPutType));

#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
  if(hrtc->State == HAL_RTC_STATE_RESET)
  {
    /* Allocate lock resource and initialize it */
    hrtc->Lock = HAL_UNLOCKED;

    hrtc->AlarmAEventCallback          =  HAL_RTC_AlarmAEventCallback;        /* Legacy weak AlarmAEventCallback      */
    hrtc->AlarmBEventCallback          =  HAL_RTCEx_AlarmBEventCallback;      /* Legacy weak AlarmBEventCallback      */
    hrtc->TimeStampEventCallback       =  HAL_RTCEx_TimeStampEventCallback;   /* Legacy weak TimeStampEventCallback   */
    hrtc->WakeUpTimerEventCallback     =  HAL_RTCEx_WakeUpTimerEventCallback; /* Legacy weak WakeUpTimerEventCallback */
    hrtc->Tamper1EventCallback         =  HAL_RTCEx_Tamper1EventCallback;     /* Legacy weak Tamper1EventCallback     */
    hrtc->Tamper2EventCallback         =  HAL_RTCEx_Tamper2EventCallback;     /* Legacy weak Tamper2EventCallback     */
#if defined(RTC_TAMPER3_SUPPORT)
    hrtc->Tamper3EventCallback         =  HAL_RTCEx_Tamper3EventCallback;     /* Legacy weak Tamper3EventCallback     */
#endif /* RTC_TAMPER3_SUPPORT */

    if(hrtc->MspInitCallback == NULL)
    {
      hrtc->MspInitCallback = HAL_RTC_MspInit;
    }
    /* Init the low level hardware */
    hrtc->MspInitCallback(hrtc);

    if(hrtc->MspDeInitCallback == NULL)
    {
      hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
    }
  }
#else
  if (hrtc->State == HAL_RTC_STATE_RESET)
  {
    /* Allocate lock resource and initialize it */
    hrtc->Lock = HAL_UNLOCKED;

    /* Initialize RTC MSP */
    HAL_RTC_MspInit(hrtc);
  }
#endif /* (USE_HAL_RTC_REGISTER_CALLBACKS) */

  /* Set RTC state */
  hrtc->State = HAL_RTC_STATE_BUSY;

  /* Disable the write protection for RTC registers */
  __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);

  /* Set Initialization mode */
  if (RTC_EnterInitMode(hrtc) != HAL_OK)
  {
    /* Enable the write protection for RTC registers */
    __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

    /* Set RTC state */
    hrtc->State = HAL_RTC_STATE_ERROR;

    return HAL_ERROR;
  }
  else
  {
    /* Clear RTC_CR FMT, OSEL and POL Bits */
    hrtc->Instance->CR &= ((uint32_t)~(RTC_CR_FMT | RTC_CR_OSEL | RTC_CR_POL));
    /* Set RTC_CR register */
    hrtc->Instance->CR |= (uint32_t)(hrtc->Init.HourFormat | hrtc->Init.OutPut | hrtc->Init.OutPutPolarity);

    /* Configure the RTC PRER */
    hrtc->Instance->PRER = (uint32_t)(hrtc->Init.SynchPrediv);
    hrtc->Instance->PRER |= (uint32_t)(hrtc->Init.AsynchPrediv << 16U);

    /* Exit Initialization mode */
    hrtc->Instance->ISR &= (uint32_t)~RTC_ISR_INIT;

    /* If  CR_BYPSHAD bit = 0, wait for synchro else this check is not needed */
    if ((hrtc->Instance->CR & RTC_CR_BYPSHAD) == RESET)
    {
      if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
      {
        /* Enable the write protection for RTC registers */
        __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

        hrtc->State = HAL_RTC_STATE_ERROR;

        return HAL_ERROR;
      }
    }

    hrtc->Instance->TAFCR &= (uint32_t)~RTC_TAFCR_ALARMOUTTYPE;
    hrtc->Instance->TAFCR |= (uint32_t)(hrtc->Init.OutPutType);

    /* Enable the write protection for RTC registers */
    __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

    /* Set RTC state */
    hrtc->State = HAL_RTC_STATE_READY;

    return HAL_OK;
  }
}

/**
  * @brief  DeInitialize the RTC peripheral.
  * @param  hrtc RTC handle
  * @note   This function doesn't reset the RTC Backup Data registers.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RTC_DeInit(RTC_HandleTypeDef *hrtc)
{
  uint32_t tickstart = 0U;

  /* Check the parameters */
  assert_param(IS_RTC_ALL_INSTANCE(hrtc->Instance));

  /* Set RTC state */
  hrtc->State = HAL_RTC_STATE_BUSY;

  /* Disable the write protection for RTC registers */
  __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);

  /* Set Initialization mode */
  if (RTC_EnterInitMode(hrtc) != HAL_OK)
  {
    /* Enable the write protection for RTC registers */
    __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

    /* Set RTC state */
    hrtc->State = HAL_RTC_STATE_ERROR;

    return HAL_ERROR;
  }
  else
  {
    /* Reset TR, DR and CR registers */
    hrtc->Instance->TR = 0x00000000U;
    hrtc->Instance->DR = (RTC_DR_WDU_0 | RTC_DR_MU_0 | RTC_DR_DU_0);
    /* Reset All CR bits except CR[2:0] */
    hrtc->Instance->CR &= RTC_CR_WUCKSEL;

    tickstart = HAL_GetTick();

    /* Wait till WUTWF flag is set and if Time out is reached exit */
    while (((hrtc->Instance->ISR) & RTC_ISR_WUTWF) == (uint32_t)RESET)
    {
      if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
      {
        /* Enable the write protection for RTC registers */
        __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

        /* Set RTC state */
        hrtc->State = HAL_RTC_STATE_TIMEOUT;

        return HAL_TIMEOUT;
      }
    }

    /* Reset all RTC CR register bits */
    hrtc->Instance->CR &= 0x00000000U;
    hrtc->Instance->WUTR = RTC_WUTR_WUT;
    hrtc->Instance->PRER = ((uint32_t)(RTC_PRER_PREDIV_A | 0x000000FFU));
    hrtc->Instance->ALRMAR = 0x00000000U;
    hrtc->Instance->ALRMBR = 0x00000000U;
    hrtc->Instance->SHIFTR = 0x00000000U;
    hrtc->Instance->CALR = 0x00000000U;
    hrtc->Instance->ALRMASSR = 0x00000000U;
    hrtc->Instance->ALRMBSSR = 0x00000000U;

