Newer
Older
mbed-os / targets / cmsis / TARGET_NXP / TARGET_LPC82X / TARGET_LPC824 / TOOLCHAIN_GCC_CR / startup_LPC824_CR.cpp
@Christopher Haster Christopher Haster on 30 Sep 2016 14 KB restructure - Moved targets out to top level
//*****************************************************************************
// LPC82x Microcontroller Startup code for use with LPCXpresso IDE
//
// Version : 140901
//*****************************************************************************
//
// Copyright(C) NXP Semiconductors, 2014
// All rights reserved.
//
// Software that is described herein is for illustrative purposes only
// which provides customers with programming information regarding the
// LPC products.  This software is supplied "AS IS" without any warranties of
// any kind, and NXP Semiconductors and its licensor disclaim any and
// all warranties, express or implied, including all implied warranties of
// merchantability, fitness for a particular purpose and non-infringement of
// intellectual property rights.  NXP Semiconductors assumes no responsibility
// or liability for the use of the software, conveys no license or rights under any
// patent, copyright, mask work right, or any other intellectual property rights in
// or to any products. NXP Semiconductors reserves the right to make changes
// in the software without notification. NXP Semiconductors also makes no
// representation or warranty that such application will be suitable for the
// specified use without further testing or modification.
//
// Permission to use, copy, modify, and distribute this software and its
// documentation is hereby granted, under NXP Semiconductors' and its
// licensor's relevant copyrights in the software, without fee, provided that it
// is used in conjunction with NXP Semiconductors microcontrollers.  This
// copyright, permission, and disclaimer notice must appear in all copies of
// this code.
//*****************************************************************************

#if defined (__cplusplus)
#ifdef __REDLIB__
#error Redlib does not support C++
#else
//*****************************************************************************
//
// The entry point for the C++ library startup
//
//*****************************************************************************
extern "C" {
    extern void __libc_init_array(void);
}
#endif
#endif

#define WEAK __attribute__ ((weak))
#define ALIAS(f) __attribute__ ((weak, alias (#f)))

//*****************************************************************************
#if defined (__cplusplus)
extern "C" {
#endif

//*****************************************************************************
#if defined (__USE_CMSIS) || defined (__USE_LPCOPEN)
// Declaration of external SystemInit function
extern void SystemInit(void);
#endif

// Patch the AEABI integer divide functions to use MCU's romdivide library
#ifdef __USE_ROMDIVIDE
// Location in memory that holds the address of the ROM Driver table
#define PTR_ROM_DRIVER_TABLE ((unsigned int *)(0x1FFF1FF8))
// Variables to store addresses of idiv and udiv functions within MCU ROM
unsigned int *pDivRom_idiv;
unsigned int *pDivRom_uidiv;
#endif

//*****************************************************************************
//
// Forward declaration of the default handlers. These are aliased.
// When the application defines a handler (with the same name), this will
// automatically take precedence over these weak definitions
//
//*****************************************************************************
     void ResetISR(void);
WEAK void NMI_Handler(void);
WEAK void HardFault_Handler(void);
WEAK void SVC_Handler(void);
WEAK void PendSV_Handler(void);
WEAK void SysTick_Handler(void);
WEAK void IntDefaultHandler(void);

