Newer
Older
mbed-os / targets / TARGET_STM / TARGET_STM32L4 / STM32Cube_FW / STM32L4xx_HAL_Driver / stm32l4xx_hal_rcc_ex.c
@jeromecoutant jeromecoutant on 20 Oct 2020 122 KB STM32L4 : directory retructuration
/**
  ******************************************************************************
  * @file    stm32l4xx_hal_rcc_ex.c
  * @author  MCD Application Team
  * @brief   Extended RCC HAL module driver.
  *          This file provides firmware functions to manage the following
  *          functionalities RCC extended peripheral:
  *           + Extended Peripheral Control functions
  *           + Extended Clock management functions
  *           + Extended Clock Recovery System Control functions
  *
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; Copyright (c) 2017 STMicroelectronics.
  * All rights reserved.</center></h2>
  *
  * This software component is licensed by ST under BSD 3-Clause license,
  * the "License"; You may not use this file except in compliance with the
  * License. You may obtain a copy of the License at:
  *                        opensource.org/licenses/BSD-3-Clause
  *
  ******************************************************************************
  */

/* Includes ------------------------------------------------------------------*/
#include "stm32l4xx_hal.h"

/** @addtogroup STM32L4xx_HAL_Driver
  * @{
  */

/** @defgroup RCCEx RCCEx
  * @brief RCC Extended HAL module driver
  * @{
  */

#ifdef HAL_RCC_MODULE_ENABLED

/* Private typedef -----------------------------------------------------------*/
/* Private defines -----------------------------------------------------------*/
/** @defgroup RCCEx_Private_Constants RCCEx Private Constants
 * @{
 */
#define PLLSAI1_TIMEOUT_VALUE     2U    /* 2 ms (minimum Tick + 1) */
#define PLLSAI2_TIMEOUT_VALUE     2U    /* 2 ms (minimum Tick + 1) */
#define PLL_TIMEOUT_VALUE         2U    /* 2 ms (minimum Tick + 1) */

#define DIVIDER_P_UPDATE          0U
#define DIVIDER_Q_UPDATE          1U
#define DIVIDER_R_UPDATE          2U

#define __LSCO_CLK_ENABLE()       __HAL_RCC_GPIOA_CLK_ENABLE()
#define LSCO_GPIO_PORT            GPIOA
#define LSCO_PIN                  GPIO_PIN_2
/**
  * @}
  */

/* Private macros ------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/** @defgroup RCCEx_Private_Functions RCCEx Private Functions
 * @{
 */
#if defined(RCC_PLLSAI1_SUPPORT)

static HAL_StatusTypeDef RCCEx_PLLSAI1_Config(RCC_PLLSAI1InitTypeDef *PllSai1, uint32_t Divider);

#endif /* RCC_PLLSAI1_SUPPORT */

#if defined(RCC_PLLSAI2_SUPPORT)

static HAL_StatusTypeDef RCCEx_PLLSAI2_Config(RCC_PLLSAI2InitTypeDef *PllSai2, uint32_t Divider);

#endif /* RCC_PLLSAI2_SUPPORT */

#if defined(SAI1)

static uint32_t RCCEx_GetSAIxPeriphCLKFreq(uint32_t PeriphClk, uint32_t InputFrequency);

#endif /* SAI1 */
/**
  * @}
  */

/* Exported functions --------------------------------------------------------*/

/** @defgroup RCCEx_Exported_Functions RCCEx Exported Functions
  * @{
  */

/** @defgroup RCCEx_Exported_Functions_Group1 Extended Peripheral Control functions
 *  @brief  Extended Peripheral Control functions
 *
@verbatim
 ===============================================================================
                ##### Extended Peripheral Control functions  #####
 ===============================================================================
    [..]
    This subsection provides a set of functions allowing to control the RCC Clocks
    frequencies.
    [..]
    (@) Important note: Care must be taken when HAL_RCCEx_PeriphCLKConfig() is used to
        select the RTC clock source; in this case the Backup domain will be reset in
        order to modify the RTC Clock source, as consequence RTC registers (including
        the backup registers) are set to their reset values.

@endverbatim
  * @{
  */
/**
  * @brief  Initialize the RCC extended peripherals clocks according to the specified
  *         parameters in the RCC_PeriphCLKInitTypeDef.
  * @param  PeriphClkInit  pointer to an RCC_PeriphCLKInitTypeDef structure that
  *         contains a field PeriphClockSelection which can be a combination of the following values:
  *            @arg @ref RCC_PERIPHCLK_RTC  RTC peripheral clock
  *            @arg @ref RCC_PERIPHCLK_ADC  ADC peripheral clock
  @if STM32L462xx
  *            @arg @ref RCC_PERIPHCLK_DFSDM1  DFSDM1 peripheral clock (only for devices with DFSDM1)
  @endif
  @if STM32L486xx
  *            @arg @ref RCC_PERIPHCLK_DFSDM1  DFSDM1 peripheral clock (only for devices with DFSDM1)
  @endif
  @if STM32L4A6xx
  *            @arg @ref RCC_PERIPHCLK_DFSDM1  DFSDM1 peripheral clock (only for devices with DFSDM1)
  @endif
  *            @arg @ref RCC_PERIPHCLK_I2C1  I2C1 peripheral clock
  *            @arg @ref RCC_PERIPHCLK_I2C2  I2C2 peripheral clock
  *            @arg @ref RCC_PERIPHCLK_I2C3  I2C3 peripheral clock
  @if STM32L462xx
  *            @arg @ref RCC_PERIPHCLK_I2C4  I2C4 peripheral clock (only for devices with I2C4)
  @endif
  @if STM32L4A6xx
  *            @arg @ref RCC_PERIPHCLK_I2C4  I2C4 peripheral clock (only for devices with I2C4)
  @endif
  @if STM32L4S9xx
  *            @arg @ref RCC_PERIPHCLK_I2C4  I2C4 peripheral clock (only for devices with I2C4)
  @endif
  *            @arg @ref RCC_PERIPHCLK_LPTIM1  LPTIM1 peripheral clock
  *            @arg @ref RCC_PERIPHCLK_LPTIM2  LPTIM2 peripheral clock
  *            @arg @ref RCC_PERIPHCLK_LPUART1  LPUART1 peripheral clock
  *            @arg @ref RCC_PERIPHCLK_RNG  RNG peripheral clock
  *            @arg @ref RCC_PERIPHCLK_SAI1  SAI1 peripheral clock (only for devices with SAI1)
  @if STM32L486xx
  *            @arg @ref RCC_PERIPHCLK_SAI2  SAI2 peripheral clock (only for devices with SAI2)
  @endif
  @if STM32L4A6xx
  *            @arg @ref RCC_PERIPHCLK_SAI2  SAI2 peripheral clock (only for devices with SAI2)
  @endif
  @if STM32L4S9xx
  *            @arg @ref RCC_PERIPHCLK_SAI2  SAI2 peripheral clock (only for devices with SAI2)
  @endif
  *            @arg @ref RCC_PERIPHCLK_SDMMC1  SDMMC1 peripheral clock
  @if STM32L443xx
  *            @arg @ref RCC_PERIPHCLK_SWPMI1  SWPMI1 peripheral clock (only for devices with SWPMI1)
  @endif
  @if STM32L486xx
  *            @arg @ref RCC_PERIPHCLK_SWPMI1  SWPMI1 peripheral clock (only for devices with SWPMI1)
  @endif
  @if STM32L4A6xx
  *            @arg @ref RCC_PERIPHCLK_SWPMI1  SWPMI1 peripheral clock (only for devices with SWPMI1)
  @endif
  *            @arg @ref RCC_PERIPHCLK_USART1  USART1 peripheral clock
  *            @arg @ref RCC_PERIPHCLK_USART2  USART1 peripheral clock
  *            @arg @ref RCC_PERIPHCLK_USART3  USART1 peripheral clock
  @if STM32L462xx
  *            @arg @ref RCC_PERIPHCLK_UART4  USART1 peripheral clock (only for devices with UART4)
  @endif
  @if STM32L486xx
  *            @arg @ref RCC_PERIPHCLK_UART4  USART1 peripheral clock (only for devices with UART4)
  *            @arg @ref RCC_PERIPHCLK_UART5  USART1 peripheral clock (only for devices with UART5)
  *            @arg @ref RCC_PERIPHCLK_USB  USB peripheral clock (only for devices with USB)
  @endif
  @if STM32L4A6xx
  *            @arg @ref RCC_PERIPHCLK_UART4  USART1 peripheral clock (only for devices with UART4)
  *            @arg @ref RCC_PERIPHCLK_UART5  USART1 peripheral clock (only for devices with UART5)
  *            @arg @ref RCC_PERIPHCLK_USB  USB peripheral clock (only for devices with USB)
  @endif
  @if STM32L4S9xx
  *            @arg @ref RCC_PERIPHCLK_UART4  USART1 peripheral clock (only for devices with UART4)
  *            @arg @ref RCC_PERIPHCLK_UART5  USART1 peripheral clock (only for devices with UART5)
  *            @arg @ref RCC_PERIPHCLK_USB  USB peripheral clock (only for devices with USB)
  *            @arg @ref RCC_PERIPHCLK_DFSDM1  DFSDM1 peripheral kernel clock (only for devices with DFSDM1)
  *            @arg @ref RCC_PERIPHCLK_DFSDM1AUDIO  DFSDM1 peripheral audio clock (only for devices with DFSDM1)
  *            @arg @ref RCC_PERIPHCLK_LTDC  LTDC peripheral clock (only for devices with LTDC)
  *            @arg @ref RCC_PERIPHCLK_DSI  DSI peripheral clock (only for devices with DSI)
  *            @arg @ref RCC_PERIPHCLK_OSPI  OctoSPI peripheral clock (only for devices with OctoSPI)
  @endif
  *
  * @note   Care must be taken when HAL_RCCEx_PeriphCLKConfig() is used to select
  *         the RTC clock source: in this case the access to Backup domain is enabled.
  *
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RCCEx_PeriphCLKConfig(RCC_PeriphCLKInitTypeDef  *PeriphClkInit)
{
  uint32_t tmpregister, tickstart;     /* no init needed */
  HAL_StatusTypeDef ret = HAL_OK;      /* Intermediate status */
  HAL_StatusTypeDef status = HAL_OK;   /* Final status */

  /* Check the parameters */
  assert_param(IS_RCC_PERIPHCLOCK(PeriphClkInit->PeriphClockSelection));

#if defined(SAI1)

  /*-------------------------- SAI1 clock source configuration ---------------------*/
  if((((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SAI1) == RCC_PERIPHCLK_SAI1))
  {
    /* Check the parameters */
    assert_param(IS_RCC_SAI1CLK(PeriphClkInit->Sai1ClockSelection));

    switch(PeriphClkInit->Sai1ClockSelection)
    {
    case RCC_SAI1CLKSOURCE_PLL:      /* PLL is used as clock source for SAI1*/
      /* Enable SAI Clock output generated form System PLL . */
#if defined(RCC_PLLSAI2_SUPPORT)
      __HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_SAI3CLK);
#else
      __HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_SAI2CLK);
#endif /* RCC_PLLSAI2_SUPPORT */
      /* SAI1 clock source config set later after clock selection check */
      break;

    case RCC_SAI1CLKSOURCE_PLLSAI1:  /* PLLSAI1 is used as clock source for SAI1*/
      /* PLLSAI1 input clock, parameters M, N & P configuration and clock output (PLLSAI1ClockOut) */
      ret = RCCEx_PLLSAI1_Config(&(PeriphClkInit->PLLSAI1), DIVIDER_P_UPDATE);
      /* SAI1 clock source config set later after clock selection check */
      break;

#if defined(RCC_PLLSAI2_SUPPORT)

    case RCC_SAI1CLKSOURCE_PLLSAI2:  /* PLLSAI2 is used as clock source for SAI1*/
      /* PLLSAI2 input clock, parameters M, N & P configuration clock output (PLLSAI2ClockOut) */
      ret = RCCEx_PLLSAI2_Config(&(PeriphClkInit->PLLSAI2), DIVIDER_P_UPDATE);
      /* SAI1 clock source config set later after clock selection check */
      break;