    /* Reset ISR register and exit initialization mode */
    hrtc->Instance->ISR = 0x00000000U;

    /* Reset Tamper and alternate functions configuration register */
    hrtc->Instance->TAFCR = 0x00000000U;

    /* If  RTC_CR_BYPSHAD bit = 0U, wait for synchro else this check is not needed */
    if ((hrtc->Instance->CR & RTC_CR_BYPSHAD) == RESET)
    {
      if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
      {
        /* Enable the write protection for RTC registers */
        __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

        hrtc->State = HAL_RTC_STATE_ERROR;

        return HAL_ERROR;
      }
    }
  }

  /* Enable the write protection for RTC registers */
  __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
  if(hrtc->MspDeInitCallback == NULL)
  {
    hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
  }

  /* DeInit the low level hardware: CLOCK, NVIC.*/
  hrtc->MspDeInitCallback(hrtc);

#else
  /* De-Initialize RTC MSP */
  HAL_RTC_MspDeInit(hrtc);
#endif /* (USE_HAL_RTC_REGISTER_CALLBACKS) */

  hrtc->State = HAL_RTC_STATE_RESET;

  /* Release Lock */
  __HAL_UNLOCK(hrtc);

  return HAL_OK;
}

#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
/**
  * @brief  Register a User RTC Callback
  *         To be used instead of the weak predefined callback
  * @param  hrtc RTC handle
  * @param  CallbackID ID of the callback to be registered
  *         This parameter can be one of the following values:
  *          @arg @ref HAL_RTC_ALARM_A_EVENT_CB_ID          Alarm A Event Callback ID
  *          @arg @ref HAL_RTC_ALARM_B_EVENT_CB_ID          Alarm B Event Callback ID
  *          @arg @ref HAL_RTC_TIMESTAMP_EVENT_CB_ID        TimeStamp Event Callback ID
  *          @arg @ref HAL_RTC_WAKEUPTIMER_EVENT_CB_ID      Wake-Up Timer Event Callback ID
  *          @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID          Tamper 1 Callback ID
  *          @arg @ref HAL_RTC_TAMPER2_EVENT_CB_ID          Tamper 2 Callback ID
  *          @arg @ref HAL_RTC_TAMPER3_EVENT_CB_ID          Tamper 3 Callback ID
  *          @arg @ref HAL_RTC_MSPINIT_CB_ID                Msp Init callback ID
  *          @arg @ref HAL_RTC_MSPDEINIT_CB_ID              Msp DeInit callback ID
  * @param  pCallback pointer to the Callback function
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RTC_RegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_CallbackIDTypeDef CallbackID, pRTC_CallbackTypeDef pCallback)
{
  HAL_StatusTypeDef status = HAL_OK;

  if(pCallback == NULL)
  {
    return HAL_ERROR;
  }

  /* Process locked */
  __HAL_LOCK(hrtc);

  if(HAL_RTC_STATE_READY == hrtc->State)
  {
    switch (CallbackID)
    {
    case HAL_RTC_ALARM_A_EVENT_CB_ID :
      hrtc->AlarmAEventCallback = pCallback;
      break;

    case HAL_RTC_ALARM_B_EVENT_CB_ID :
      hrtc->AlarmBEventCallback = pCallback;
      break;

    case HAL_RTC_TIMESTAMP_EVENT_CB_ID :
      hrtc->TimeStampEventCallback = pCallback;
      break;

    case HAL_RTC_WAKEUPTIMER_EVENT_CB_ID :
      hrtc->WakeUpTimerEventCallback = pCallback;
      break;

    case HAL_RTC_TAMPER1_EVENT_CB_ID :
      hrtc->Tamper1EventCallback = pCallback;
      break;

    case HAL_RTC_TAMPER2_EVENT_CB_ID :
      hrtc->Tamper2EventCallback = pCallback;
      break;

#if defined(RTC_TAMPER3_SUPPORT)
    case HAL_RTC_TAMPER3_EVENT_CB_ID :
      hrtc->Tamper3EventCallback = pCallback;
      break;

#endif /* RTC_TAMPER3_SUPPORT */
   case HAL_RTC_MSPINIT_CB_ID :
      hrtc->MspInitCallback = pCallback;
      break;

   case HAL_RTC_MSPDEINIT_CB_ID :
      hrtc->MspDeInitCallback = pCallback;
      break;

    default :
     /* Return error status */
      status =  HAL_ERROR;
      break;
    }
  }
  else if(HAL_RTC_STATE_RESET == hrtc->State)
  {
    switch (CallbackID)
    {
    case HAL_RTC_MSPINIT_CB_ID :
      hrtc->MspInitCallback = pCallback;
      break;

   case HAL_RTC_MSPDEINIT_CB_ID :
      hrtc->MspDeInitCallback = pCallback;
      break;

    default :
     /* Return error status */
      status =  HAL_ERROR;
      break;
    }
  }
  else
  {
    /* Return error status */
    status =  HAL_ERROR;
  }

  /* Release Lock */
  __HAL_UNLOCK(hrtc);

  return status;
}

/**
  * @brief  Unregister an RTC Callback
  *         RTC callabck is redirected to the weak predefined callback
  * @param  hrtc RTC handle
  * @param  CallbackID ID of the callback to be unregistered
  *         This parameter can be one of the following values:
  *          @arg @ref HAL_RTC_ALARM_A_EVENT_CB_ID          Alarm A Event Callback ID
  *          @arg @ref HAL_RTC_ALARM_B_EVENT_CB_ID          Alarm B Event Callback ID
  *          @arg @ref HAL_RTC_TIMESTAMP_EVENT_CB_ID        TimeStamp Event Callback ID
  *          @arg @ref HAL_RTC_WAKEUPTIMER_EVENT_CB_ID      Wake-Up Timer Event Callback ID
  *          @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID          Tamper 1 Callback ID
  *          @arg @ref HAL_RTC_TAMPER2_EVENT_CB_ID          Tamper 2 Callback ID
  *          @arg @ref HAL_RTC_TAMPER3_EVENT_CB_ID          Tamper 3 Callback ID
  *          @arg @ref HAL_RTC_MSPINIT_CB_ID Msp Init callback ID
  *          @arg @ref HAL_RTC_MSPDEINIT_CB_ID Msp DeInit callback ID
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RTC_UnRegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_CallbackIDTypeDef CallbackID)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Process locked */
  __HAL_LOCK(hrtc);

