Newer
Older
mbed-os / targets / cmsis / TARGET_NXP / TARGET_LPC43XX / TOOLCHAIN_GCC_CR / startup_LPC43xx.cpp
@Christopher Haster Christopher Haster on 30 Sep 2016 16 KB restructure - Moved targets out to top level
//*****************************************************************************
//   +--+       
//   | ++----+   
//   +-++    |  
//     |     |  
//   +-+--+  |   
//   | +--+--+  
//   +----+    Copyright (c) 2011-12 Code Red Technologies Ltd.
//
// LPC43xx Microcontroller Startup code for use with Red Suite
//
// Version : 120430
//
// Software License Agreement
// 
// The software is owned by Code Red Technologies and/or its suppliers, and is
// protected under applicable copyright laws.  All rights are reserved.  Any 
// use in violation of the foregoing restrictions may subject the user to criminal 
// sanctions under applicable laws, as well as to civil liability for the breach 
// of the terms and conditions of this license.
// 
// THIS SOFTWARE IS PROVIDED "AS IS".  NO WARRANTIES, WHETHER EXPRESS, IMPLIED
// OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
// USE OF THIS SOFTWARE FOR COMMERCIAL DEVELOPMENT AND/OR EDUCATION IS SUBJECT
// TO A CURRENT END USER LICENSE AGREEMENT (COMMERCIAL OR EDUCATIONAL) WITH
// CODE RED TECHNOLOGIES LTD. 
//
//*****************************************************************************
#if defined (__cplusplus)
#ifdef __REDLIB__
#error Redlib does not support C++
#else
//*****************************************************************************
//
// The entry point for the C++ library startup
//
//*****************************************************************************
extern "C" {
	extern void __libc_init_array(void);
}
#endif
#endif

#define WEAK __attribute__ ((weak))
#define ALIAS(f) __attribute__ ((weak, alias (#f)))

// Code Red - if CMSIS is being used, then SystemInit() routine
// will be called by startup code rather than in application's main()
#if defined (__USE_CMSIS)
#include "LPC43xx.h"
#endif

//*****************************************************************************
#if defined (__cplusplus)
extern "C" {
#endif

//*****************************************************************************
//
// Forward declaration of the default handlers. These are aliased.
// When the application defines a handler (with the same name), this will 
// automatically take precedence over these weak definitions
//
//*****************************************************************************
     void ResetISR(void);
WEAK void NMI_Handler(void);
WEAK void HardFault_Handler(void);
WEAK void MemManage_Handler(void);
WEAK void BusFault_Handler(void);
WEAK void UsageFault_Handler(void);
WEAK void SVC_Handler(void);
WEAK void DebugMon_Handler(void);
WEAK void PendSV_Handler(void);
WEAK void SysTick_Handler(void);
WEAK void IntDefaultHandler(void);