//*****************************************************************************
//
// Forward declaration of the specific IRQ handlers. These are aliased
// to the IntDefaultHandler, which is a 'forever' loop. When the application
// defines a handler (with the same name), this will automatically take
// precedence over these weak definitions
//
//*****************************************************************************
void SPI0_IRQHandler(void) ALIAS(IntDefaultHandler);
void SPI1_IRQHandler(void) ALIAS(IntDefaultHandler);
void UART0_IRQHandler(void) ALIAS(IntDefaultHandler);
void UART1_IRQHandler(void) ALIAS(IntDefaultHandler);
void UART2_IRQHandler(void) ALIAS(IntDefaultHandler);
void I2C1_IRQHandler(void) ALIAS(IntDefaultHandler);
void I2C0_IRQHandler(void) ALIAS(IntDefaultHandler);
void SCT_IRQHandler(void) ALIAS(IntDefaultHandler);
void MRT_IRQHandler(void) ALIAS(IntDefaultHandler);
void CMP_IRQHandler(void) ALIAS(IntDefaultHandler);
void WDT_IRQHandler(void) ALIAS(IntDefaultHandler);
void BOD_IRQHandler(void) ALIAS(IntDefaultHandler);
void FLASH_IRQHandler(void) ALIAS(IntDefaultHandler);
void WKT_IRQHandler(void) ALIAS(IntDefaultHandler);
void ADC_SEQA_IRQHandler(void) ALIAS(IntDefaultHandler);
void ADC_SEQB_IRQHandler(void) ALIAS(IntDefaultHandler);
void ADC_THCMP_IRQHandler(void) ALIAS(IntDefaultHandler);
void ADC_OVR_IRQHandler(void) ALIAS(IntDefaultHandler);
void DMA_IRQHandler(void) ALIAS(IntDefaultHandler);
void I2C2_IRQHandler(void) ALIAS(IntDefaultHandler);
void I2C3_IRQHandler(void) ALIAS(IntDefaultHandler);
void PIN_INT0_IRQHandler(void) ALIAS(IntDefaultHandler);
void PIN_INT1_IRQHandler(void) ALIAS(IntDefaultHandler);
void PIN_INT2_IRQHandler(void) ALIAS(IntDefaultHandler);
void PIN_INT3_IRQHandler(void) ALIAS(IntDefaultHandler);
void PIN_INT4_IRQHandler(void) ALIAS(IntDefaultHandler);
void PIN_INT5_IRQHandler(void) ALIAS(IntDefaultHandler);
void PIN_INT6_IRQHandler(void) ALIAS(IntDefaultHandler);
void PIN_INT7_IRQHandler(void) ALIAS(IntDefaultHandler);
//*****************************************************************************
//
// The entry point for the application.
// __main() is the entry point for Redlib based applications
// main() is the entry point for Newlib based applications
//
//*****************************************************************************
#if defined (__REDLIB__)
extern void __main(void);
#else
extern int main(void);
#endif
//*****************************************************************************
//
// External declaration for the pointer to the stack top from the Linker Script
//
//*****************************************************************************
extern void _vStackTop(void);

//*****************************************************************************
#if defined (__cplusplus)
} // extern "C"
#endif
//*****************************************************************************
//
// The vector table.
// This relies on the linker script to place at correct location in memory.
//
//*****************************************************************************
extern void (* const g_pfnVectors[])(void);
__attribute__ ((section(".isr_vector")))
void (* const g_pfnVectors[])(void) = {
    // Core Level - CM0plus
    &_vStackTop, // The initial stack pointer
    ResetISR,                               // The reset handler
    NMI_Handler,                            // The NMI handler
    HardFault_Handler,                      // The hard fault handler
    0,                                      // Reserved
    0,                                      // Reserved
    0,                                      // Reserved
    0,                                      // Reserved
    0,                                      // Reserved
    0,                                      // Reserved
    0,                                      // Reserved
    SVC_Handler,                            // SVCall handler
    0,                                      // Reserved
    0,                                      // Reserved
    PendSV_Handler,                         // The PendSV handler
    SysTick_Handler,                        // The SysTick handler

    // Chip Level - LPC82x
    SPI0_IRQHandler,                         // SPI0 controller
    SPI1_IRQHandler,                         // SPI1 controller
    0,                                       // Reserved
    UART0_IRQHandler,                        // UART0
    UART1_IRQHandler,                        // UART1
    UART2_IRQHandler,                        // UART2
    0,                                       // Reserved
    I2C1_IRQHandler,                         // I2C1 controller
    I2C0_IRQHandler,                         // I2C0 controller
    SCT_IRQHandler,                          // Smart Counter Timer
    MRT_IRQHandler,                          // Multi-Rate Timer
    CMP_IRQHandler,                          // Comparator
    WDT_IRQHandler,                          // Watchdog
    BOD_IRQHandler,                          // Brown Out Detect
    FLASH_IRQHandler,                        // Flash Interrupt
    WKT_IRQHandler,                          // Wakeup timer
    ADC_SEQA_IRQHandler,                     // ADC sequence A completion
    ADC_SEQB_IRQHandler,                     // ADC sequence B completion
    ADC_THCMP_IRQHandler,                    // ADC threshold compare
    ADC_OVR_IRQHandler,                      // ADC overrun
    DMA_IRQHandler,                          // DMA
    I2C2_IRQHandler,                         // I2C2 controller
    I2C3_IRQHandler,                         // I2C3 controller
    0,                                       // Reserved
    PIN_INT0_IRQHandler,                     // PIO INT0
    PIN_INT1_IRQHandler,                     // PIO INT1
    PIN_INT2_IRQHandler,                     // PIO INT2
    PIN_INT3_IRQHandler,                     // PIO INT3
    PIN_INT4_IRQHandler,                     // PIO INT4
    PIN_INT5_IRQHandler,                     // PIO INT5
    PIN_INT6_IRQHandler,                     // PIO INT6
    PIN_INT7_IRQHandler,                     // PIO INT7
}; /* End of g_pfnVectors */