  if(HAL_RTC_STATE_READY == hrtc->State)
  {
    switch (CallbackID)
    {
    case HAL_RTC_ALARM_A_EVENT_CB_ID :
      hrtc->AlarmAEventCallback = HAL_RTC_AlarmAEventCallback;         /* Legacy weak AlarmAEventCallback    */
      break;

    case HAL_RTC_ALARM_B_EVENT_CB_ID :
      hrtc->AlarmBEventCallback = HAL_RTCEx_AlarmBEventCallback;          /* Legacy weak AlarmBEventCallback */
      break;

    case HAL_RTC_TIMESTAMP_EVENT_CB_ID :
      hrtc->TimeStampEventCallback = HAL_RTCEx_TimeStampEventCallback;    /* Legacy weak TimeStampEventCallback    */
      break;

    case HAL_RTC_WAKEUPTIMER_EVENT_CB_ID :
      hrtc->WakeUpTimerEventCallback = HAL_RTCEx_WakeUpTimerEventCallback; /* Legacy weak WakeUpTimerEventCallback */
      break;

    case HAL_RTC_TAMPER1_EVENT_CB_ID :
      hrtc->Tamper1EventCallback = HAL_RTCEx_Tamper1EventCallback;         /* Legacy weak Tamper1EventCallback   */
      break;

    case HAL_RTC_TAMPER2_EVENT_CB_ID :
      hrtc->Tamper2EventCallback = HAL_RTCEx_Tamper2EventCallback;         /* Legacy weak Tamper2EventCallback         */
      break;

#if defined(RTC_TAMPER3_SUPPORT)
    case HAL_RTC_TAMPER3_EVENT_CB_ID :
      hrtc->Tamper3EventCallback = HAL_RTCEx_Tamper3EventCallback;         /* Legacy weak Tamper3EventCallback         */
      break;

#endif /* RTC_TAMPER3_SUPPORT */
    case HAL_RTC_MSPINIT_CB_ID :
      hrtc->MspInitCallback = HAL_RTC_MspInit;
      break;

    case HAL_RTC_MSPDEINIT_CB_ID :
      hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
      break;

    default :
     /* Return error status */
      status =  HAL_ERROR;
      break;
    }
  }
  else if(HAL_RTC_STATE_RESET == hrtc->State)
  {
    switch (CallbackID)
    {
    case HAL_RTC_MSPINIT_CB_ID :
      hrtc->MspInitCallback = HAL_RTC_MspInit;
      break;

    case HAL_RTC_MSPDEINIT_CB_ID :
      hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
      break;

    default :
     /* Return error status */
      status =  HAL_ERROR;
      break;
    }
  }
  else
  {
    /* Return error status */
    status =  HAL_ERROR;
  }

  /* Release Lock */
  __HAL_UNLOCK(hrtc);

  return status;
}
#endif /* USE_HAL_RTC_REGISTER_CALLBACKS */

/**
  * @brief  Initialize the RTC MSP.
  * @param  hrtc RTC handle
  * @retval None
  */
__weak void HAL_RTC_MspInit(RTC_HandleTypeDef *hrtc)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hrtc);

  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_RTC_MspInit could be implemented in the user file
   */
}

/**
  * @brief  DeInitialize the RTC MSP.
  * @param  hrtc RTC handle
  * @retval None
  */
__weak void HAL_RTC_MspDeInit(RTC_HandleTypeDef *hrtc)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hrtc);

  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_RTC_MspDeInit could be implemented in the user file
   */
}

/**
  * @}
  */

/** @addtogroup RTC_Exported_Functions_Group2
 *  @brief   RTC Time and Date functions
 *
@verbatim
 ===============================================================================
                 ##### RTC Time and Date functions #####
 ===============================================================================

 [..] This section provides functions allowing to configure Time and Date features

@endverbatim
  * @{
  */

/**
  * @brief  Set RTC current time.
  * @param  hrtc RTC handle
  * @param  sTime Pointer to Time structure
  * @param  Format Specifies the format of the entered parameters.
  *          This parameter can be one of the following values:
  *            @arg RTC_FORMAT_BIN: Binary data format
  *            @arg RTC_FORMAT_BCD: BCD data format
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RTC_SetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
{
  uint32_t tmpreg = 0U;

  /* Check the parameters */
  assert_param(IS_RTC_FORMAT(Format));
  assert_param(IS_RTC_DAYLIGHT_SAVING(sTime->DayLightSaving));
  assert_param(IS_RTC_STORE_OPERATION(sTime->StoreOperation));

  /* Process Locked */
  __HAL_LOCK(hrtc);

  hrtc->State = HAL_RTC_STATE_BUSY;

  if (Format == RTC_FORMAT_BIN)
  {
    if ((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET)
    {
      assert_param(IS_RTC_HOUR12(sTime->Hours));
      assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat));
    }
    else
    {
      sTime->TimeFormat = 0x00U;
      assert_param(IS_RTC_HOUR24(sTime->Hours));
    }
    assert_param(IS_RTC_MINUTES(sTime->Minutes));
    assert_param(IS_RTC_SECONDS(sTime->Seconds));

    tmpreg = (uint32_t)(((uint32_t)RTC_ByteToBcd2(sTime->Hours) << 16U) | \
                        ((uint32_t)RTC_ByteToBcd2(sTime->Minutes) << 8U) | \
                        ((uint32_t)RTC_ByteToBcd2(sTime->Seconds)) | \
                        (((uint32_t)sTime->TimeFormat) << 16U));
  }
  else
  {
    if ((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET)
    {
      assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sTime->Hours)));
      assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat));
    }
    else
    {
      sTime->TimeFormat = 0x00U;
      assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sTime->Hours)));
    }
    assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sTime->Minutes)));
    assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sTime->Seconds)));
    tmpreg = (((uint32_t)(sTime->Hours) << 16U) | \
              ((uint32_t)(sTime->Minutes) << 8U) | \
              ((uint32_t)sTime->Seconds) | \
              ((uint32_t)(sTime->TimeFormat) << 16U));
  }

  /* Disable the write protection for RTC registers */
  __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);

  /* Set Initialization mode */
  if (RTC_EnterInitMode(hrtc) != HAL_OK)
  {
    /* Enable the write protection for RTC registers */
    __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