//*****************************************************************************
//
// Forward declaration of the specific IRQ handlers. These are aliased
// to the IntDefaultHandler, which is a 'forever' loop. When the application
// defines a handler (with the same name), this will automatically take 
// precedence over these weak definitions
//
//*****************************************************************************
void DAC_IRQHandler(void) ALIAS(IntDefaultHandler);
void M0CORE_IRQHandler(void) ALIAS(IntDefaultHandler);
void DMA_IRQHandler(void) ALIAS(IntDefaultHandler);
void EZH_IRQHandler(void) ALIAS(IntDefaultHandler);
void FLASH_EEPROM_IRQHandler(void) ALIAS(IntDefaultHandler);
void ETH_IRQHandler(void) ALIAS(IntDefaultHandler);
void SDIO_IRQHandler(void) ALIAS(IntDefaultHandler);
void LCD_IRQHandler(void) ALIAS(IntDefaultHandler);
void USB0_IRQHandler(void) ALIAS(IntDefaultHandler);
void USB1_IRQHandler(void) ALIAS(IntDefaultHandler);
void SCT_IRQHandler(void) ALIAS(IntDefaultHandler);
void RIT_IRQHandler(void) ALIAS(IntDefaultHandler);
void TIMER0_IRQHandler(void) ALIAS(IntDefaultHandler);
void TIMER1_IRQHandler(void) ALIAS(IntDefaultHandler);
void TIMER2_IRQHandler(void) ALIAS(IntDefaultHandler);
void TIMER3_IRQHandler(void) ALIAS(IntDefaultHandler);
void MCPWM_IRQHandler(void) ALIAS(IntDefaultHandler);
void ADC0_IRQHandler(void) ALIAS(IntDefaultHandler);
void I2C0_IRQHandler(void) ALIAS(IntDefaultHandler);
void SPI_IRQHandler (void) ALIAS(IntDefaultHandler);
void I2C1_IRQHandler(void) ALIAS(IntDefaultHandler);
void ADC1_IRQHandler(void) ALIAS(IntDefaultHandler);
void SSP0_IRQHandler(void) ALIAS(IntDefaultHandler);
void SSP1_IRQHandler(void) ALIAS(IntDefaultHandler);
void UART0_IRQHandler(void) ALIAS(IntDefaultHandler);
void UART1_IRQHandler(void) ALIAS(IntDefaultHandler);
void UART2_IRQHandler(void) ALIAS(IntDefaultHandler);
void UART3_IRQHandler(void) ALIAS(IntDefaultHandler);
void I2S0_IRQHandler(void) ALIAS(IntDefaultHandler);
void I2S1_IRQHandler(void) ALIAS(IntDefaultHandler);
void SPIFI_IRQHandler(void) ALIAS(IntDefaultHandler);
void SGPIO_IRQHandler(void) ALIAS(IntDefaultHandler);
void GPIO0_IRQHandler(void) ALIAS(IntDefaultHandler);
void GPIO1_IRQHandler(void) ALIAS(IntDefaultHandler);
void GPIO2_IRQHandler(void) ALIAS(IntDefaultHandler);
void GPIO3_IRQHandler(void) ALIAS(IntDefaultHandler);
void GPIO4_IRQHandler(void) ALIAS(IntDefaultHandler);
void GPIO5_IRQHandler(void) ALIAS(IntDefaultHandler);
void GPIO6_IRQHandler(void) ALIAS(IntDefaultHandler);
void GPIO7_IRQHandler(void) ALIAS(IntDefaultHandler);
void GINT0_IRQHandler(void) ALIAS(IntDefaultHandler);
void GINT1_IRQHandler(void) ALIAS(IntDefaultHandler);
void EVRT_IRQHandler(void) ALIAS(IntDefaultHandler);
void CAN1_IRQHandler(void) ALIAS(IntDefaultHandler);
void VADC_IRQHandler(void) ALIAS(IntDefaultHandler);
void ATIMER_IRQHandler(void) ALIAS(IntDefaultHandler);
void RTC_IRQHandler(void) ALIAS(IntDefaultHandler);
void WDT_IRQHandler(void) ALIAS(IntDefaultHandler);
void M0s_IRQHandler(void) ALIAS(IntDefaultHandler);
void CAN0_IRQHandler(void) ALIAS(IntDefaultHandler);
void QEI_IRQHandler(void) ALIAS(IntDefaultHandler);


//*****************************************************************************
//
// The entry point for the application.
// __main() is the entry point for Redlib based applications
// main() is the entry point for Newlib based applications
//
//*****************************************************************************
#if defined (__REDLIB__)
extern void __main(void);
#endif
extern int main(void);
//*****************************************************************************
//
// External declaration for the pointer to the stack top from the Linker Script
//
//*****************************************************************************
extern void _vStackTop(void);

//*****************************************************************************
#if defined (__cplusplus)
} // extern "C"
#endif
//*****************************************************************************
//
// The vector table.
// This relies on the linker script to place at correct location in memory.
//
//*****************************************************************************
extern void (* const g_pfnVectors[])(void);
__attribute__ ((section(".isr_vector")))
void (* const g_pfnVectors[])(void) = {
		// Core Level - CM4
		&_vStackTop, // The initial stack pointer
		ResetISR,								// The reset handler
		NMI_Handler,							// The NMI handler
		HardFault_Handler,						// The hard fault handler
		MemManage_Handler,						// The MPU fault handler
		BusFault_Handler,						// The bus fault handler
		UsageFault_Handler,						// The usage fault handler
		0,										// Reserved
		0,										// Reserved
		0,										// Reserved
		0,										// Reserved
		SVC_Handler,							// SVCall handler
		DebugMon_Handler,						// Debug monitor handler
		0,										// Reserved
		PendSV_Handler,							// The PendSV handler
		SysTick_Handler,						// The SysTick handler