#endif /* RCC_PLLSAI2_SUPPORT */

    case RCC_SAI1CLKSOURCE_PIN:      /* External clock is used as source of SAI1 clock*/
#if defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
    case RCC_SAI1CLKSOURCE_HSI:      /* HSI is used as source of SAI1 clock*/
#endif /* STM32L4R5xx || STM32L4R7xx || STM32L4R9xx || STM32L4S5xx || STM32L4S7xx || STM32L4S9xx */
      /* SAI1 clock source config set later after clock selection check */
      break;

    default:
      ret = HAL_ERROR;
      break;
    }

    if(ret == HAL_OK)
    {
      /* Set the source of SAI1 clock*/
      __HAL_RCC_SAI1_CONFIG(PeriphClkInit->Sai1ClockSelection);
    }
    else
    {
      /* set overall return value */
      status = ret;
    }
  }

#endif /* SAI1 */

#if defined(SAI2)

  /*-------------------------- SAI2 clock source configuration ---------------------*/
  if((((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SAI2) == RCC_PERIPHCLK_SAI2))
  {
    /* Check the parameters */
    assert_param(IS_RCC_SAI2CLK(PeriphClkInit->Sai2ClockSelection));

    switch(PeriphClkInit->Sai2ClockSelection)
    {
    case RCC_SAI2CLKSOURCE_PLL:      /* PLL is used as clock source for SAI2*/
      /* Enable SAI Clock output generated form System PLL . */
      __HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_SAI3CLK);
      /* SAI2 clock source config set later after clock selection check */
      break;

    case RCC_SAI2CLKSOURCE_PLLSAI1: /* PLLSAI1 is used as clock source for SAI2*/
      /* PLLSAI1 input clock, parameters M, N & P configuration and clock output (PLLSAI1ClockOut) */
      ret = RCCEx_PLLSAI1_Config(&(PeriphClkInit->PLLSAI1), DIVIDER_P_UPDATE);
      /* SAI2 clock source config set later after clock selection check */
      break;

    case RCC_SAI2CLKSOURCE_PLLSAI2:  /* PLLSAI2 is used as clock source for SAI2*/
      /* PLLSAI2 input clock, parameters M, N & P configuration and clock output (PLLSAI2ClockOut) */
      ret = RCCEx_PLLSAI2_Config(&(PeriphClkInit->PLLSAI2), DIVIDER_P_UPDATE);
      /* SAI2 clock source config set later after clock selection check */
      break;

    case RCC_SAI2CLKSOURCE_PIN:      /* External clock is used as source of SAI2 clock*/
#if defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
    case RCC_SAI2CLKSOURCE_HSI:      /* HSI is used as source of SAI2 clock*/
#endif /* STM32L4R5xx || STM32L4R7xx || STM32L4R9xx || STM32L4S5xx || STM32L4S7xx || STM32L4S9xx */
      /* SAI2 clock source config set later after clock selection check */
      break;

    default:
      ret = HAL_ERROR;
      break;
    }

    if(ret == HAL_OK)
    {
      /* Set the source of SAI2 clock*/
      __HAL_RCC_SAI2_CONFIG(PeriphClkInit->Sai2ClockSelection);
    }
    else
    {
      /* set overall return value */
      status = ret;
    }
  }
#endif /* SAI2 */

  /*-------------------------- RTC clock source configuration ----------------------*/
  if((PeriphClkInit->PeriphClockSelection & RCC_PERIPHCLK_RTC) == RCC_PERIPHCLK_RTC)
  {
    FlagStatus       pwrclkchanged = RESET;

    /* Check for RTC Parameters used to output RTCCLK */
    assert_param(IS_RCC_RTCCLKSOURCE(PeriphClkInit->RTCClockSelection));

    /* Enable Power Clock */
    if(__HAL_RCC_PWR_IS_CLK_DISABLED() != 0U)
    {
      __HAL_RCC_PWR_CLK_ENABLE();
      pwrclkchanged = SET;
    }

    /* Enable write access to Backup domain */
    SET_BIT(PWR->CR1, PWR_CR1_DBP);

    /* Wait for Backup domain Write protection disable */
    tickstart = HAL_GetTick();

    while(READ_BIT(PWR->CR1, PWR_CR1_DBP) == 0U)
    {
      if((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE)
      {
        ret = HAL_TIMEOUT;
        break;
      }
    }

    if(ret == HAL_OK)
    {
      /* Reset the Backup domain only if the RTC Clock source selection is modified from default */
      tmpregister = READ_BIT(RCC->BDCR, RCC_BDCR_RTCSEL);

      if((tmpregister != RCC_RTCCLKSOURCE_NONE) && (tmpregister != PeriphClkInit->RTCClockSelection))
      {
        /* Store the content of BDCR register before the reset of Backup Domain */
        tmpregister = READ_BIT(RCC->BDCR, ~(RCC_BDCR_RTCSEL));
        /* RTC Clock selection can be changed only if the Backup Domain is reset */
        __HAL_RCC_BACKUPRESET_FORCE();
        __HAL_RCC_BACKUPRESET_RELEASE();
        /* Restore the Content of BDCR register */
        RCC->BDCR = tmpregister;
      }

      /* Wait for LSE reactivation if LSE was enable prior to Backup Domain reset */
      if (HAL_IS_BIT_SET(tmpregister, RCC_BDCR_LSEON))
      {
        /* Get Start Tick*/
        tickstart = HAL_GetTick();

        /* Wait till LSE is ready */
        while(READ_BIT(RCC->BDCR, RCC_BDCR_LSERDY) == 0U)
        {
          if((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE)
          {
            ret = HAL_TIMEOUT;
            break;
          }
        }
      }

      if(ret == HAL_OK)
      {
        /* Apply new RTC clock source selection */
        __HAL_RCC_RTC_CONFIG(PeriphClkInit->RTCClockSelection);
      }
      else
      {
        /* set overall return value */
        status = ret;
      }
    }
    else
    {
      /* set overall return value */
      status = ret;
    }

    /* Restore clock configuration if changed */
    if(pwrclkchanged == SET)
    {
      __HAL_RCC_PWR_CLK_DISABLE();
    }
  }

  /*-------------------------- USART1 clock source configuration -------------------*/
  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USART1) == RCC_PERIPHCLK_USART1)
  {
    /* Check the parameters */
    assert_param(IS_RCC_USART1CLKSOURCE(PeriphClkInit->Usart1ClockSelection));

    /* Configure the USART1 clock source */
    __HAL_RCC_USART1_CONFIG(PeriphClkInit->Usart1ClockSelection);
  }

  /*-------------------------- USART2 clock source configuration -------------------*/
  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USART2) == RCC_PERIPHCLK_USART2)
  {
    /* Check the parameters */
    assert_param(IS_RCC_USART2CLKSOURCE(PeriphClkInit->Usart2ClockSelection));

    /* Configure the USART2 clock source */
    __HAL_RCC_USART2_CONFIG(PeriphClkInit->Usart2ClockSelection);
  }

#if defined(USART3)

  /*-------------------------- USART3 clock source configuration -------------------*/
  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USART3) == RCC_PERIPHCLK_USART3)
  {
    /* Check the parameters */
    assert_param(IS_RCC_USART3CLKSOURCE(PeriphClkInit->Usart3ClockSelection));

    /* Configure the USART3 clock source */
    __HAL_RCC_USART3_CONFIG(PeriphClkInit->Usart3ClockSelection);
  }

#endif /* USART3 */

#if defined(UART4)

  /*-------------------------- UART4 clock source configuration --------------------*/
  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_UART4) == RCC_PERIPHCLK_UART4)
  {
    /* Check the parameters */
    assert_param(IS_RCC_UART4CLKSOURCE(PeriphClkInit->Uart4ClockSelection));

    /* Configure the UART4 clock source */
    __HAL_RCC_UART4_CONFIG(PeriphClkInit->Uart4ClockSelection);
  }

#endif /* UART4 */

#if defined(UART5)

  /*-------------------------- UART5 clock source configuration --------------------*/
  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_UART5) == RCC_PERIPHCLK_UART5)
  {
    /* Check the parameters */
    assert_param(IS_RCC_UART5CLKSOURCE(PeriphClkInit->Uart5ClockSelection));

    /* Configure the UART5 clock source */
    __HAL_RCC_UART5_CONFIG(PeriphClkInit->Uart5ClockSelection);
  }

#endif /* UART5 */

  /*-------------------------- LPUART1 clock source configuration ------------------*/
  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_LPUART1) == RCC_PERIPHCLK_LPUART1)
  {
    /* Check the parameters */
    assert_param(IS_RCC_LPUART1CLKSOURCE(PeriphClkInit->Lpuart1ClockSelection));

    /* Configure the LPUAR1 clock source */
    __HAL_RCC_LPUART1_CONFIG(PeriphClkInit->Lpuart1ClockSelection);
  }

  /*-------------------------- LPTIM1 clock source configuration -------------------*/
  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_LPTIM1) == (RCC_PERIPHCLK_LPTIM1))
  {
    assert_param(IS_RCC_LPTIM1CLK(PeriphClkInit->Lptim1ClockSelection));
    __HAL_RCC_LPTIM1_CONFIG(PeriphClkInit->Lptim1ClockSelection);
  }

  /*-------------------------- LPTIM2 clock source configuration -------------------*/
  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_LPTIM2) == (RCC_PERIPHCLK_LPTIM2))
  {
    assert_param(IS_RCC_LPTIM2CLK(PeriphClkInit->Lptim2ClockSelection));
    __HAL_RCC_LPTIM2_CONFIG(PeriphClkInit->Lptim2ClockSelection);
  }

  /*-------------------------- I2C1 clock source configuration ---------------------*/
  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2C1) == RCC_PERIPHCLK_I2C1)
  {
    /* Check the parameters */
    assert_param(IS_RCC_I2C1CLKSOURCE(PeriphClkInit->I2c1ClockSelection));

    /* Configure the I2C1 clock source */
    __HAL_RCC_I2C1_CONFIG(PeriphClkInit->I2c1ClockSelection);
  }

#if defined(I2C2)

  /*-------------------------- I2C2 clock source configuration ---------------------*/
  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2C2) == RCC_PERIPHCLK_I2C2)
  {
    /* Check the parameters */
    assert_param(IS_RCC_I2C2CLKSOURCE(PeriphClkInit->I2c2ClockSelection));

    /* Configure the I2C2 clock source */
    __HAL_RCC_I2C2_CONFIG(PeriphClkInit->I2c2ClockSelection);
  }

#endif /* I2C2 */

  /*-------------------------- I2C3 clock source configuration ---------------------*/
  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2C3) == RCC_PERIPHCLK_I2C3)
  {
    /* Check the parameters */
    assert_param(IS_RCC_I2C3CLKSOURCE(PeriphClkInit->I2c3ClockSelection));

    /* Configure the I2C3 clock source */
    __HAL_RCC_I2C3_CONFIG(PeriphClkInit->I2c3ClockSelection);
  }

#if defined(I2C4)

  /*-------------------------- I2C4 clock source configuration ---------------------*/
  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2C4) == RCC_PERIPHCLK_I2C4)
  {
    /* Check the parameters */
    assert_param(IS_RCC_I2C4CLKSOURCE(PeriphClkInit->I2c4ClockSelection));

    /* Configure the I2C4 clock source */
    __HAL_RCC_I2C4_CONFIG(PeriphClkInit->I2c4ClockSelection);
  }

#endif /* I2C4 */

#if defined(USB_OTG_FS) || defined(USB)

  /*-------------------------- USB clock source configuration ----------------------*/
  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USB) == (RCC_PERIPHCLK_USB))
  {
    assert_param(IS_RCC_USBCLKSOURCE(PeriphClkInit->UsbClockSelection));
    __HAL_RCC_USB_CONFIG(PeriphClkInit->UsbClockSelection);

    if(PeriphClkInit->UsbClockSelection == RCC_USBCLKSOURCE_PLL)
    {
      /* Enable PLL48M1CLK output */
      __HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_48M1CLK);
    }
    else
    {
#if defined(RCC_PLLSAI1_SUPPORT)
      if(PeriphClkInit->UsbClockSelection == RCC_USBCLKSOURCE_PLLSAI1)
      {
        /* PLLSAI1 input clock, parameters M, N & Q configuration and clock output (PLLSAI1ClockOut) */
        ret = RCCEx_PLLSAI1_Config(&(PeriphClkInit->PLLSAI1), DIVIDER_Q_UPDATE);

        if(ret != HAL_OK)
        {
          /* set overall return value */
          status = ret;
        }
      }
#endif /* RCC_PLLSAI1_SUPPORT */
    }
  }