    /* Set RTC state */
    hrtc->State = HAL_RTC_STATE_ERROR;

    /* Process Unlocked */
    __HAL_UNLOCK(hrtc);

    return HAL_ERROR;
  }
  else
  {
    /* Set the RTC_TR register */
    hrtc->Instance->TR = (uint32_t)(tmpreg & RTC_TR_RESERVED_MASK);

    /* Clear the bits to be configured */
    hrtc->Instance->CR &= ((uint32_t)~RTC_CR_BCK);

    /* Configure the RTC_CR register */
    hrtc->Instance->CR |= (uint32_t)(sTime->DayLightSaving | sTime->StoreOperation);

    /* Exit Initialization mode */
    hrtc->Instance->ISR &= ((uint32_t)~RTC_ISR_INIT);

    /* If  CR_BYPSHAD bit = 0U, wait for synchro else this check is not needed */
    if ((hrtc->Instance->CR & RTC_CR_BYPSHAD) == RESET)
    {
      if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
      {
        /* Enable the write protection for RTC registers */
        __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

        hrtc->State = HAL_RTC_STATE_ERROR;

        /* Process Unlocked */
        __HAL_UNLOCK(hrtc);

        return HAL_ERROR;
      }
    }

    /* Enable the write protection for RTC registers */
    __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

    hrtc->State = HAL_RTC_STATE_READY;

    __HAL_UNLOCK(hrtc);

    return HAL_OK;
  }
}

/**
  * @brief  Get RTC current time.
  * @param  hrtc RTC handle
  * @param  sTime Pointer to Time structure
  * @param  Format Specifies the format of the entered parameters.
  *          This parameter can be one of the following values:
  *            @arg RTC_FORMAT_BIN: Binary data format
  *            @arg RTC_FORMAT_BCD: BCD data format
  * @note  You can use SubSeconds and SecondFraction (sTime structure fields returned) to convert SubSeconds
  *        value in second fraction ratio with time unit following generic formula:
  *        Second fraction ratio * time_unit= [(SecondFraction-SubSeconds)/(SecondFraction+1)] * time_unit
  *        This conversion can be performed only if no shift operation is pending (ie. SHFP=0) when PREDIV_S >= SS
  * @note   Call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values
  *         in the higher-order calendar shadow registers.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RTC_GetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
{
  uint32_t tmpreg = 0U;

  /* Check the parameters */
  assert_param(IS_RTC_FORMAT(Format));

  /* Get subseconds structure field from the corresponding register*/
  sTime->SubSeconds = (uint32_t)(hrtc->Instance->SSR);

  /* Get SecondFraction structure field from the corresponding register field*/
  sTime->SecondFraction = (uint32_t)(hrtc->Instance->PRER & RTC_PRER_PREDIV_S);

  /* Get the TR register */
  tmpreg = (uint32_t)(hrtc->Instance->TR & RTC_TR_RESERVED_MASK);

  /* Fill the structure fields with the read parameters */
  sTime->Hours = (uint8_t)((tmpreg & (RTC_TR_HT | RTC_TR_HU)) >> 16U);
  sTime->Minutes = (uint8_t)((tmpreg & (RTC_TR_MNT | RTC_TR_MNU)) >> 8U);
  sTime->Seconds = (uint8_t)(tmpreg & (RTC_TR_ST | RTC_TR_SU));
  sTime->TimeFormat = (uint8_t)((tmpreg & (RTC_TR_PM)) >> 16U);

  /* Check the input parameters format */
  if (Format == RTC_FORMAT_BIN)
  {
    /* Convert the time structure parameters to Binary format */
    sTime->Hours = (uint8_t)RTC_Bcd2ToByte(sTime->Hours);
    sTime->Minutes = (uint8_t)RTC_Bcd2ToByte(sTime->Minutes);
    sTime->Seconds = (uint8_t)RTC_Bcd2ToByte(sTime->Seconds);
  }

  return HAL_OK;
}

/**
  * @brief  Set RTC current date.
  * @param  hrtc RTC handle
  * @param  sDate Pointer to date structure
  * @param  Format specifies the format of the entered parameters.
  *          This parameter can be one of the following values:
  *            @arg RTC_FORMAT_BIN: Binary data format
  *            @arg RTC_FORMAT_BCD: BCD data format
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RTC_SetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
{
  uint32_t datetmpreg = 0U;

  /* Check the parameters */
  assert_param(IS_RTC_FORMAT(Format));

  /* Process Locked */
  __HAL_LOCK(hrtc);

  hrtc->State = HAL_RTC_STATE_BUSY;

  if ((Format == RTC_FORMAT_BIN) && ((sDate->Month & 0x10U) == 0x10U))
  {
    sDate->Month = (uint8_t)((sDate->Month & (uint8_t)~(0x10U)) + (uint8_t)0x0AU);
  }

  assert_param(IS_RTC_WEEKDAY(sDate->WeekDay));

  if (Format == RTC_FORMAT_BIN)
  {
    assert_param(IS_RTC_YEAR(sDate->Year));
    assert_param(IS_RTC_MONTH(sDate->Month));
    assert_param(IS_RTC_DATE(sDate->Date));

    datetmpreg = (((uint32_t)RTC_ByteToBcd2(sDate->Year) << 16U) | \
                  ((uint32_t)RTC_ByteToBcd2(sDate->Month) << 8U) | \
                  ((uint32_t)RTC_ByteToBcd2(sDate->Date)) | \
                  ((uint32_t)sDate->WeekDay << 13U));
  }
  else
  {
    assert_param(IS_RTC_YEAR(RTC_Bcd2ToByte(sDate->Year)));
    assert_param(IS_RTC_MONTH(RTC_Bcd2ToByte(sDate->Month)));
    assert_param(IS_RTC_DATE(RTC_Bcd2ToByte(sDate->Date)));

    datetmpreg = ((((uint32_t)sDate->Year) << 16U) | \
                  (((uint32_t)sDate->Month) << 8U) | \
                  ((uint32_t)sDate->Date) | \
                  (((uint32_t)sDate->WeekDay) << 13U));
  }

  /* Disable the write protection for RTC registers */
  __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);

  /* Set Initialization mode */
  if (RTC_EnterInitMode(hrtc) != HAL_OK)
  {
    /* Enable the write protection for RTC registers */
    __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

    /* Set RTC state*/
    hrtc->State = HAL_RTC_STATE_ERROR;