		// Chip Level - LPC43
		DAC_IRQHandler,	 			// 16
		M0CORE_IRQHandler,			// 17
		DMA_IRQHandler,				// 18
		EZH_IRQHandler,				// 19
		FLASH_EEPROM_IRQHandler,	// 20
		ETH_IRQHandler,				// 21
		SDIO_IRQHandler,			// 22
		LCD_IRQHandler,				// 23
		USB0_IRQHandler,			// 24
		USB1_IRQHandler,			// 25
		SCT_IRQHandler,				// 26
		RIT_IRQHandler,				// 27
		TIMER0_IRQHandler,			// 28
		TIMER1_IRQHandler,			// 29
		TIMER2_IRQHandler,			// 30
		TIMER3_IRQHandler,			// 31
		MCPWM_IRQHandler,			// 32
		ADC0_IRQHandler,			// 33
		I2C0_IRQHandler,			// 34
		I2C1_IRQHandler,			// 35
		SPI_IRQHandler,				// 36
		ADC1_IRQHandler,			// 37
		SSP0_IRQHandler,			// 38
		SSP1_IRQHandler,			// 39
		UART0_IRQHandler,			// 40
		UART1_IRQHandler,			// 41
		UART2_IRQHandler,			// 42
		UART3_IRQHandler,			// 43
		I2S0_IRQHandler,			// 44
		I2S1_IRQHandler,			// 45
		SPIFI_IRQHandler,			// 46
		SGPIO_IRQHandler,			// 47
		GPIO0_IRQHandler,			// 48
		GPIO1_IRQHandler,			// 49
		GPIO2_IRQHandler,			// 50
		GPIO3_IRQHandler,			// 51
		GPIO4_IRQHandler,			// 52
		GPIO5_IRQHandler,			// 53
		GPIO6_IRQHandler,			// 54
		GPIO7_IRQHandler,			// 55
		GINT0_IRQHandler,			// 56
		GINT1_IRQHandler,			// 57
		EVRT_IRQHandler,			// 58
		CAN1_IRQHandler,			// 59
		0,							// 60
		VADC_IRQHandler,			// 61
		ATIMER_IRQHandler,			// 62
		RTC_IRQHandler,				// 63
		0,							// 64
		WDT_IRQHandler,				// 65
		M0s_IRQHandler,				// 66
		CAN0_IRQHandler,			// 67
		QEI_IRQHandler,				// 68
	};

//*****************************************************************************
// Functions to carry out the initialization of RW and BSS data sections. These
// are written as separate functions rather than being inlined within the
// ResetISR() function in order to cope with MCUs with multiple banks of
// memory.
//*****************************************************************************
__attribute__ ((section(".after_vectors")))
void data_init(unsigned int romstart, unsigned int start, unsigned int len) {
	unsigned int *pulDest = (unsigned int*) start;
	unsigned int *pulSrc = (unsigned int*) romstart;
	unsigned int loop;
	for (loop = 0; loop < len; loop = loop + 4)
		*pulDest++ = *pulSrc++;
}

__attribute__ ((section(".after_vectors")))
void bss_init(unsigned int start, unsigned int len) {
	unsigned int *pulDest = (unsigned int*) start;
	unsigned int loop;
	for (loop = 0; loop < len; loop = loop + 4)
		*pulDest++ = 0;
}

//*****************************************************************************
// The following symbols are constructs generated by the linker, indicating
// the location of various points in the "Global Section Table". This table is
// created by the linker via the Code Red managed linker script mechanism. It
// contains the load address, execution address and length of each RW data
// section and the execution and length of each BSS (zero initialized) section.
//*****************************************************************************
extern unsigned int __data_section_table;
extern unsigned int __data_section_table_end;
extern unsigned int __bss_section_table;
extern unsigned int __bss_section_table_end;

//*****************************************************************************
// Reset entry point for your code.
// Sets up a simple runtime environment and initializes the C/C++
// library.
//
//*****************************************************************************
void
ResetISR(void) {

// *************************************************************
// The following conditional block of code manually resets as
// much of the peripheral set of the LPC43 as possible. This is
// done because the LPC43 does not provide a means of triggering
// a full system reset under debugger control, which can cause
// problems in certain circumstances when debugging.
//
// You can prevent this code block being included if you require
// (for example when creating a final executable which you will
// not debug) by setting the define 'DONT_RESET_ON_RESTART'.
//
#ifndef DONT_RESET_ON_RESTART

	// Disable interrupts
	__asm volatile ("cpsid i");
	// equivalent to CMSIS '__disable_irq()' function

	unsigned int *RESET_CONTROL = (unsigned int *) 0x40053100;
	// LPC_RGU->RESET_CTRL0 @ 0x40053100
	// LPC_RGU->RESET_CTRL1 @ 0x40053104
	// Note that we do not use the CMSIS register access mechanism,
	// as there is no guarantee that the project has been configured
	// to use CMSIS.

	// Write to LPC_RGU->RESET_CTRL0
	*(RESET_CONTROL+0) = 0x10DF0000;
	// GPIO_RST|AES_RST|ETHERNET_RST|SDIO_RST|DMA_RST|
	// USB1_RST|USB0_RST|LCD_RST

	// Write to LPC_RGU->RESET_CTRL1
	*(RESET_CONTROL+1) = 0x01DFF7FF;
	// M0APP_RST|CAN0_RST|CAN1_RST|I2S_RST|SSP1_RST|SSP0_RST|
	// I2C1_RST|I2C0_RST|UART3_RST|UART1_RST|UART1_RST|UART0_RST|
	// DAC_RST|ADC1_RST|ADC0_RST|QEI_RST|MOTOCONPWM_RST|SCT_RST|
	// RITIMER_RST|TIMER3_RST|TIMER2_RST|TIMER1_RST|TIMER0_RST