#endif /* USB_OTG_FS || USB */

#if defined(SDMMC1)

  /*-------------------------- SDMMC1 clock source configuration -------------------*/
  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SDMMC1) == (RCC_PERIPHCLK_SDMMC1))
  {
    assert_param(IS_RCC_SDMMC1CLKSOURCE(PeriphClkInit->Sdmmc1ClockSelection));
    __HAL_RCC_SDMMC1_CONFIG(PeriphClkInit->Sdmmc1ClockSelection);

    if(PeriphClkInit->Sdmmc1ClockSelection == RCC_SDMMC1CLKSOURCE_PLL)   /* PLL "Q" ? */
    {
      /* Enable PLL48M1CLK output */
      __HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_48M1CLK);
    }
#if defined(RCC_CCIPR2_SDMMCSEL)
    else if(PeriphClkInit->Sdmmc1ClockSelection == RCC_SDMMC1CLKSOURCE_PLLP) /* PLL "P" ? */
    {
      /* Enable PLLSAI3CLK output */
      __HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_SAI3CLK);
    }
#endif
    else if(PeriphClkInit->Sdmmc1ClockSelection == RCC_SDMMC1CLKSOURCE_PLLSAI1)
    {
      /* PLLSAI1 input clock, parameters M, N & Q configuration and clock output (PLLSAI1ClockOut) */
      ret = RCCEx_PLLSAI1_Config(&(PeriphClkInit->PLLSAI1), DIVIDER_Q_UPDATE);

      if(ret != HAL_OK)
      {
        /* set overall return value */
        status = ret;
      }
    }
    else
    {
      /* nothing to do */
    }
  }

#endif /* SDMMC1 */

  /*-------------------------- RNG clock source configuration ----------------------*/
  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_RNG) == (RCC_PERIPHCLK_RNG))
  {
    assert_param(IS_RCC_RNGCLKSOURCE(PeriphClkInit->RngClockSelection));
    __HAL_RCC_RNG_CONFIG(PeriphClkInit->RngClockSelection);

    if(PeriphClkInit->RngClockSelection == RCC_RNGCLKSOURCE_PLL)
    {
      /* Enable PLL48M1CLK output */
      __HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_48M1CLK);
    }
#if defined(RCC_PLLSAI1_SUPPORT)
    else if(PeriphClkInit->RngClockSelection == RCC_RNGCLKSOURCE_PLLSAI1)
    {
      /* PLLSAI1 input clock, parameters M, N & Q configuration and clock output (PLLSAI1ClockOut) */
      ret = RCCEx_PLLSAI1_Config(&(PeriphClkInit->PLLSAI1), DIVIDER_Q_UPDATE);

      if(ret != HAL_OK)
      {
        /* set overall return value */
        status = ret;
      }
    }
#endif /* RCC_PLLSAI1_SUPPORT */
    else
    {
      /* nothing to do */
    }
  }

  /*-------------------------- ADC clock source configuration ----------------------*/
#if !defined(STM32L412xx) && !defined(STM32L422xx)
  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_ADC) == RCC_PERIPHCLK_ADC)
  {
    /* Check the parameters */
    assert_param(IS_RCC_ADCCLKSOURCE(PeriphClkInit->AdcClockSelection));

    /* Configure the ADC interface clock source */
    __HAL_RCC_ADC_CONFIG(PeriphClkInit->AdcClockSelection);

#if defined(RCC_PLLSAI1_SUPPORT)
    if(PeriphClkInit->AdcClockSelection == RCC_ADCCLKSOURCE_PLLSAI1)
    {
      /* PLLSAI1 input clock, parameters M, N & R configuration and clock output (PLLSAI1ClockOut) */
      ret = RCCEx_PLLSAI1_Config(&(PeriphClkInit->PLLSAI1), DIVIDER_R_UPDATE);

      if(ret != HAL_OK)
      {
        /* set overall return value */
        status = ret;
      }
    }
#endif /* RCC_PLLSAI1_SUPPORT */

#if defined(STM32L471xx) || defined(STM32L475xx) || defined(STM32L476xx) || defined(STM32L485xx) || defined(STM32L486xx) || defined(STM32L496xx) || defined(STM32L4A6xx)

    else if(PeriphClkInit->AdcClockSelection == RCC_ADCCLKSOURCE_PLLSAI2)
    {
      /* PLLSAI2 input clock, parameters M, N & R configuration and clock output (PLLSAI2ClockOut) */
      ret = RCCEx_PLLSAI2_Config(&(PeriphClkInit->PLLSAI2), DIVIDER_R_UPDATE);

      if(ret != HAL_OK)
      {
        /* set overall return value */
        status = ret;
      }
    }

#endif /* STM32L471xx || STM32L475xx || STM32L476xx || STM32L485xx || STM32L486xx || STM32L496xx || STM32L4A6xx */

  }
#endif /* !STM32L412xx && !STM32L422xx */

#if defined(SWPMI1)

  /*-------------------------- SWPMI1 clock source configuration -------------------*/
  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SWPMI1) == RCC_PERIPHCLK_SWPMI1)
  {
    /* Check the parameters */
    assert_param(IS_RCC_SWPMI1CLKSOURCE(PeriphClkInit->Swpmi1ClockSelection));

    /* Configure the SWPMI1 clock source */
    __HAL_RCC_SWPMI1_CONFIG(PeriphClkInit->Swpmi1ClockSelection);
  }

#endif /* SWPMI1 */

#if defined(DFSDM1_Filter0)

  /*-------------------------- DFSDM1 clock source configuration -------------------*/
  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_DFSDM1) == RCC_PERIPHCLK_DFSDM1)
  {
    /* Check the parameters */
    assert_param(IS_RCC_DFSDM1CLKSOURCE(PeriphClkInit->Dfsdm1ClockSelection));

    /* Configure the DFSDM1 interface clock source */
    __HAL_RCC_DFSDM1_CONFIG(PeriphClkInit->Dfsdm1ClockSelection);
  }

#if defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
  /*-------------------------- DFSDM1 audio clock source configuration -------------*/
  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_DFSDM1AUDIO) == RCC_PERIPHCLK_DFSDM1AUDIO)
  {
    /* Check the parameters */
    assert_param(IS_RCC_DFSDM1AUDIOCLKSOURCE(PeriphClkInit->Dfsdm1AudioClockSelection));

    /* Configure the DFSDM1 interface audio clock source */
    __HAL_RCC_DFSDM1AUDIO_CONFIG(PeriphClkInit->Dfsdm1AudioClockSelection);
  }

#endif /* STM32L4R5xx || STM32L4R7xx || STM32L4R9xx || STM32L4S5xx || STM32L4S7xx || STM32L4S9xx */

#endif /* DFSDM1_Filter0 */

#if defined(LTDC)

  /*-------------------------- LTDC clock source configuration --------------------*/
  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_LTDC) == RCC_PERIPHCLK_LTDC)
  {
    /* Check the parameters */
    assert_param(IS_RCC_LTDCCLKSOURCE(PeriphClkInit->LtdcClockSelection));

    /* Disable the PLLSAI2 */
    __HAL_RCC_PLLSAI2_DISABLE();

    /* Get Start Tick*/
    tickstart = HAL_GetTick();

    /* Wait till PLLSAI2 is ready */
    while(READ_BIT(RCC->CR, RCC_CR_PLLSAI2RDY) != 0U)
    {
      if((HAL_GetTick() - tickstart) > PLLSAI2_TIMEOUT_VALUE)
      {
        ret = HAL_TIMEOUT;
        break;
      }
    }

    if(ret == HAL_OK)
    {
      /* Configure the LTDC clock source */
      __HAL_RCC_LTDC_CONFIG(PeriphClkInit->LtdcClockSelection);

      /* PLLSAI2 input clock, parameters M, N & R configuration and clock output (PLLSAI2ClockOut) */
      ret = RCCEx_PLLSAI2_Config(&(PeriphClkInit->PLLSAI2), DIVIDER_R_UPDATE);
    }

    if(ret != HAL_OK)
    {
      /* set overall return value */
      status = ret;
    }
  }

#endif /* LTDC */

#if defined(DSI)

  /*-------------------------- DSI clock source configuration ---------------------*/
  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_DSI) == RCC_PERIPHCLK_DSI)
  {
    /* Check the parameters */
    assert_param(IS_RCC_DSICLKSOURCE(PeriphClkInit->DsiClockSelection));

    /* Configure the DSI clock source */
    __HAL_RCC_DSI_CONFIG(PeriphClkInit->DsiClockSelection);

    if(PeriphClkInit->DsiClockSelection == RCC_DSICLKSOURCE_PLLSAI2)
    {
      /* PLLSAI2 input clock, parameters M, N & Q configuration and clock output (PLLSAI2ClockOut) */
      ret = RCCEx_PLLSAI2_Config(&(PeriphClkInit->PLLSAI2), DIVIDER_Q_UPDATE);

      if(ret != HAL_OK)
      {
        /* set overall return value */
        status = ret;
      }
    }
  }

#endif /* DSI */

#if defined(OCTOSPI1) || defined(OCTOSPI2)

  /*-------------------------- OctoSPIx clock source configuration ----------------*/
  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_OSPI) == RCC_PERIPHCLK_OSPI)
  {
    /* Check the parameters */
    assert_param(IS_RCC_OSPICLKSOURCE(PeriphClkInit->OspiClockSelection));

    /* Configure the OctoSPI clock source */
    __HAL_RCC_OSPI_CONFIG(PeriphClkInit->OspiClockSelection);

    if(PeriphClkInit->OspiClockSelection == RCC_OSPICLKSOURCE_PLL)
    {
      /* Enable PLL48M1CLK output */
      __HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_48M1CLK);
    }
  }

#endif /* OCTOSPI1 || OCTOSPI2 */

  return status;
}

/**
  * @brief  Get the RCC_ClkInitStruct according to the internal RCC configuration registers.
  * @param  PeriphClkInit  pointer to an RCC_PeriphCLKInitTypeDef structure that
  *         returns the configuration information for the Extended Peripherals
  *         clocks(SAI1, SAI2, LPTIM1, LPTIM2, I2C1, I2C2, I2C3, I2C4, LPUART,
  *         USART1, USART2, USART3, UART4, UART5, RTC, ADCx, DFSDMx, SWPMI1, USB, SDMMC1 and RNG).
  * @retval None
  */
void HAL_RCCEx_GetPeriphCLKConfig(RCC_PeriphCLKInitTypeDef  *PeriphClkInit)
{
  /* Set all possible values for the extended clock type parameter------------*/

#if defined(STM32L412xx) || defined(STM32L422xx)

  PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_USART1  | RCC_PERIPHCLK_USART2 | RCC_PERIPHCLK_USART3 |                                               \
                                        RCC_PERIPHCLK_LPUART1 | RCC_PERIPHCLK_I2C1   | RCC_PERIPHCLK_I2C2   | RCC_PERIPHCLK_I2C3   |                        \
                                        RCC_PERIPHCLK_LPTIM1  | RCC_PERIPHCLK_LPTIM2 |                                               RCC_PERIPHCLK_USB    | \
                                                                RCC_PERIPHCLK_RNG    |                                                                      \
                                        RCC_PERIPHCLK_RTC ;

#elif defined(STM32L431xx)

  PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_USART1  | RCC_PERIPHCLK_USART2 | RCC_PERIPHCLK_USART3 |                                               \
                                        RCC_PERIPHCLK_LPUART1 | RCC_PERIPHCLK_I2C1   | RCC_PERIPHCLK_I2C2   | RCC_PERIPHCLK_I2C3   |                        \
                                        RCC_PERIPHCLK_LPTIM1  | RCC_PERIPHCLK_LPTIM2 | RCC_PERIPHCLK_SAI1   |                                               \
                                        RCC_PERIPHCLK_SDMMC1  | RCC_PERIPHCLK_RNG    | RCC_PERIPHCLK_ADC    | RCC_PERIPHCLK_SWPMI1 |                        \
                                        RCC_PERIPHCLK_RTC ;