    /* Process Unlocked */
    __HAL_UNLOCK(hrtc);

    return HAL_ERROR;
  }
  else
  {
    /* Set the RTC_DR register */
    hrtc->Instance->DR = (uint32_t)(datetmpreg & RTC_DR_RESERVED_MASK);

    /* Exit Initialization mode */
    hrtc->Instance->ISR &= ((uint32_t)~RTC_ISR_INIT);

    /* If  CR_BYPSHAD bit = 0U, wait for synchro else this check is not needed */
    if ((hrtc->Instance->CR & RTC_CR_BYPSHAD) == RESET)
    {
      if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
      {
        /* Enable the write protection for RTC registers */
        __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

        hrtc->State = HAL_RTC_STATE_ERROR;

        /* Process Unlocked */
        __HAL_UNLOCK(hrtc);

        return HAL_ERROR;
      }
    }

    /* Enable the write protection for RTC registers */
    __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

    hrtc->State = HAL_RTC_STATE_READY ;

    /* Process Unlocked */
    __HAL_UNLOCK(hrtc);

    return HAL_OK;
  }
}

/**
  * @brief  Get RTC current date.
  * @param  hrtc RTC handle
  * @param  sDate Pointer to Date structure
  * @param  Format Specifies the format of the entered parameters.
  *          This parameter can be one of the following values:
  *            @arg RTC_FORMAT_BIN :  Binary data format
  *            @arg RTC_FORMAT_BCD :  BCD data format
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RTC_GetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
{
  uint32_t datetmpreg = 0U;

  /* Check the parameters */
  assert_param(IS_RTC_FORMAT(Format));

  /* Get the DR register */
  datetmpreg = (uint32_t)(hrtc->Instance->DR & RTC_DR_RESERVED_MASK);

  /* Fill the structure fields with the read parameters */
  sDate->Year = (uint8_t)((datetmpreg & (RTC_DR_YT | RTC_DR_YU)) >> 16U);
  sDate->Month = (uint8_t)((datetmpreg & (RTC_DR_MT | RTC_DR_MU)) >> 8U);
  sDate->Date = (uint8_t)(datetmpreg & (RTC_DR_DT | RTC_DR_DU));
  sDate->WeekDay = (uint8_t)((datetmpreg & (RTC_DR_WDU)) >> 13U);

  /* Check the input parameters format */
  if (Format == RTC_FORMAT_BIN)
  {
    /* Convert the date structure parameters to Binary format */
    sDate->Year = (uint8_t)RTC_Bcd2ToByte(sDate->Year);
    sDate->Month = (uint8_t)RTC_Bcd2ToByte(sDate->Month);
    sDate->Date = (uint8_t)RTC_Bcd2ToByte(sDate->Date);
  }
  return HAL_OK;
}

/**
  * @}
  */

/** @addtogroup RTC_Exported_Functions_Group3
 *  @brief   RTC Alarm functions
 *
@verbatim
 ===============================================================================
                 ##### RTC Alarm functions #####
 ===============================================================================

 [..] This section provides functions allowing to configure Alarm feature

@endverbatim
  * @{
  */
/**
  * @brief  Set the specified RTC Alarm.
  * @param  hrtc RTC handle
  * @param  sAlarm Pointer to Alarm structure
  * @param  Format Specifies the format of the entered parameters.
  *          This parameter can be one of the following values:
  *             @arg RTC_FORMAT_BIN: Binary data format
  *             @arg RTC_FORMAT_BCD: BCD data format
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RTC_SetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
{
  uint32_t tickstart = 0U;
  uint32_t tmpreg = 0U, subsecondtmpreg = 0U;

  /* Check the parameters */
  assert_param(IS_RTC_FORMAT(Format));
  assert_param(IS_RTC_ALARM(sAlarm->Alarm));
  assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
  assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
  assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
  assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));

  /* Process Locked */
  __HAL_LOCK(hrtc);

  hrtc->State = HAL_RTC_STATE_BUSY;

  if (Format == RTC_FORMAT_BIN)
  {
    if ((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET)
    {
      assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
      assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
    }
    else
    {
      sAlarm->AlarmTime.TimeFormat = 0x00U;
      assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
    }
    assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
    assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));

    if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
    {
      assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
    }
    else
    {
      assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
    }

    tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << 16U) | \
              ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << 8U) | \
              ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds)) | \
              ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << 16U) | \
              ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << 24U) | \
              ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
              ((uint32_t)sAlarm->AlarmMask));
  }
  else
  {
    if ((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET)
    {
      assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
      assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
    }
    else
    {
      sAlarm->AlarmTime.TimeFormat = 0x00U;
      assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
    }

    assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
    assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));

    if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
    {
      assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
    }
    else
    {
      assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
    }

    tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << 16U) | \
              ((uint32_t)(sAlarm->AlarmTime.Minutes) << 8U) | \
              ((uint32_t) sAlarm->AlarmTime.Seconds) | \
              ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << 16U) | \
              ((uint32_t)(sAlarm->AlarmDateWeekDay) << 24U) | \
              ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
              ((uint32_t)sAlarm->AlarmMask));
  }

  /* Configure the Alarm A or Alarm B Sub Second registers */
  subsecondtmpreg = (uint32_t)((uint32_t)(sAlarm->AlarmTime.SubSeconds) | (uint32_t)(sAlarm->AlarmSubSecondMask));

  /* Disable the write protection for RTC registers */
  __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);

  /* Configure the Alarm register */
  if (sAlarm->Alarm == RTC_ALARM_A)
  {
    /* Disable the Alarm A interrupt */
    __HAL_RTC_ALARMA_DISABLE(hrtc);

    /* In case of interrupt mode is used, the interrupt source must disabled */
    __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRA);

    tickstart = HAL_GetTick();
    /* Wait till RTC ALRAWF flag is set and if Time out is reached exit */
    while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == RESET)
    {
      if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
      {
        /* Enable the write protection for RTC registers */
        __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

        hrtc->State = HAL_RTC_STATE_TIMEOUT;