	// Clear all pending interrupts in the NVIC
	volatile unsigned int *NVIC_ICPR = (unsigned int *) 0xE000E280;
	unsigned int irqpendloop;
	for (irqpendloop = 0; irqpendloop < 8; irqpendloop++) {
		*(NVIC_ICPR+irqpendloop)= 0xFFFFFFFF;
	}

	// Reenable interrupts
	__asm volatile ("cpsie i");
	// equivalent to CMSIS '__enable_irq()' function

#endif  // ifndef DONT_RESET_ON_RESTART
// *************************************************************


    //
    // Copy the data sections from flash to SRAM.
    //
	unsigned int LoadAddr, ExeAddr, SectionLen;
	unsigned int *SectionTableAddr;

	// Load base address of Global Section Table
	SectionTableAddr = &__data_section_table;

    // Copy the data sections from flash to SRAM.
	while (SectionTableAddr < &__data_section_table_end) {
		LoadAddr = *SectionTableAddr++;
		ExeAddr = *SectionTableAddr++;
		SectionLen = *SectionTableAddr++;
		data_init(LoadAddr, ExeAddr, SectionLen);
	}
	// At this point, SectionTableAddr = &__bss_section_table;
	// Zero fill the bss segment
	while (SectionTableAddr < &__bss_section_table_end) {
		ExeAddr = *SectionTableAddr++;
		SectionLen = *SectionTableAddr++;
		bss_init(ExeAddr, SectionLen);
	}

#if defined (__VFP_FP__) && !defined (__SOFTFP__)
/*
 * Code to enable the Cortex-M4 FPU only included
 * if appropriate build options have been selected.
 * Code taken from Section 7.1, Cortex-M4 TRM (DDI0439C)
 */
	  // CPACR is located at address 0xE000ED88
	asm("LDR.W R0, =0xE000ED88");
	  // Read CPACR
	asm("LDR R1, [R0]");
	  // Set bits 20-23 to enable CP10 and CP11 coprocessors
	asm(" ORR R1, R1, #(0xF << 20)");
	  // Write back the modified value to the CPACR
	asm("STR R1, [R0]");
#endif // (__VFP_FP__) && !(__SOFTFP__)

	// ******************************
	// Check to see if we are running the code from a non-zero
    // address (eg RAM, external flash), in which case we need
    // to modify the VTOR register to tell the CPU that the
    // vector table is located at a non-0x0 address.

	// Note that we do not use the CMSIS register access mechanism,
	// as there is no guarantee that the project has been configured
	// to use CMSIS.
	unsigned int * pSCB_VTOR = (unsigned int *) 0xE000ED08;
	if ((unsigned int *)g_pfnVectors!=(unsigned int *) 0x00000000) {
		// CMSIS : SCB->VTOR = <address of vector table>
		*pSCB_VTOR = (unsigned int)g_pfnVectors;
	}

#ifdef __USE_CMSIS
	SystemInit();
#endif

#if defined (__cplusplus)
	//
	// Call C++ library initialisation
	//
	__libc_init_array();
#endif

#if defined (__REDLIB__)
	// Call the Redlib library, which in turn calls main()
	__main() ;
#else
	main();
#endif

	//
	// main() shouldn't return, but if it does, we'll just enter an infinite loop 
	//
	while (1) {
		;
	}
}

//*****************************************************************************
// Default exception handlers. Override the ones here by defining your own
// handler routines in your application code.
//*****************************************************************************
__attribute__ ((section(".after_vectors")))
void NMI_Handler(void)
{
    while(1)
    {
    }
}
__attribute__ ((section(".after_vectors")))
void HardFault_Handler(void)
{
    while(1)
    {
    }
}
__attribute__ ((section(".after_vectors")))
void MemManage_Handler(void)
{
    while(1)
    {
    }
}
__attribute__ ((section(".after_vectors")))
void BusFault_Handler(void)
{
    while(1)
    {
    }
}
__attribute__ ((section(".after_vectors")))
void UsageFault_Handler(void)
{
    while(1)
    {
    }
}
__attribute__ ((section(".after_vectors")))
void SVC_Handler(void)
{
    while(1)
    {
    }
}
__attribute__ ((section(".after_vectors")))
void DebugMon_Handler(void)
{
    while(1)
    {
    }
}
__attribute__ ((section(".after_vectors")))
void PendSV_Handler(void)
{
    while(1)
    {
    }
}
__attribute__ ((section(".after_vectors")))
void SysTick_Handler(void)
{
    while(1)
    {
    }
}

//*****************************************************************************
//
// Processor ends up here if an unexpected interrupt occurs or a specific
// handler is not present in the application code.
//
//*****************************************************************************
__attribute__ ((section(".after_vectors")))
void IntDefaultHandler(void)
{
    while(1)
    {
    }
}