#elif defined(STM32L432xx) || defined(STM32L442xx)

  PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_USART1  | RCC_PERIPHCLK_USART2 |                                                                      \
                                        RCC_PERIPHCLK_LPUART1 | RCC_PERIPHCLK_I2C1   |                        RCC_PERIPHCLK_I2C3   |                        \
                                        RCC_PERIPHCLK_LPTIM1  | RCC_PERIPHCLK_LPTIM2 | RCC_PERIPHCLK_SAI1   |                        RCC_PERIPHCLK_USB    | \
                                                                RCC_PERIPHCLK_RNG    | RCC_PERIPHCLK_ADC    | RCC_PERIPHCLK_SWPMI1 |                        \
                                        RCC_PERIPHCLK_RTC ;

#elif defined(STM32L433xx) || defined(STM32L443xx)

  PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_USART1  | RCC_PERIPHCLK_USART2 | RCC_PERIPHCLK_USART3 |                                               \
                                        RCC_PERIPHCLK_LPUART1 | RCC_PERIPHCLK_I2C1   | RCC_PERIPHCLK_I2C2   | RCC_PERIPHCLK_I2C3   |                        \
                                        RCC_PERIPHCLK_LPTIM1  | RCC_PERIPHCLK_LPTIM2 | RCC_PERIPHCLK_SAI1   |                        RCC_PERIPHCLK_USB    | \
                                        RCC_PERIPHCLK_SDMMC1  | RCC_PERIPHCLK_RNG    | RCC_PERIPHCLK_ADC    | RCC_PERIPHCLK_SWPMI1 |                        \
                                        RCC_PERIPHCLK_RTC ;

#elif defined(STM32L451xx)

  PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_USART1  | RCC_PERIPHCLK_USART2 | RCC_PERIPHCLK_USART3 | RCC_PERIPHCLK_UART4  |                        \
                                        RCC_PERIPHCLK_LPUART1 | RCC_PERIPHCLK_I2C1   | RCC_PERIPHCLK_I2C2   | RCC_PERIPHCLK_I2C3   | RCC_PERIPHCLK_I2C4   | \
                                        RCC_PERIPHCLK_LPTIM1  | RCC_PERIPHCLK_LPTIM2 | RCC_PERIPHCLK_SAI1   |                                               \
                                        RCC_PERIPHCLK_SDMMC1  | RCC_PERIPHCLK_RNG    | RCC_PERIPHCLK_ADC    |                        RCC_PERIPHCLK_DFSDM1 | \
                                        RCC_PERIPHCLK_RTC ;

#elif defined(STM32L452xx) || defined(STM32L462xx)

  PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_USART1  | RCC_PERIPHCLK_USART2 | RCC_PERIPHCLK_USART3 | RCC_PERIPHCLK_UART4  |                        \
                                        RCC_PERIPHCLK_LPUART1 | RCC_PERIPHCLK_I2C1   | RCC_PERIPHCLK_I2C2   | RCC_PERIPHCLK_I2C3   | RCC_PERIPHCLK_I2C4   | \
                                        RCC_PERIPHCLK_LPTIM1  | RCC_PERIPHCLK_LPTIM2 | RCC_PERIPHCLK_SAI1   |                        RCC_PERIPHCLK_USB    | \
                                        RCC_PERIPHCLK_SDMMC1  | RCC_PERIPHCLK_RNG    | RCC_PERIPHCLK_ADC    |                        RCC_PERIPHCLK_DFSDM1 | \
                                        RCC_PERIPHCLK_RTC ;

#elif defined(STM32L471xx)

  PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_USART1  | RCC_PERIPHCLK_USART2 | RCC_PERIPHCLK_USART3 | RCC_PERIPHCLK_UART4  | RCC_PERIPHCLK_UART5  | \
                                        RCC_PERIPHCLK_LPUART1 | RCC_PERIPHCLK_I2C1   | RCC_PERIPHCLK_I2C2   | RCC_PERIPHCLK_I2C3                          | \
                                        RCC_PERIPHCLK_LPTIM1  | RCC_PERIPHCLK_LPTIM2 | RCC_PERIPHCLK_SAI1   | RCC_PERIPHCLK_SAI2                          | \
                                        RCC_PERIPHCLK_SDMMC1  | RCC_PERIPHCLK_RNG    | RCC_PERIPHCLK_ADC    | RCC_PERIPHCLK_SWPMI1 | RCC_PERIPHCLK_DFSDM1 | \
                                        RCC_PERIPHCLK_RTC ;

#elif defined(STM32L475xx) || defined(STM32L476xx) || defined(STM32L485xx) || defined(STM32L486xx)

  PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_USART1  | RCC_PERIPHCLK_USART2 | RCC_PERIPHCLK_USART3 | RCC_PERIPHCLK_UART4  | RCC_PERIPHCLK_UART5  | \
                                        RCC_PERIPHCLK_LPUART1 | RCC_PERIPHCLK_I2C1   | RCC_PERIPHCLK_I2C2   | RCC_PERIPHCLK_I2C3   |                        \
                                        RCC_PERIPHCLK_LPTIM1  | RCC_PERIPHCLK_LPTIM2 | RCC_PERIPHCLK_SAI1   | RCC_PERIPHCLK_SAI2   | RCC_PERIPHCLK_USB    | \
                                        RCC_PERIPHCLK_SDMMC1  | RCC_PERIPHCLK_RNG    | RCC_PERIPHCLK_ADC    | RCC_PERIPHCLK_SWPMI1 | RCC_PERIPHCLK_DFSDM1 | \
                                        RCC_PERIPHCLK_RTC ;

#elif defined(STM32L496xx) || defined(STM32L4A6xx)

  PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_USART1  | RCC_PERIPHCLK_USART2 | RCC_PERIPHCLK_USART3 | RCC_PERIPHCLK_UART4  | RCC_PERIPHCLK_UART5  | \
                                        RCC_PERIPHCLK_LPUART1 | RCC_PERIPHCLK_I2C1   | RCC_PERIPHCLK_I2C2   | RCC_PERIPHCLK_I2C3   | RCC_PERIPHCLK_I2C4   | \
                                        RCC_PERIPHCLK_LPTIM1  | RCC_PERIPHCLK_LPTIM2 | RCC_PERIPHCLK_SAI1   | RCC_PERIPHCLK_SAI2   | RCC_PERIPHCLK_USB    | \
                                        RCC_PERIPHCLK_SDMMC1  | RCC_PERIPHCLK_RNG    | RCC_PERIPHCLK_ADC    | RCC_PERIPHCLK_SWPMI1 | RCC_PERIPHCLK_DFSDM1 | \
                                        RCC_PERIPHCLK_RTC ;

#elif defined(STM32L4R5xx) || defined(STM32L4S5xx)

  PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_USART1  | RCC_PERIPHCLK_USART2 | RCC_PERIPHCLK_USART3 | RCC_PERIPHCLK_UART4  | RCC_PERIPHCLK_UART5  | \
                                        RCC_PERIPHCLK_LPUART1 | RCC_PERIPHCLK_I2C1   | RCC_PERIPHCLK_I2C2   | RCC_PERIPHCLK_I2C3   | RCC_PERIPHCLK_I2C4   | \
                                        RCC_PERIPHCLK_LPTIM1  | RCC_PERIPHCLK_LPTIM2 | RCC_PERIPHCLK_SAI1   | RCC_PERIPHCLK_SAI2   | RCC_PERIPHCLK_USB    | \
                                        RCC_PERIPHCLK_SDMMC1  | RCC_PERIPHCLK_RNG    | RCC_PERIPHCLK_ADC                           | RCC_PERIPHCLK_DFSDM1 | \
                                        RCC_PERIPHCLK_DFSDM1AUDIO | RCC_PERIPHCLK_RTC | RCC_PERIPHCLK_OSPI;

#elif defined(STM32L4R7xx) || defined(STM32L4S7xx)

  PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_USART1  | RCC_PERIPHCLK_USART2 | RCC_PERIPHCLK_USART3 | RCC_PERIPHCLK_UART4  | RCC_PERIPHCLK_UART5  | \
                                        RCC_PERIPHCLK_LPUART1 | RCC_PERIPHCLK_I2C1   | RCC_PERIPHCLK_I2C2   | RCC_PERIPHCLK_I2C3   | RCC_PERIPHCLK_I2C4   | \
                                        RCC_PERIPHCLK_LPTIM1  | RCC_PERIPHCLK_LPTIM2 | RCC_PERIPHCLK_SAI1   | RCC_PERIPHCLK_SAI2   | RCC_PERIPHCLK_USB    | \
                                        RCC_PERIPHCLK_SDMMC1  | RCC_PERIPHCLK_RNG    | RCC_PERIPHCLK_ADC                           | RCC_PERIPHCLK_DFSDM1 | \
                                        RCC_PERIPHCLK_DFSDM1AUDIO | RCC_PERIPHCLK_RTC | RCC_PERIPHCLK_OSPI  | RCC_PERIPHCLK_LTDC;

#elif defined(STM32L4R9xx) || defined(STM32L4S9xx)

  PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_USART1  | RCC_PERIPHCLK_USART2 | RCC_PERIPHCLK_USART3 | RCC_PERIPHCLK_UART4  | RCC_PERIPHCLK_UART5  | \
                                        RCC_PERIPHCLK_LPUART1 | RCC_PERIPHCLK_I2C1   | RCC_PERIPHCLK_I2C2   | RCC_PERIPHCLK_I2C3   | RCC_PERIPHCLK_I2C4   | \
                                        RCC_PERIPHCLK_LPTIM1  | RCC_PERIPHCLK_LPTIM2 | RCC_PERIPHCLK_SAI1   | RCC_PERIPHCLK_SAI2   | RCC_PERIPHCLK_USB    | \
                                        RCC_PERIPHCLK_SDMMC1  | RCC_PERIPHCLK_RNG    | RCC_PERIPHCLK_ADC                           | RCC_PERIPHCLK_DFSDM1 | \
                                        RCC_PERIPHCLK_DFSDM1AUDIO | RCC_PERIPHCLK_RTC | RCC_PERIPHCLK_OSPI  | RCC_PERIPHCLK_LTDC   | RCC_PERIPHCLK_DSI;

#endif /* STM32L431xx */

#if defined(RCC_PLLSAI1_SUPPORT)

  /* Get the PLLSAI1 Clock configuration -----------------------------------------------*/

  PeriphClkInit->PLLSAI1.PLLSAI1Source = READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC) >> RCC_PLLCFGR_PLLSRC_Pos;
#if defined(RCC_PLLSAI1M_DIV_1_16_SUPPORT)
  PeriphClkInit->PLLSAI1.PLLSAI1M = (READ_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1M) >> RCC_PLLSAI1CFGR_PLLSAI1M_Pos) + 1U;
#else
  PeriphClkInit->PLLSAI1.PLLSAI1M = (READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLM) >> RCC_PLLCFGR_PLLM_Pos) + 1U;
#endif /* RCC_PLLSAI1M_DIV_1_16_SUPPORT */
  PeriphClkInit->PLLSAI1.PLLSAI1N = READ_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1N) >> RCC_PLLSAI1CFGR_PLLSAI1N_Pos;
  PeriphClkInit->PLLSAI1.PLLSAI1P = ((READ_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1P) >> RCC_PLLSAI1CFGR_PLLSAI1P_Pos) << 4U) + 7U;
  PeriphClkInit->PLLSAI1.PLLSAI1Q = ((READ_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1Q) >> RCC_PLLSAI1CFGR_PLLSAI1Q_Pos) + 1U) * 2U;
  PeriphClkInit->PLLSAI1.PLLSAI1R = ((READ_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1R) >> RCC_PLLSAI1CFGR_PLLSAI1R_Pos) + 1U) * 2U;

#endif /* RCC_PLLSAI1_SUPPORT */

#if defined(RCC_PLLSAI2_SUPPORT)

  /* Get the PLLSAI2 Clock configuration -----------------------------------------------*/