//*****************************************************************************
// Functions to carry out the initialization of RW and BSS data sections. These
// are written as separate functions rather than being inlined within the
// ResetISR() function in order to cope with MCUs with multiple banks of
// memory.
//*****************************************************************************
__attribute__ ((section(".after_vectors")))
void data_init(unsigned int romstart, unsigned int start, unsigned int len) {
    unsigned int *pulDest = (unsigned int*) start;
    unsigned int *pulSrc = (unsigned int*) romstart;
    unsigned int loop;
    for (loop = 0; loop < len; loop = loop + 4)
        *pulDest++ = *pulSrc++;
}

__attribute__ ((section(".after_vectors")))
void bss_init(unsigned int start, unsigned int len) {
    unsigned int *pulDest = (unsigned int*) start;
    unsigned int loop;
    for (loop = 0; loop < len; loop = loop + 4)
        *pulDest++ = 0;
}

//*****************************************************************************
// The following symbols are constructs generated by the linker, indicating
// the location of various points in the "Global Section Table". This table is
// created by the linker via the Code Red managed linker script mechanism. It
// contains the load address, execution address and length of each RW data
// section and the execution and length of each BSS (zero initialized) section.
//*****************************************************************************
extern unsigned int __data_section_table;
extern unsigned int __data_section_table_end;
extern unsigned int __bss_section_table;
extern unsigned int __bss_section_table_end;


//*****************************************************************************
// Reset entry point for your code.
// Sets up a simple runtime environment and initializes the C/C++
// library.
//*****************************************************************************
__attribute__ ((section(".after_vectors")))
void
ResetISR(void) {

    //
    // Copy the data sections from flash to SRAM.
    //
    unsigned int LoadAddr, ExeAddr, SectionLen;
    unsigned int *SectionTableAddr;

    // Load base address of Global Section Table
    SectionTableAddr = &__data_section_table;

    // Copy the data sections from flash to SRAM.
    while (SectionTableAddr < &__data_section_table_end) {
        LoadAddr = *SectionTableAddr++;
        ExeAddr = *SectionTableAddr++;
        SectionLen = *SectionTableAddr++;
        data_init(LoadAddr, ExeAddr, SectionLen);
    }
    // At this point, SectionTableAddr = &__bss_section_table;
    // Zero fill the bss segment
    while (SectionTableAddr < &__bss_section_table_end) {
        ExeAddr = *SectionTableAddr++;
        SectionLen = *SectionTableAddr++;
        bss_init(ExeAddr, SectionLen);
    }

    // Patch the AEABI integer divide functions to use MCU's romdivide library
#ifdef __USE_ROMDIVIDE
    // Get address of Integer division routines function table in ROM
    unsigned int *div_ptr = (unsigned int *)((unsigned int *)*(PTR_ROM_DRIVER_TABLE))[4];
    // Get addresses of integer divide routines in ROM
    // These address are then used by the code in aeabi_romdiv_patch.s
    pDivRom_idiv = (unsigned int *)div_ptr[0];
    pDivRom_uidiv = (unsigned int *)div_ptr[1];
#endif

#if defined (__USE_CMSIS) || defined (__USE_LPCOPEN)
    SystemInit();
#endif

#if defined (__cplusplus)
    //
    // Call C++ library initialisation
    //
    __libc_init_array();
#endif

#if defined (__REDLIB__)
    // Call the Redlib library, which in turn calls main()
    __main() ;
#else
    main();
#endif

    //
    // main() shouldn't return, but if it does, we'll just enter an infinite loop
    //
    while (1) {
        ;
    }
}

//*****************************************************************************
// Default exception handlers. Override the ones here by defining your own
// handler routines in your application code.
//*****************************************************************************
__attribute__ ((section(".after_vectors")))
void NMI_Handler(void)
{ while(1) {}
}

__attribute__ ((section(".after_vectors")))
void HardFault_Handler(void)
{ while(1) {}
}

__attribute__ ((section(".after_vectors")))
void SVC_Handler(void)
{ while(1) {}
}

__attribute__ ((section(".after_vectors")))
void PendSV_Handler(void)
{ while(1) {}
}

__attribute__ ((section(".after_vectors")))
void SysTick_Handler(void)
{ while(1) {}
}

//*****************************************************************************
//
// Processor ends up here if an unexpected interrupt occurs or a specific
// handler is not present in the application code.
//
//*****************************************************************************
__attribute__ ((section(".after_vectors")))
void IntDefaultHandler(void)
{ while(1) {}
}