        /* Process Unlocked */
        __HAL_UNLOCK(hrtc);

        return HAL_TIMEOUT;
      }
    }

    hrtc->Instance->ALRMAR = (uint32_t)tmpreg;
    /* Configure the Alarm A Sub Second register */
    hrtc->Instance->ALRMASSR = subsecondtmpreg;
    /* Configure the Alarm state: Enable Alarm */
    __HAL_RTC_ALARMA_ENABLE(hrtc);
  }
  else
  {
    /* Disable the Alarm B interrupt */
    __HAL_RTC_ALARMB_DISABLE(hrtc);

    /* In case of interrupt mode is used, the interrupt source must disabled */
    __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRB);

    tickstart = HAL_GetTick();
    /* Wait till RTC ALRBWF flag is set and if Time out is reached exit */
    while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == RESET)
    {
      if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
      {
        /* Enable the write protection for RTC registers */
        __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

        hrtc->State = HAL_RTC_STATE_TIMEOUT;

        /* Process Unlocked */
        __HAL_UNLOCK(hrtc);

        return HAL_TIMEOUT;
      }
    }

    hrtc->Instance->ALRMBR = (uint32_t)tmpreg;
    /* Configure the Alarm B Sub Second register */
    hrtc->Instance->ALRMBSSR = subsecondtmpreg;
    /* Configure the Alarm state: Enable Alarm */
    __HAL_RTC_ALARMB_ENABLE(hrtc);
  }

  /* Enable the write protection for RTC registers */
  __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

  /* Change RTC state */
  hrtc->State = HAL_RTC_STATE_READY;

  /* Process Unlocked */
  __HAL_UNLOCK(hrtc);

  return HAL_OK;
}

/**
  * @brief  Set the specified RTC Alarm with Interrupt.
  * @param  hrtc RTC handle
  * @param  sAlarm Pointer to Alarm structure
  * @param  Format Specifies the format of the entered parameters.
  *          This parameter can be one of the following values:
  *             @arg RTC_FORMAT_BIN: Binary data format
  *             @arg RTC_FORMAT_BCD: BCD data format
  * @note   The Alarm register can only be written when the corresponding Alarm
  *         is disabled (Use the HAL_RTC_DeactivateAlarm()).
  * @note   The HAL_RTC_SetTime() must be called before enabling the Alarm feature.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
{
  uint32_t tickstart = 0U;
  uint32_t tmpreg = 0U, subsecondtmpreg = 0U;

  /* Check the parameters */
  assert_param(IS_RTC_FORMAT(Format));
  assert_param(IS_RTC_ALARM(sAlarm->Alarm));
  assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
  assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
  assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
  assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));

  /* Process Locked */
  __HAL_LOCK(hrtc);

  hrtc->State = HAL_RTC_STATE_BUSY;

  if (Format == RTC_FORMAT_BIN)
  {
    if ((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET)
    {
      assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
      assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
    }
    else
    {
      sAlarm->AlarmTime.TimeFormat = 0x00U;
      assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
    }
    assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
    assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));

    if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
    {
      assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
    }
    else
    {
      assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
    }
    tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << 16U) | \
              ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << 8U) | \
              ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds)) | \
              ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << 16U) | \
              ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << 24U) | \
              ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
              ((uint32_t)sAlarm->AlarmMask));
  }
  else
  {
    if ((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET)
    {
      assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
      assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
    }
    else
    {
      sAlarm->AlarmTime.TimeFormat = 0x00U;
      assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
    }

    assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
    assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));

    if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
    {
      assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
    }
    else
    {
      assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
    }
    tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << 16U) | \
              ((uint32_t)(sAlarm->AlarmTime.Minutes) << 8U) | \
              ((uint32_t) sAlarm->AlarmTime.Seconds) | \
              ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << 16U) | \
              ((uint32_t)(sAlarm->AlarmDateWeekDay) << 24U) | \
              ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
              ((uint32_t)sAlarm->AlarmMask));
  }
  /* Configure the Alarm A or Alarm B Sub Second registers */
  subsecondtmpreg = (uint32_t)((uint32_t)(sAlarm->AlarmTime.SubSeconds) | (uint32_t)(sAlarm->AlarmSubSecondMask));

  /* Disable the write protection for RTC registers */
  __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);

  /* Configure the Alarm register */
  if (sAlarm->Alarm == RTC_ALARM_A)
  {
    /* Disable the Alarm A interrupt */
    __HAL_RTC_ALARMA_DISABLE(hrtc);

    /* Clear flag alarm A */
    __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);

    tickstart = HAL_GetTick();
    /* Wait till RTC ALRAWF flag is set and if Time out is reached exit */
    while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == RESET)
    {
      if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
      {
        /* Enable the write protection for RTC registers */
        __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

        hrtc->State = HAL_RTC_STATE_TIMEOUT;

        /* Process Unlocked */
        __HAL_UNLOCK(hrtc);

        return HAL_TIMEOUT;
      }
    }

    hrtc->Instance->ALRMAR = (uint32_t)tmpreg;
    /* Configure the Alarm A Sub Second register */
    hrtc->Instance->ALRMASSR = subsecondtmpreg;
    /* Configure the Alarm state: Enable Alarm */
    __HAL_RTC_ALARMA_ENABLE(hrtc);
    /* Configure the Alarm interrupt */
    __HAL_RTC_ALARM_ENABLE_IT(hrtc, RTC_IT_ALRA);
  }
  else
  {
    /* Disable the Alarm B interrupt */
    __HAL_RTC_ALARMB_DISABLE(hrtc);

    /* Clear flag alarm B */
    __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRBF);

    tickstart = HAL_GetTick();
    /* Wait till RTC ALRBWF flag is set and if Time out is reached exit */
    while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == RESET)
    {
      if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
      {
        /* Enable the write protection for RTC registers */
        __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

        hrtc->State = HAL_RTC_STATE_TIMEOUT;

        /* Process Unlocked */
        __HAL_UNLOCK(hrtc);

        return HAL_TIMEOUT;
      }
    }

    hrtc->Instance->ALRMBR = (uint32_t)tmpreg;
    /* Configure the Alarm B Sub Second register */
    hrtc->Instance->ALRMBSSR = subsecondtmpreg;
    /* Configure the Alarm state: Enable Alarm */
    __HAL_RTC_ALARMB_ENABLE(hrtc);
    /* Configure the Alarm interrupt */
    __HAL_RTC_ALARM_ENABLE_IT(hrtc, RTC_IT_ALRB);
  }

  /* RTC Alarm Interrupt Configuration: EXTI configuration */
  __HAL_RTC_ALARM_EXTI_ENABLE_IT();