  PeriphClkInit->PLLSAI2.PLLSAI2Source = PeriphClkInit->PLLSAI1.PLLSAI1Source;
#if defined(RCC_PLLSAI2M_DIV_1_16_SUPPORT)
  PeriphClkInit->PLLSAI2.PLLSAI2M = (READ_BIT(RCC->PLLSAI2CFGR, RCC_PLLSAI2CFGR_PLLSAI2M) >> RCC_PLLSAI2CFGR_PLLSAI2M_Pos) + 1U;
#else
  PeriphClkInit->PLLSAI2.PLLSAI2M = PeriphClkInit->PLLSAI1.PLLSAI1M;
#endif /* RCC_PLLSAI2M_DIV_1_16_SUPPORT */
  PeriphClkInit->PLLSAI2.PLLSAI2N = READ_BIT(RCC->PLLSAI2CFGR, RCC_PLLSAI2CFGR_PLLSAI2N) >> RCC_PLLSAI2CFGR_PLLSAI2N_Pos;
  PeriphClkInit->PLLSAI2.PLLSAI2P = ((READ_BIT(RCC->PLLSAI2CFGR, RCC_PLLSAI2CFGR_PLLSAI2P) >> RCC_PLLSAI2CFGR_PLLSAI2P_Pos) << 4U) + 7U;
#if defined(RCC_PLLSAI2Q_DIV_SUPPORT)
  PeriphClkInit->PLLSAI2.PLLSAI2Q = ((READ_BIT(RCC->PLLSAI2CFGR, RCC_PLLSAI2CFGR_PLLSAI2Q) >> RCC_PLLSAI2CFGR_PLLSAI2Q_Pos) + 1U) * 2U;
#endif /* RCC_PLLSAI2Q_DIV_SUPPORT */
  PeriphClkInit->PLLSAI2.PLLSAI2R = ((READ_BIT(RCC->PLLSAI2CFGR, RCC_PLLSAI2CFGR_PLLSAI2R)>> RCC_PLLSAI2CFGR_PLLSAI2R_Pos) + 1U) * 2U;

#endif /* RCC_PLLSAI2_SUPPORT */

  /* Get the USART1 clock source ---------------------------------------------*/
  PeriphClkInit->Usart1ClockSelection  = __HAL_RCC_GET_USART1_SOURCE();
  /* Get the USART2 clock source ---------------------------------------------*/
  PeriphClkInit->Usart2ClockSelection  = __HAL_RCC_GET_USART2_SOURCE();

#if defined(USART3)
  /* Get the USART3 clock source ---------------------------------------------*/
  PeriphClkInit->Usart3ClockSelection  = __HAL_RCC_GET_USART3_SOURCE();
#endif /* USART3 */

#if defined(UART4)
  /* Get the UART4 clock source ----------------------------------------------*/
  PeriphClkInit->Uart4ClockSelection   = __HAL_RCC_GET_UART4_SOURCE();
#endif /* UART4 */

#if defined(UART5)
  /* Get the UART5 clock source ----------------------------------------------*/
  PeriphClkInit->Uart5ClockSelection   = __HAL_RCC_GET_UART5_SOURCE();
#endif /* UART5 */

  /* Get the LPUART1 clock source --------------------------------------------*/
  PeriphClkInit->Lpuart1ClockSelection = __HAL_RCC_GET_LPUART1_SOURCE();

  /* Get the I2C1 clock source -----------------------------------------------*/
  PeriphClkInit->I2c1ClockSelection    = __HAL_RCC_GET_I2C1_SOURCE();

#if defined(I2C2)
   /* Get the I2C2 clock source ----------------------------------------------*/
  PeriphClkInit->I2c2ClockSelection    = __HAL_RCC_GET_I2C2_SOURCE();
#endif /* I2C2 */

  /* Get the I2C3 clock source -----------------------------------------------*/
  PeriphClkInit->I2c3ClockSelection    = __HAL_RCC_GET_I2C3_SOURCE();

#if defined(I2C4)
  /* Get the I2C4 clock source -----------------------------------------------*/
  PeriphClkInit->I2c4ClockSelection    = __HAL_RCC_GET_I2C4_SOURCE();
#endif /* I2C4 */

  /* Get the LPTIM1 clock source ---------------------------------------------*/
  PeriphClkInit->Lptim1ClockSelection  = __HAL_RCC_GET_LPTIM1_SOURCE();

  /* Get the LPTIM2 clock source ---------------------------------------------*/
  PeriphClkInit->Lptim2ClockSelection  = __HAL_RCC_GET_LPTIM2_SOURCE();

#if defined(SAI1)
  /* Get the SAI1 clock source -----------------------------------------------*/
  PeriphClkInit->Sai1ClockSelection    = __HAL_RCC_GET_SAI1_SOURCE();
#endif /* SAI1 */

#if defined(SAI2)
  /* Get the SAI2 clock source -----------------------------------------------*/
  PeriphClkInit->Sai2ClockSelection    = __HAL_RCC_GET_SAI2_SOURCE();
#endif /* SAI2 */

  /* Get the RTC clock source ------------------------------------------------*/
  PeriphClkInit->RTCClockSelection     = __HAL_RCC_GET_RTC_SOURCE();

#if defined(USB_OTG_FS) || defined(USB)
  /* Get the USB clock source ------------------------------------------------*/
  PeriphClkInit->UsbClockSelection   = __HAL_RCC_GET_USB_SOURCE();
#endif /* USB_OTG_FS || USB */

#if defined(SDMMC1)
  /* Get the SDMMC1 clock source ---------------------------------------------*/
  PeriphClkInit->Sdmmc1ClockSelection   = __HAL_RCC_GET_SDMMC1_SOURCE();
#endif /* SDMMC1 */

  /* Get the RNG clock source ------------------------------------------------*/
  PeriphClkInit->RngClockSelection   = __HAL_RCC_GET_RNG_SOURCE();

#if !defined(STM32L412xx) && !defined(STM32L422xx)
  /* Get the ADC clock source ------------------------------------------------*/
  PeriphClkInit->AdcClockSelection     = __HAL_RCC_GET_ADC_SOURCE();
#endif /* !STM32L412xx && !STM32L422xx */

#if defined(SWPMI1)
  /* Get the SWPMI1 clock source ---------------------------------------------*/
  PeriphClkInit->Swpmi1ClockSelection  = __HAL_RCC_GET_SWPMI1_SOURCE();
#endif /* SWPMI1 */

#if defined(DFSDM1_Filter0)
  /* Get the DFSDM1 clock source ---------------------------------------------*/
  PeriphClkInit->Dfsdm1ClockSelection  = __HAL_RCC_GET_DFSDM1_SOURCE();

#if defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
  /* Get the DFSDM1 audio clock source ---------------------------------------*/
  PeriphClkInit->Dfsdm1AudioClockSelection  = __HAL_RCC_GET_DFSDM1AUDIO_SOURCE();
#endif /* STM32L4R5xx || STM32L4R7xx || STM32L4R9xx || STM32L4S5xx || STM32L4S7xx || STM32L4S9xx */
#endif /* DFSDM1_Filter0 */

#if defined(LTDC)
  /* Get the LTDC clock source -----------------------------------------------*/
  PeriphClkInit->LtdcClockSelection = __HAL_RCC_GET_LTDC_SOURCE();
#endif /* LTDC */

#if defined(DSI)
  /* Get the DSI clock source ------------------------------------------------*/
  PeriphClkInit->DsiClockSelection = __HAL_RCC_GET_DSI_SOURCE();
#endif /* DSI */

#if defined(OCTOSPI1) || defined(OCTOSPI2)
  /* Get the OctoSPIclock source --------------------------------------------*/
  PeriphClkInit->OspiClockSelection = __HAL_RCC_GET_OSPI_SOURCE();
#endif /* OCTOSPI1 || OCTOSPI2 */
}

/**
  * @brief  Return the peripheral clock frequency for peripherals with clock source from PLLSAIs
  * @note   Return 0 if peripheral clock identifier not managed by this API
  * @param  PeriphClk  Peripheral clock identifier
  *         This parameter can be one of the following values:
  *            @arg @ref RCC_PERIPHCLK_RTC  RTC peripheral clock
  *            @arg @ref RCC_PERIPHCLK_ADC  ADC peripheral clock
  @if STM32L462xx
  *            @arg @ref RCC_PERIPHCLK_DFSDM1  DFSDM1 peripheral clock (only for devices with DFSDM)
  @endif
  @if STM32L486xx
  *            @arg @ref RCC_PERIPHCLK_DFSDM1  DFSDM1 peripheral clock (only for devices with DFSDM)
  @endif
  @if STM32L4A6xx
  *            @arg @ref RCC_PERIPHCLK_DFSDM1  DFSDM1 peripheral clock (only for devices with DFSDM)
  @endif
  *            @arg @ref RCC_PERIPHCLK_I2C1  I2C1 peripheral clock
  *            @arg @ref RCC_PERIPHCLK_I2C2  I2C2 peripheral clock
  *            @arg @ref RCC_PERIPHCLK_I2C3  I2C3 peripheral clock
  @if STM32L462xx
  *            @arg @ref RCC_PERIPHCLK_I2C4  I2C4 peripheral clock (only for devices with I2C4)
  @endif
  @if STM32L4A6xx
  *            @arg @ref RCC_PERIPHCLK_I2C4  I2C4 peripheral clock (only for devices with I2C4)
  @endif
  @if STM32L4S9xx
  *            @arg @ref RCC_PERIPHCLK_I2C4  I2C4 peripheral clock (only for devices with I2C4)
  @endif
  *            @arg @ref RCC_PERIPHCLK_LPTIM1  LPTIM1 peripheral clock
  *            @arg @ref RCC_PERIPHCLK_LPTIM2  LPTIM2 peripheral clock
  *            @arg @ref RCC_PERIPHCLK_LPUART1  LPUART1 peripheral clock
  *            @arg @ref RCC_PERIPHCLK_RNG  RNG peripheral clock
  *            @arg @ref RCC_PERIPHCLK_SAI1  SAI1 peripheral clock (only for devices with SAI1)
  @if STM32L486xx
  *            @arg @ref RCC_PERIPHCLK_SAI2  SAI2 peripheral clock (only for devices with SAI2)
  @endif
  @if STM32L4A6xx
  *            @arg @ref RCC_PERIPHCLK_SAI2  SAI2 peripheral clock (only for devices with SAI2)
  @endif
  @if STM32L4S9xx
  *            @arg @ref RCC_PERIPHCLK_SAI2  SAI2 peripheral clock (only for devices with SAI2)
  @endif
  *            @arg @ref RCC_PERIPHCLK_SDMMC1  SDMMC1 peripheral clock
  @if STM32L443xx
  *            @arg @ref RCC_PERIPHCLK_SWPMI1  SWPMI1 peripheral clock (only for devices with SWPMI1)
  @endif
  @if STM32L486xx
  *            @arg @ref RCC_PERIPHCLK_SWPMI1  SWPMI1 peripheral clock (only for devices with SWPMI1)
  @endif
  @if STM32L4A6xx
  *            @arg @ref RCC_PERIPHCLK_SWPMI1  SWPMI1 peripheral clock (only for devices with SWPMI1)
  @endif
  *            @arg @ref RCC_PERIPHCLK_USART1  USART1 peripheral clock
  *            @arg @ref RCC_PERIPHCLK_USART2  USART1 peripheral clock
  *            @arg @ref RCC_PERIPHCLK_USART3  USART1 peripheral clock
  @if STM32L462xx
  *            @arg @ref RCC_PERIPHCLK_UART4  UART4 peripheral clock (only for devices with UART4)
  *            @arg @ref RCC_PERIPHCLK_USB  USB peripheral clock (only for devices with USB)
  @endif
  @if STM32L486xx
  *            @arg @ref RCC_PERIPHCLK_UART4  UART4 peripheral clock (only for devices with UART4)
  *            @arg @ref RCC_PERIPHCLK_UART5  UART5 peripheral clock (only for devices with UART5)
  *            @arg @ref RCC_PERIPHCLK_USB  USB peripheral clock (only for devices with USB)
  @endif
  @if STM32L4A6xx
  *            @arg @ref RCC_PERIPHCLK_UART4  UART4 peripheral clock (only for devices with UART4)
  *            @arg @ref RCC_PERIPHCLK_UART5  UART5 peripheral clock (only for devices with UART5)
  *            @arg @ref RCC_PERIPHCLK_USB  USB peripheral clock (only for devices with USB)
  @endif
  @if STM32L4S9xx
  *            @arg @ref RCC_PERIPHCLK_UART4  USART1 peripheral clock (only for devices with UART4)
  *            @arg @ref RCC_PERIPHCLK_UART5  USART1 peripheral clock (only for devices with UART5)
  *            @arg @ref RCC_PERIPHCLK_USB  USB peripheral clock (only for devices with USB)
  *            @arg @ref RCC_PERIPHCLK_DFSDM1  DFSDM1 peripheral kernel clock (only for devices with DFSDM1)
  *            @arg @ref RCC_PERIPHCLK_DFSDM1AUDIO  DFSDM1 peripheral audio clock (only for devices with DFSDM1)
  *            @arg @ref RCC_PERIPHCLK_LTDC  LTDC peripheral clock (only for devices with LTDC)
  *            @arg @ref RCC_PERIPHCLK_DSI  DSI peripheral clock (only for devices with DSI)
  *            @arg @ref RCC_PERIPHCLK_OSPI  OctoSPI peripheral clock (only for devices with OctoSPI)
  @endif
  * @retval Frequency in Hz
  */
uint32_t HAL_RCCEx_GetPeriphCLKFreq(uint32_t PeriphClk)
{
  uint32_t frequency = 0U;
  uint32_t srcclk, pll_oscsource, pllvco, plln;    /* no init needed */
#if defined(SDMMC1) && defined(RCC_CCIPR2_SDMMCSEL)
  uint32_t pllp;  /* no init needed */
#endif

  /* Check the parameters */
  assert_param(IS_RCC_PERIPHCLOCK(PeriphClk));

  if(PeriphClk == RCC_PERIPHCLK_RTC)
  {
    /* Get the current RTC source */
    srcclk = __HAL_RCC_GET_RTC_SOURCE();

    switch(srcclk)
    {
    case RCC_RTCCLKSOURCE_LSE:
      /* Check if LSE is ready */
      if(HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY))
      {
        frequency = LSE_VALUE;
      }
      break;
    case RCC_RTCCLKSOURCE_LSI:
      /* Check if LSI is ready */
      if(HAL_IS_BIT_SET(RCC->CSR, RCC_CSR_LSIRDY))
      {
#if defined(RCC_CSR_LSIPREDIV)
        if(HAL_IS_BIT_SET(RCC->CSR, RCC_CSR_LSIPREDIV))
        {
          frequency = LSI_VALUE/128U;
        }
        else
#endif /* RCC_CSR_LSIPREDIV */
        {
          frequency = LSI_VALUE;
        }
      }
      break;
    case RCC_RTCCLKSOURCE_HSE_DIV32:
      /* Check if HSE is ready */
      if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSERDY))
      {
        frequency = HSE_VALUE / 32U;
      }
      break;
    default:
      /* No clock source, frequency default init at 0 */
      break;
    }
  }
  else
  {
    /* Other external peripheral clock source than RTC */
    pll_oscsource = __HAL_RCC_GET_PLL_OSCSOURCE();

    /* Compute PLL clock input */
    switch(pll_oscsource)
    {
    case RCC_PLLSOURCE_MSI:   /* MSI ? */
      if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_MSIRDY))
      {
        /*MSI frequency range in HZ*/
        pllvco = MSIRangeTable[(__HAL_RCC_GET_MSI_RANGE() >> 4U)];
      }
      else
      {
        pllvco = 0U;
      }
      break;
    case RCC_PLLSOURCE_HSI:   /* HSI ? */
      if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY))
      {
        pllvco = HSI_VALUE;
      }
      else
      {
        pllvco = 0U;
      }
      break;
    case RCC_PLLSOURCE_HSE:   /* HSE ? */
      if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSERDY))
      {
        pllvco = HSE_VALUE;
      }
      else
      {
        pllvco = 0U;
      }
      break;
    default:
      /* No source */
      pllvco = 0U;
      break;
    }

    switch(PeriphClk)
    {
#if defined(SAI1)

    case RCC_PERIPHCLK_SAI1:
      frequency = RCCEx_GetSAIxPeriphCLKFreq(RCC_PERIPHCLK_SAI1, pllvco);
      break;

#endif

#if defined(SAI2)

    case RCC_PERIPHCLK_SAI2:
      frequency = RCCEx_GetSAIxPeriphCLKFreq(RCC_PERIPHCLK_SAI2, pllvco);
      break;

#endif

#if defined(USB_OTG_FS) || defined(USB)

    case RCC_PERIPHCLK_USB:

#endif /* USB_OTG_FS || USB */

    case RCC_PERIPHCLK_RNG:

#if defined(SDMMC1) && !defined(RCC_CCIPR2_SDMMCSEL)

    case RCC_PERIPHCLK_SDMMC1:

#endif /* SDMMC1 && !RCC_CCIPR2_SDMMCSEL */
      {
        srcclk = READ_BIT(RCC->CCIPR, RCC_CCIPR_CLK48SEL);

        switch(srcclk)
        {
        case RCC_CCIPR_CLK48SEL:   /* MSI ? */
          if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_MSIRDY))
          {
            /*MSI frequency range in HZ*/
            frequency = MSIRangeTable[(__HAL_RCC_GET_MSI_RANGE() >> 4U)];
          }
          break;
        case RCC_CCIPR_CLK48SEL_1:  /* PLL ? */
          if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_PLLRDY))
          {
            if(HAL_IS_BIT_SET(RCC->PLLCFGR, RCC_PLLCFGR_PLLQEN))
            {
              /* f(PLL Source) * PLLN / PLLM */
              plln = READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos;
              pllvco = ((pllvco * plln) / ((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLM) >> RCC_PLLCFGR_PLLM_Pos) + 1U));
              /* f(PLL48M1CLK) = f(VCO input) / PLLQ */
              frequency = (pllvco / (((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLQ) >> RCC_PLLCFGR_PLLQ_Pos) + 1U) << 1U));
            }
          }
          break;
#if defined(RCC_PLLSAI1_SUPPORT)
        case RCC_CCIPR_CLK48SEL_0:  /* PLLSAI1 ? */
          if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_PLLSAI1RDY))
          {
            if(HAL_IS_BIT_SET(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1QEN))
            {
              plln = READ_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1N) >> RCC_PLLSAI1CFGR_PLLSAI1N_Pos;
#if defined(RCC_PLLSAI1M_DIV_1_16_SUPPORT)
              /* PLLSAI1M exists: apply PLLSAI1M divider for PLLSAI1 output computation */
              /* f(PLLSAI1 Source) * PLLSAI1N / PLLSAI1M */
              pllvco = ((pllvco * plln) / ((READ_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1M) >> RCC_PLLSAI1CFGR_PLLSAI1M_Pos) + 1U));
#else
              /* f(PLL Source) * PLLSAI1N / PLLM */
              pllvco = ((pllvco * plln) / ((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLM) >> RCC_PLLCFGR_PLLM_Pos) + 1U));
#endif
              /* f(PLL48M2CLK) = f(VCOSAI1 input) / PLLSAI1Q */
              frequency = (pllvco / (((READ_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1Q) >> RCC_PLLSAI1CFGR_PLLSAI1Q_Pos) + 1U) << 1U));
            }
          }
          break;
#endif /* RCC_PLLSAI1_SUPPORT */
#if defined(RCC_HSI48_SUPPORT)
        case 0U:
          if(HAL_IS_BIT_SET(RCC->CRRCR, RCC_CRRCR_HSI48RDY)) /* HSI48 ? */
          {
            frequency = HSI48_VALUE;
          }
          break;
#endif /* RCC_HSI48_SUPPORT */
        default:
          /* No clock source, frequency default init at 0 */
          break;
        } /* switch(srcclk) */
        break;
      }

#if defined(SDMMC1) && defined(RCC_CCIPR2_SDMMCSEL)

    case RCC_PERIPHCLK_SDMMC1:

      if(HAL_IS_BIT_SET(RCC->CCIPR2, RCC_CCIPR2_SDMMCSEL))  /* PLL "P" ? */
      {
        if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_PLLRDY))
        {
          if(HAL_IS_BIT_SET(RCC->PLLCFGR, RCC_PLLCFGR_PLLPEN))
          {
            /* f(PLL Source) * PLLN / PLLM */
            plln = READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos;
            pllvco = ((pllvco * plln) / ((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLM) >> RCC_PLLCFGR_PLLM_Pos) + 1U));
            /* f(PLLSAI3CLK) = f(VCO input) / PLLP */
            pllp = READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLPDIV) >> RCC_PLLCFGR_PLLPDIV_Pos;
            if(pllp == 0U)
            {
              if(READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLP) != 0U)
              {
                pllp = 17U;
              }
              else
              {
                pllp = 7U;
              }
            }
            frequency = (pllvco / pllp);
          }
        }
      }
      else  /* 48MHz from PLL "Q" or MSI or PLLSAI1Q or HSI48 */
      {
        srcclk = READ_BIT(RCC->CCIPR, RCC_CCIPR_CLK48SEL);

        switch(srcclk)
        {
        case RCC_CCIPR_CLK48SEL:   /* MSI ? */
          if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_MSIRDY))
          {
            /*MSI frequency range in HZ*/
            frequency = MSIRangeTable[(__HAL_RCC_GET_MSI_RANGE() >> 4U)];
          }
          break;
        case RCC_CCIPR_CLK48SEL_1:  /* PLL "Q" ? */
          if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_PLLRDY))
          {
            if(HAL_IS_BIT_SET(RCC->PLLCFGR, RCC_PLLCFGR_PLLQEN))
            {
              /* f(PLL Source) * PLLN / PLLM */
              plln = READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos;
              pllvco = ((pllvco * plln) / ((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLM) >> RCC_PLLCFGR_PLLM_Pos) + 1U));
              /* f(PLL48M1CLK) = f(VCO input) / PLLQ */
              frequency = (pllvco / (((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLQ) >> RCC_PLLCFGR_PLLQ_Pos) + 1U) << 1U));
            }
          }
          break;
        case RCC_CCIPR_CLK48SEL_0:  /* PLLSAI1 ? */
          if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_PLLSAI1RDY))
          {
            if(HAL_IS_BIT_SET(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1QEN))
            {
              /* f(PLLSAI1 Source) * PLLSAI1N / PLLSAI1M */
              plln = READ_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1N) >> RCC_PLLSAI1CFGR_PLLSAI1N_Pos;
              pllvco = ((pllvco * plln) / ((READ_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1M) >> RCC_PLLSAI1CFGR_PLLSAI1M_Pos) + 1U));
              /* f(PLL48M2CLK) = f(VCOSAI1 input) / PLLSAI1Q */
              frequency = (pllvco / (((READ_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1Q) >> RCC_PLLSAI1CFGR_PLLSAI1Q_Pos) + 1U) << 1U));
            }
          }
          break;
        case 0U:
          if(HAL_IS_BIT_SET(RCC->CRRCR, RCC_CRRCR_HSI48RDY)) /* HSI48 ? */
          {
            frequency = HSI48_VALUE;
          }
          break;
        default:
          /* No clock source, frequency default init at 0 */
          break;
        } /* switch(srcclk) */
      }
      break;