  __HAL_RTC_ALARM_EXTI_ENABLE_RISING_EDGE();

  /* Enable the write protection for RTC registers */
  __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

  hrtc->State = HAL_RTC_STATE_READY;

  /* Process Unlocked */
  __HAL_UNLOCK(hrtc);

  return HAL_OK;
}

/**
  * @brief  Deactivate the specified RTC Alarm.
  * @param  hrtc RTC handle
  * @param  Alarm Specifies the Alarm.
  *          This parameter can be one of the following values:
  *            @arg RTC_ALARM_A :  AlarmA
  *            @arg RTC_ALARM_B :  AlarmB
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RTC_DeactivateAlarm(RTC_HandleTypeDef *hrtc, uint32_t Alarm)
{
  uint32_t tickstart = 0U;

  /* Check the parameters */
  assert_param(IS_RTC_ALARM(Alarm));

  /* Process Locked */
  __HAL_LOCK(hrtc);

  hrtc->State = HAL_RTC_STATE_BUSY;

  /* Disable the write protection for RTC registers */
  __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);

  if (Alarm == RTC_ALARM_A)
  {
    /* AlarmA */
    __HAL_RTC_ALARMA_DISABLE(hrtc);

    /* In case of interrupt mode is used, the interrupt source must disabled */
    __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRA);

    tickstart = HAL_GetTick();

    /* Wait till RTC ALRxWF flag is set and if Time out is reached exit */
    while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == RESET)
    {
      if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
      {
        /* Enable the write protection for RTC registers */
        __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

        hrtc->State = HAL_RTC_STATE_TIMEOUT;

        /* Process Unlocked */
        __HAL_UNLOCK(hrtc);

        return HAL_TIMEOUT;
      }
    }
  }
  else
  {
    /* AlarmB */
    __HAL_RTC_ALARMB_DISABLE(hrtc);

    /* In case of interrupt mode is used, the interrupt source must disabled */
    __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRB);

    tickstart = HAL_GetTick();

    /* Wait till RTC ALRxWF flag is set and if Time out is reached exit */
    while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == RESET)
    {
      if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
      {
        /* Enable the write protection for RTC registers */
        __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

        hrtc->State = HAL_RTC_STATE_TIMEOUT;

        /* Process Unlocked */
        __HAL_UNLOCK(hrtc);

        return HAL_TIMEOUT;
      }
    }
  }
  /* Enable the write protection for RTC registers */
  __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

  hrtc->State = HAL_RTC_STATE_READY;

  /* Process Unlocked */
  __HAL_UNLOCK(hrtc);

  return HAL_OK;
}

/**
  * @brief  Get the RTC Alarm value and masks.
  * @param  hrtc RTC handle
  * @param  sAlarm Pointer to Date structure
  * @param  Alarm Specifies the Alarm.
  *          This parameter can be one of the following values:
  *             @arg RTC_ALARM_A: AlarmA
  *             @arg RTC_ALARM_B: AlarmB
  * @param  Format Specifies the format of the entered parameters.
  *          This parameter can be one of the following values:
  *             @arg RTC_FORMAT_BIN: Binary data format
  *             @arg RTC_FORMAT_BCD: BCD data format
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RTC_GetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Alarm, uint32_t Format)
{
  uint32_t tmpreg = 0U, subsecondtmpreg = 0U;

  /* Check the parameters */
  assert_param(IS_RTC_FORMAT(Format));
  assert_param(IS_RTC_ALARM(Alarm));

  if (Alarm == RTC_ALARM_A)
  {
    /* AlarmA */
    sAlarm->Alarm = RTC_ALARM_A;

    tmpreg = (uint32_t)(hrtc->Instance->ALRMAR);
    subsecondtmpreg = (uint32_t)((hrtc->Instance->ALRMASSR) & RTC_ALRMASSR_SS);
  }
  else
  {
    sAlarm->Alarm = RTC_ALARM_B;

    tmpreg = (uint32_t)(hrtc->Instance->ALRMBR);
    subsecondtmpreg = (uint32_t)((hrtc->Instance->ALRMBSSR) & RTC_ALRMBSSR_SS);
  }

  /* Fill the structure with the read parameters */
  sAlarm->AlarmTime.Hours = (uint32_t)((tmpreg & (RTC_ALRMAR_HT | RTC_ALRMAR_HU)) >> 16U);
  sAlarm->AlarmTime.Minutes = (uint32_t)((tmpreg & (RTC_ALRMAR_MNT | RTC_ALRMAR_MNU)) >> 8U);
  sAlarm->AlarmTime.Seconds = (uint32_t)(tmpreg & (RTC_ALRMAR_ST | RTC_ALRMAR_SU));
  sAlarm->AlarmTime.TimeFormat = (uint32_t)((tmpreg & RTC_ALRMAR_PM) >> 16U);
  sAlarm->AlarmTime.SubSeconds = (uint32_t) subsecondtmpreg;
  sAlarm->AlarmDateWeekDay = (uint32_t)((tmpreg & (RTC_ALRMAR_DT | RTC_ALRMAR_DU)) >> 24U);
  sAlarm->AlarmDateWeekDaySel = (uint32_t)(tmpreg & RTC_ALRMAR_WDSEL);
  sAlarm->AlarmMask = (uint32_t)(tmpreg & RTC_ALARMMASK_ALL);

  if (Format == RTC_FORMAT_BIN)
  {
    sAlarm->AlarmTime.Hours = RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours);
    sAlarm->AlarmTime.Minutes = RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes);
    sAlarm->AlarmTime.Seconds = RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds);
    sAlarm->AlarmDateWeekDay = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay);
  }

  return HAL_OK;
}

/**
  * @brief  Handle Alarm interrupt request.
  * @param  hrtc RTC handle
  * @retval None
  */
void HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef *hrtc)
{
  /* Get the AlarmA interrupt source enable status */
  if (__HAL_RTC_ALARM_GET_IT_SOURCE(hrtc, RTC_IT_ALRA) != RESET)
  {
    /* Get the pending status of the AlarmA Interrupt */
    if (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAF) != RESET)
    {
      /* AlarmA callback */
    #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
      hrtc->AlarmAEventCallback(hrtc);
    #else
      HAL_RTC_AlarmAEventCallback(hrtc);
    #endif /* USE_HAL_RTC_REGISTER_CALLBACKS */