#endif /* SDMMC1 && RCC_CCIPR2_SDMMCSEL */

    case RCC_PERIPHCLK_USART1:
      {
        /* Get the current USART1 source */
        srcclk = __HAL_RCC_GET_USART1_SOURCE();

        switch(srcclk)
        {
        case RCC_USART1CLKSOURCE_PCLK2:
          frequency = HAL_RCC_GetPCLK2Freq();
          break;
        case RCC_USART1CLKSOURCE_SYSCLK:
          frequency = HAL_RCC_GetSysClockFreq();
          break;
        case RCC_USART1CLKSOURCE_HSI:
          if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY))
          {
            frequency = HSI_VALUE;
          }
          break;
        case RCC_USART1CLKSOURCE_LSE:
          if(HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY))
          {
            frequency = LSE_VALUE;
          }
          break;
        default:
          /* No clock source, frequency default init at 0 */
          break;
        }

        break;
      }

    case RCC_PERIPHCLK_USART2:
      {
        /* Get the current USART2 source */
        srcclk = __HAL_RCC_GET_USART2_SOURCE();

        switch(srcclk)
        {
        case RCC_USART2CLKSOURCE_PCLK1:
          frequency = HAL_RCC_GetPCLK1Freq();
          break;
        case RCC_USART2CLKSOURCE_SYSCLK:
          frequency = HAL_RCC_GetSysClockFreq();
          break;
        case RCC_USART2CLKSOURCE_HSI:
          if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY))
          {
            frequency = HSI_VALUE;
          }
          break;
        case RCC_USART2CLKSOURCE_LSE:
          if(HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY))
          {
            frequency = LSE_VALUE;
          }
          break;
        default:
          /* No clock source, frequency default init at 0 */
          break;
        }

        break;
      }

#if defined(USART3)

    case RCC_PERIPHCLK_USART3:
      {
        /* Get the current USART3 source */
        srcclk = __HAL_RCC_GET_USART3_SOURCE();

        switch(srcclk)
        {
        case RCC_USART3CLKSOURCE_PCLK1:
          frequency = HAL_RCC_GetPCLK1Freq();
          break;
        case RCC_USART3CLKSOURCE_SYSCLK:
          frequency = HAL_RCC_GetSysClockFreq();
          break;
        case RCC_USART3CLKSOURCE_HSI:
          if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY))
          {
            frequency = HSI_VALUE;
          }
          break;
        case RCC_USART3CLKSOURCE_LSE:
          if(HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY))
          {
            frequency = LSE_VALUE;
          }
          break;
        default:
          /* No clock source, frequency default init at 0 */
          break;
        }

        break;
      }

#endif /* USART3 */

#if defined(UART4)

    case RCC_PERIPHCLK_UART4:
      {
        /* Get the current UART4 source */
        srcclk = __HAL_RCC_GET_UART4_SOURCE();

        switch(srcclk)
        {
        case RCC_UART4CLKSOURCE_PCLK1:
          frequency = HAL_RCC_GetPCLK1Freq();
          break;
        case RCC_UART4CLKSOURCE_SYSCLK:
          frequency = HAL_RCC_GetSysClockFreq();
          break;
        case RCC_UART4CLKSOURCE_HSI:
          if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY))
          {
            frequency = HSI_VALUE;
          }
          break;
        case RCC_UART4CLKSOURCE_LSE:
          if(HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY))
          {
            frequency = LSE_VALUE;
          }
          break;
        default:
          /* No clock source, frequency default init at 0 */
          break;
        }

        break;
      }

#endif /* UART4 */

#if defined(UART5)

    case RCC_PERIPHCLK_UART5:
      {
        /* Get the current UART5 source */
        srcclk = __HAL_RCC_GET_UART5_SOURCE();

        switch(srcclk)
        {
        case RCC_UART5CLKSOURCE_PCLK1:
          frequency = HAL_RCC_GetPCLK1Freq();
          break;
        case RCC_UART5CLKSOURCE_SYSCLK:
          frequency = HAL_RCC_GetSysClockFreq();
          break;
        case RCC_UART5CLKSOURCE_HSI:
          if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY))
          {
            frequency = HSI_VALUE;
          }
          break;
        case RCC_UART5CLKSOURCE_LSE:
          if(HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY))
          {
            frequency = LSE_VALUE;
          }
          break;
        default:
          /* No clock source, frequency default init at 0 */
          break;
        }

        break;
      }

#endif /* UART5 */

    case RCC_PERIPHCLK_LPUART1:
      {
        /* Get the current LPUART1 source */
        srcclk = __HAL_RCC_GET_LPUART1_SOURCE();

        switch(srcclk)
        {
        case RCC_LPUART1CLKSOURCE_PCLK1:
          frequency = HAL_RCC_GetPCLK1Freq();
          break;
        case RCC_LPUART1CLKSOURCE_SYSCLK:
          frequency = HAL_RCC_GetSysClockFreq();
          break;
        case RCC_LPUART1CLKSOURCE_HSI:
          if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY))
          {
            frequency = HSI_VALUE;
          }
          break;
        case RCC_LPUART1CLKSOURCE_LSE:
          if(HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY))
          {
            frequency = LSE_VALUE;
          }
          break;
        default:
          /* No clock source, frequency default init at 0 */
          break;
        }

        break;
      }

    case RCC_PERIPHCLK_ADC:
      {
        srcclk = __HAL_RCC_GET_ADC_SOURCE();

        switch(srcclk)
        {
        case RCC_ADCCLKSOURCE_SYSCLK:
          frequency = HAL_RCC_GetSysClockFreq();
          break;
#if defined(RCC_PLLSAI1_SUPPORT)
        case RCC_ADCCLKSOURCE_PLLSAI1:
          if(__HAL_RCC_GET_PLLSAI1CLKOUT_CONFIG(RCC_PLLSAI1_ADC1CLK) != 0U)
          {
            plln = READ_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1N) >> RCC_PLLSAI1CFGR_PLLSAI1N_Pos;
#if defined(RCC_PLLSAI1M_DIV_1_16_SUPPORT)
            /* PLLSAI1M exists: apply PLLSAI1M divider for PLLSAI1 output computation */
            /* f(PLLSAI1 Source) * PLLSAI1N / PLLSAI1M */
            pllvco = ((pllvco * plln) / ((READ_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1M) >> RCC_PLLSAI1CFGR_PLLSAI1M_Pos) + 1U));
#else
            /* f(PLL Source) * PLLSAI1N / PLLM */
            pllvco = ((pllvco * plln) / ((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLM) >> RCC_PLLCFGR_PLLM_Pos) + 1U));
#endif
            /* f(PLLADC1CLK) = f(VCOSAI1 input) / PLLSAI1R */
            frequency = (pllvco / (((READ_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1R) >> RCC_PLLSAI1CFGR_PLLSAI1R_Pos) + 1U) << 1U));
          }
          break;
#endif /* RCC_PLLSAI1_SUPPORT */
#if defined(STM32L471xx) || defined(STM32L475xx) || defined(STM32L476xx) || defined(STM32L485xx) || defined(STM32L486xx) || defined(STM32L496xx) || defined(STM32L4A6xx)
        case RCC_ADCCLKSOURCE_PLLSAI2:
          if(__HAL_RCC_GET_PLLSAI2CLKOUT_CONFIG(RCC_PLLSAI2_ADC2CLK) != 0U)
          {
            plln = READ_BIT(RCC->PLLSAI2CFGR, RCC_PLLSAI2CFGR_PLLSAI2N) >> RCC_PLLSAI2CFGR_PLLSAI2N_Pos;
#if defined(RCC_PLLSAI2M_DIV_1_16_SUPPORT)
            /* PLLSAI2M exists: apply PLLSAI2M divider for PLLSAI2 output computation */
            /* f(PLLSAI2 Source) * PLLSAI2N / PLLSAI2M */
            pllvco = ((pllvco * plln) / ((READ_BIT(RCC->PLLSAI2CFGR, RCC_PLLSAI2CFGR_PLLSAI2M) >> RCC_PLLSAI2CFGR_PLLSAI2M_Pos) + 1U));
#else
            /* f(PLL Source) * PLLSAI2N / PLLM */
            pllvco = ((pllvco * plln) / ((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLM) >> RCC_PLLCFGR_PLLM_Pos) + 1U));
#endif
            /* f(PLLADC2CLK) = f(VCOSAI2 input) / PLLSAI2R */
            frequency = (pllvco / (((READ_BIT(RCC->PLLSAI2CFGR, RCC_PLLSAI2CFGR_PLLSAI2R) >> RCC_PLLSAI2CFGR_PLLSAI2R_Pos) + 1U) << 1U));
          }
          break;
#endif /* STM32L471xx || STM32L475xx || STM32L476xx || STM32L485xx || STM32L486xx || STM32L496xx || STM32L4A6xx */
        default:
          /* No clock source, frequency default init at 0 */
          break;
        }

        break;
      }

#if defined(DFSDM1_Filter0)

    case RCC_PERIPHCLK_DFSDM1:
      {
        /* Get the current DFSDM1 source */
        srcclk = __HAL_RCC_GET_DFSDM1_SOURCE();

        if(srcclk == RCC_DFSDM1CLKSOURCE_PCLK2)
        {
          frequency = HAL_RCC_GetPCLK2Freq();
        }
        else
        {
          frequency = HAL_RCC_GetSysClockFreq();
        }

        break;
      }

#if defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)

    case RCC_PERIPHCLK_DFSDM1AUDIO:
      {
        /* Get the current DFSDM1 audio source */
        srcclk = __HAL_RCC_GET_DFSDM1AUDIO_SOURCE();

        switch(srcclk)
        {
        case RCC_DFSDM1AUDIOCLKSOURCE_SAI1:
          frequency = RCCEx_GetSAIxPeriphCLKFreq(RCC_PERIPHCLK_SAI1, pllvco);
          break;
        case RCC_DFSDM1AUDIOCLKSOURCE_MSI:
          if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_MSIRDY))
          {
            /*MSI frequency range in HZ*/
            frequency = MSIRangeTable[(__HAL_RCC_GET_MSI_RANGE() >> 4U)];
          }
          break;
        case RCC_DFSDM1AUDIOCLKSOURCE_HSI:
          if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY))
          {
            frequency = HSI_VALUE;
          }
          break;
        default:
          /* No clock source, frequency default init at 0 */
          break;
        }

        break;
      }

#endif /* STM32L4R5xx || STM32L4R7xx || STM32L4R9xx || STM32L4S5xx || STM32L4S7xx || STM32L4S9xx */

#endif /* DFSDM1_Filter0 */

    case RCC_PERIPHCLK_I2C1:
      {
        /* Get the current I2C1 source */
        srcclk = __HAL_RCC_GET_I2C1_SOURCE();

        switch(srcclk)
        {
        case RCC_I2C1CLKSOURCE_PCLK1:
          frequency = HAL_RCC_GetPCLK1Freq();
          break;
        case RCC_I2C1CLKSOURCE_SYSCLK:
          frequency = HAL_RCC_GetSysClockFreq();
          break;
        case RCC_I2C1CLKSOURCE_HSI:
          if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY))
          {
            frequency = HSI_VALUE;
          }
          break;
        default:
          /* No clock source, frequency default init at 0 */
          break;
        }

        break;
      }

#if defined(I2C2)

    case RCC_PERIPHCLK_I2C2:
      {
        /* Get the current I2C2 source */
        srcclk = __HAL_RCC_GET_I2C2_SOURCE();

        switch(srcclk)
        {
        case RCC_I2C2CLKSOURCE_PCLK1:
          frequency = HAL_RCC_GetPCLK1Freq();
          break;
        case RCC_I2C2CLKSOURCE_SYSCLK:
          frequency = HAL_RCC_GetSysClockFreq();
          break;
        case RCC_I2C2CLKSOURCE_HSI:
          if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY))
          {
            frequency = HSI_VALUE;
          }
          break;
        default:
          /* No clock source, frequency default init at 0 */
          break;
        }

        break;
      }

#endif /* I2C2 */

    case RCC_PERIPHCLK_I2C3:
      {
        /* Get the current I2C3 source */
        srcclk = __HAL_RCC_GET_I2C3_SOURCE();

        switch(srcclk)
        {
        case RCC_I2C3CLKSOURCE_PCLK1:
          frequency = HAL_RCC_GetPCLK1Freq();
          break;
        case RCC_I2C3CLKSOURCE_SYSCLK:
          frequency = HAL_RCC_GetSysClockFreq();
          break;
        case RCC_I2C3CLKSOURCE_HSI:
          if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY))
          {
            frequency = HSI_VALUE;
          }
          break;
        default:
          /* No clock source, frequency default init at 0 */
          break;
        }

        break;
      }

#if defined(I2C4)

    case RCC_PERIPHCLK_I2C4:
      {
        /* Get the current I2C4 source */
        srcclk = __HAL_RCC_GET_I2C4_SOURCE();