      /* Clear the AlarmA interrupt pending bit */
      __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
    }
  }

  /* Get the AlarmB interrupt source enable status */
  if (__HAL_RTC_ALARM_GET_IT_SOURCE(hrtc, RTC_IT_ALRB) != RESET)
  {
    /* Get the pending status of the AlarmB Interrupt */
    if (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBF) != RESET)
    {
      /* AlarmB callback */
    #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
      hrtc->AlarmBEventCallback(hrtc);
    #else
      HAL_RTCEx_AlarmBEventCallback(hrtc);
    #endif /* USE_HAL_RTC_REGISTER_CALLBACKS */

      /* Clear the AlarmB interrupt pending bit */
      __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRBF);
    }
  }

  /* Clear the EXTI's line Flag for RTC Alarm */
  __HAL_RTC_ALARM_EXTI_CLEAR_FLAG();

  /* Change RTC state */
  hrtc->State = HAL_RTC_STATE_READY;
}

/**
  * @brief  Alarm A callback.
  * @param  hrtc RTC handle
  * @retval None
  */
__weak void HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef *hrtc)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hrtc);

  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_RTC_AlarmAEventCallback could be implemented in the user file
   */
}

/**
  * @brief  Handle AlarmA Polling request.
  * @param  hrtc RTC handle
  * @param  Timeout Timeout duration
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RTC_PollForAlarmAEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout)
{

  uint32_t tickstart = HAL_GetTick();

  while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAF) == RESET)
  {
    if (Timeout != HAL_MAX_DELAY)
    {
      if ((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout))
      {
        hrtc->State = HAL_RTC_STATE_TIMEOUT;
        return HAL_TIMEOUT;
      }
    }
  }

  /* Clear the Alarm interrupt pending bit */
  __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);

  /* Change RTC state */
  hrtc->State = HAL_RTC_STATE_READY;

  return HAL_OK;
}

/**
  * @}
  */

/** @@addtogroup RTC_Exported_Functions_Group4 Peripheral Control functions
 *  @brief   Peripheral Control functions
 *
@verbatim
 ===============================================================================
                     ##### Peripheral Control functions #####
 ===============================================================================
    [..]
    This subsection provides functions allowing to
      (+) Wait for RTC Time and Date Synchronization

@endverbatim
  * @{
  */

/**
  * @brief  Wait until the RTC Time and Date registers (RTC_TR and RTC_DR) are
  *         synchronized with RTC APB clock.
  * @note   The RTC Resynchronization mode is write protected, use the
  *         __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function.
  * @note   To read the calendar through the shadow registers after Calendar
  *         initialization, calendar update or after wakeup from low power modes
  *         the software must first clear the RSF flag.
  *         The software must then wait until it is set again before reading
  *         the calendar, which means that the calendar registers have been
  *         correctly copied into the RTC_TR and RTC_DR shadow registers.
  * @param  hrtc RTC handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RTC_WaitForSynchro(RTC_HandleTypeDef *hrtc)
{
  uint32_t tickstart = 0U;

  /* Clear RSF flag */
  hrtc->Instance->ISR &= (uint32_t)RTC_RSF_MASK;

  tickstart = HAL_GetTick();

  /* Wait the registers to be synchronised */
  while ((hrtc->Instance->ISR & RTC_ISR_RSF) == (uint32_t)RESET)
  {
    if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
    {
      return HAL_TIMEOUT;
    }
  }

  return HAL_OK;
}

/**
  * @}
  */

/** @@addtogroup RTC_Exported_Functions_Group5 Peripheral State functions
 *  @brief   Peripheral State functions
 *
@verbatim
 ===============================================================================
                     ##### Peripheral State functions #####
 ===============================================================================
    [..]
    This subsection provides functions allowing to
      (+) Get RTC state

@endverbatim
  * @{
  */
/**
  * @brief  Return the RTC handle state.
  * @param  hrtc RTC handle
  * @retval HAL state
  */
HAL_RTCStateTypeDef HAL_RTC_GetState(RTC_HandleTypeDef *hrtc)
{
  /* Return RTC handle state */
  return hrtc->State;
}

/**
  * @}
  */

/**
  * @}
  */

/** @@addtogroup RTC_Private_Functions RTC Private Functions
  * @{
  */

/**
  * @brief  Enter the RTC Initialization mode.
  * @note   The RTC Initialization mode is write protected, use the
  *         __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function.
  * @param  hrtc RTC handle
  * @retval An ErrorStatus enumeration value:
  *          - HAL_OK : RTC is in Init mode
  *          - HAL_TIMEOUT : RTC is not in Init mode and in Timeout
  */
HAL_StatusTypeDef RTC_EnterInitMode(RTC_HandleTypeDef *hrtc)
{
  uint32_t tickstart = 0U;

  /* Check if the Initialization mode is set */
  if ((hrtc->Instance->ISR & RTC_ISR_INITF) == (uint32_t)RESET)
  {
    /* Set the Initialization mode */
    hrtc->Instance->ISR = (uint32_t)RTC_INIT_MASK;

    tickstart = HAL_GetTick();
    /* Wait till RTC is in INIT state and if Time out is reached exit */
    while ((hrtc->Instance->ISR & RTC_ISR_INITF) == (uint32_t)RESET)
    {
      if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
      {
        return HAL_TIMEOUT;
      }
    }
  }

  return HAL_OK;
}


/**
  * @brief  Convert a 2 digit decimal to BCD format.
  * @param  Value Byte to be converted
  * @retval Converted byte
  */
uint8_t RTC_ByteToBcd2(uint8_t Value)
{
  uint32_t bcdhigh = 0U;

  while (Value >= 10U)
  {
    bcdhigh++;
    Value -= 10U;
  }

  return ((uint8_t)(bcdhigh << 4U) | Value);
}

/**
  * @brief  Convert from 2 digit BCD to Binary.
  * @param  Value BCD value to be converted
  * @retval Converted word
  */
uint8_t RTC_Bcd2ToByte(uint8_t Value)
{
  uint32_t tmp = 0U;
  tmp = ((uint8_t)(Value & (uint8_t)0xF0U) >> (uint8_t)0x4U) * 10U;
  return (tmp + (Value & (uint8_t)0x0FU));
}
/**
  * @}
  */

#endif /* HAL_RTC_MODULE_ENABLED */

/**
  * @}
  */


/**
  * @}
  */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/