        switch(srcclk)
        {
        case RCC_I2C4CLKSOURCE_PCLK1:
          frequency = HAL_RCC_GetPCLK1Freq();
          break;
        case RCC_I2C4CLKSOURCE_SYSCLK:
          frequency = HAL_RCC_GetSysClockFreq();
          break;
        case RCC_I2C4CLKSOURCE_HSI:
          if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY))
          {
            frequency = HSI_VALUE;
          }
          break;
        default:
          /* No clock source, frequency default init at 0 */
          break;
        }

        break;
      }

#endif /* I2C4 */

    case RCC_PERIPHCLK_LPTIM1:
      {
        /* Get the current LPTIM1 source */
        srcclk = __HAL_RCC_GET_LPTIM1_SOURCE();

        switch(srcclk)
        {
        case RCC_LPTIM1CLKSOURCE_PCLK1:
          frequency = HAL_RCC_GetPCLK1Freq();
          break;
        case RCC_LPTIM1CLKSOURCE_LSI:
          if(HAL_IS_BIT_SET(RCC->CSR, RCC_CSR_LSIRDY))
          {
#if defined(RCC_CSR_LSIPREDIV)
            if(HAL_IS_BIT_SET(RCC->CSR, RCC_CSR_LSIPREDIV))
            {
              frequency = LSI_VALUE/128U;
            }
            else
#endif /* RCC_CSR_LSIPREDIV */
            {
              frequency = LSI_VALUE;
            }
          }
          break;
        case RCC_LPTIM1CLKSOURCE_HSI:
          if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY))
          {
            frequency = HSI_VALUE;
          }
          break;
        case RCC_LPTIM1CLKSOURCE_LSE:
          if(HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY))
          {
            frequency = LSE_VALUE;
          }
          break;
        default:
          /* No clock source, frequency default init at 0 */
          break;
        }

        break;
      }

    case RCC_PERIPHCLK_LPTIM2:
      {
        /* Get the current LPTIM2 source */
       srcclk = __HAL_RCC_GET_LPTIM2_SOURCE();

        switch(srcclk)
        {
        case RCC_LPTIM2CLKSOURCE_PCLK1:
          frequency = HAL_RCC_GetPCLK1Freq();
          break;
        case RCC_LPTIM2CLKSOURCE_LSI:
          if(HAL_IS_BIT_SET(RCC->CSR, RCC_CSR_LSIRDY))
          {
#if defined(RCC_CSR_LSIPREDIV)
            if(HAL_IS_BIT_SET(RCC->CSR, RCC_CSR_LSIPREDIV))
            {
              frequency = LSI_VALUE/128U;
            }
            else
#endif /* RCC_CSR_LSIPREDIV */
            {
              frequency = LSI_VALUE;
            }
          }
          break;
        case RCC_LPTIM2CLKSOURCE_HSI:
          if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY))
          {
            frequency = HSI_VALUE;
          }
          break;
        case RCC_LPTIM2CLKSOURCE_LSE:
          if(HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY))
          {
            frequency = LSE_VALUE;
          }
          break;
        default:
          /* No clock source, frequency default init at 0 */
          break;
        }

        break;
      }

#if defined(SWPMI1)

    case RCC_PERIPHCLK_SWPMI1:
      {
        /* Get the current SWPMI1 source */
        srcclk = __HAL_RCC_GET_SWPMI1_SOURCE();

        switch(srcclk)
        {
        case RCC_SWPMI1CLKSOURCE_PCLK1:
          frequency = HAL_RCC_GetPCLK1Freq();
          break;
        case RCC_SWPMI1CLKSOURCE_HSI:
          if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY))
          {
            frequency = HSI_VALUE;
          }
          break;
        default:
          /* No clock source, frequency default init at 0 */
          break;
        }

        break;
      }

#endif /* SWPMI1 */

#if defined(OCTOSPI1) || defined(OCTOSPI2)

    case RCC_PERIPHCLK_OSPI:
      {
        /* Get the current OctoSPI clock source */
        srcclk = __HAL_RCC_GET_OSPI_SOURCE();

        switch(srcclk)
        {
        case RCC_OSPICLKSOURCE_SYSCLK:
          frequency = HAL_RCC_GetSysClockFreq();
          break;
        case RCC_OSPICLKSOURCE_MSI:
          if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_MSIRDY))
          {
            /*MSI frequency range in HZ*/
            frequency = MSIRangeTable[(__HAL_RCC_GET_MSI_RANGE() >> 4U)];
          }
          break;
        case RCC_OSPICLKSOURCE_PLL:
          if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_PLLRDY))
          {
            if(HAL_IS_BIT_SET(RCC->PLLCFGR, RCC_PLLCFGR_PLLQEN))
            {
              /* f(PLL Source) * PLLN / PLLM */
              plln = READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos;
              pllvco = ((pllvco * plln) / ((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLM) >> RCC_PLLCFGR_PLLM_Pos) + 1U));
              /* f(PLL48M1CLK) = f(VCO input) / PLLQ */
              frequency = (pllvco / (((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLQ) >> RCC_PLLCFGR_PLLQ_Pos) + 1U) << 1U));
            }
          }
          break;
        default:
          /* No clock source, frequency default init at 0 */
          break;
        }

        break;
      }

#endif /* OCTOSPI1 || OCTOSPI2 */

    default:
      break;
    }
  }

  return(frequency);
}

/**
  * @}
  */

/** @defgroup RCCEx_Exported_Functions_Group2 Extended Clock management functions
 *  @brief  Extended Clock management functions
 *
@verbatim
 ===============================================================================
                ##### Extended clock management functions  #####
 ===============================================================================
    [..]
    This subsection provides a set of functions allowing to control the
    activation or deactivation of MSI PLL-mode, PLLSAI1, PLLSAI2, LSE CSS,
    Low speed clock output and clock after wake-up from STOP mode.
@endverbatim
  * @{
  */

#if defined(RCC_PLLSAI1_SUPPORT)

/**
  * @brief  Enable PLLSAI1.
  * @param  PLLSAI1Init  pointer to an RCC_PLLSAI1InitTypeDef structure that
  *         contains the configuration information for the PLLSAI1
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RCCEx_EnablePLLSAI1(RCC_PLLSAI1InitTypeDef  *PLLSAI1Init)
{
  uint32_t tickstart;
  HAL_StatusTypeDef status = HAL_OK;

  /* check for PLLSAI1 Parameters used to output PLLSAI1CLK */
  assert_param(IS_RCC_PLLSAI1SOURCE(PLLSAI1Init->PLLSAI1Source));
  assert_param(IS_RCC_PLLSAI1M_VALUE(PLLSAI1Init->PLLSAI1M));
  assert_param(IS_RCC_PLLSAI1N_VALUE(PLLSAI1Init->PLLSAI1N));
  assert_param(IS_RCC_PLLSAI1P_VALUE(PLLSAI1Init->PLLSAI1P));
  assert_param(IS_RCC_PLLSAI1Q_VALUE(PLLSAI1Init->PLLSAI1Q));
  assert_param(IS_RCC_PLLSAI1R_VALUE(PLLSAI1Init->PLLSAI1R));
  assert_param(IS_RCC_PLLSAI1CLOCKOUT_VALUE(PLLSAI1Init->PLLSAI1ClockOut));

  /* Disable the PLLSAI1 */
  __HAL_RCC_PLLSAI1_DISABLE();

  /* Get Start Tick*/
  tickstart = HAL_GetTick();

  /* Wait till PLLSAI1 is ready to be updated */
  while(READ_BIT(RCC->CR, RCC_CR_PLLSAI1RDY) != 0U)
  {
    if((HAL_GetTick() - tickstart) > PLLSAI1_TIMEOUT_VALUE)
    {
      status = HAL_TIMEOUT;
      break;
    }
  }

  if(status == HAL_OK)
  {
#if defined(RCC_PLLSAI1M_DIV_1_16_SUPPORT)
    /* Configure the PLLSAI1 Multiplication factor N */
    /* Configure the PLLSAI1 Division factors M, P, Q and R */
    __HAL_RCC_PLLSAI1_CONFIG(PLLSAI1Init->PLLSAI1M, PLLSAI1Init->PLLSAI1N, PLLSAI1Init->PLLSAI1P, PLLSAI1Init->PLLSAI1Q, PLLSAI1Init->PLLSAI1R);
#else
    /* Configure the PLLSAI1 Multiplication factor N */
    /* Configure the PLLSAI1 Division factors P, Q and R */
    __HAL_RCC_PLLSAI1_CONFIG(PLLSAI1Init->PLLSAI1N, PLLSAI1Init->PLLSAI1P, PLLSAI1Init->PLLSAI1Q, PLLSAI1Init->PLLSAI1R);
#endif /* RCC_PLLSAI1M_DIV_1_16_SUPPORT */
    /* Configure the PLLSAI1 Clock output(s) */
    __HAL_RCC_PLLSAI1CLKOUT_ENABLE(PLLSAI1Init->PLLSAI1ClockOut);

    /* Enable the PLLSAI1 again by setting PLLSAI1ON to 1*/
    __HAL_RCC_PLLSAI1_ENABLE();

    /* Get Start Tick*/
    tickstart = HAL_GetTick();

    /* Wait till PLLSAI1 is ready */
    while(READ_BIT(RCC->CR, RCC_CR_PLLSAI1RDY) == 0U)
    {
      if((HAL_GetTick() - tickstart) > PLLSAI1_TIMEOUT_VALUE)
      {
        status = HAL_TIMEOUT;
        break;
      }
    }
  }

  return status;
}

/**
  * @brief  Disable PLLSAI1.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RCCEx_DisablePLLSAI1(void)
{
  uint32_t tickstart;
  HAL_StatusTypeDef status = HAL_OK;

  /* Disable the PLLSAI1 */
  __HAL_RCC_PLLSAI1_DISABLE();

  /* Get Start Tick*/
  tickstart = HAL_GetTick();

  /* Wait till PLLSAI1 is ready */
  while(READ_BIT(RCC->CR, RCC_CR_PLLSAI1RDY) != 0U)
  {
    if((HAL_GetTick() - tickstart) > PLLSAI1_TIMEOUT_VALUE)
    {
      status = HAL_TIMEOUT;
      break;
    }
  }

  /* Disable the PLLSAI1 Clock outputs */
  __HAL_RCC_PLLSAI1CLKOUT_DISABLE(RCC_PLLSAI1CFGR_PLLSAI1PEN|RCC_PLLSAI1CFGR_PLLSAI1QEN|RCC_PLLSAI1CFGR_PLLSAI1REN);

  /* Reset PLL source to save power if no PLLs on */
#if defined(RCC_PLLSAI2_SUPPORT)
  if(READ_BIT(RCC->CR, (RCC_CR_PLLRDY | RCC_CR_PLLSAI2RDY)) == 0U)
  {
    MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC, RCC_PLLSOURCE_NONE);
  }
#else
  if(READ_BIT(RCC->CR, RCC_CR_PLLRDY) == 0U)
  {
    MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC, RCC_PLLSOURCE_NONE);
  }
#endif /* RCC_PLLSAI2_SUPPORT */

  return status;
}

#endif /* RCC_PLLSAI1_SUPPORT */

#if defined(RCC_PLLSAI2_SUPPORT)

/**
  * @brief  Enable PLLSAI2.
  * @param  PLLSAI2Init  pointer to an RCC_PLLSAI2InitTypeDef structure that
  *         contains the configuration information for the PLLSAI2
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RCCEx_EnablePLLSAI2(RCC_PLLSAI2InitTypeDef  *PLLSAI2Init)
{
  uint32_t tickstart;
  HAL_StatusTypeDef status = HAL_OK;

  /* check for PLLSAI2 Parameters used to output PLLSAI2CLK */
  assert_param(IS_RCC_PLLSAI2SOURCE(PLLSAI2Init->PLLSAI2Source));
  assert_param(IS_RCC_PLLSAI2M_VALUE(PLLSAI2Init->PLLSAI2M));
  assert_param(IS_RCC_PLLSAI2N_VALUE(PLLSAI2Init->PLLSAI2N));
  assert_param(IS_RCC_PLLSAI2P_VALUE(PLLSAI2Init->PLLSAI2P));
#if defined(RCC_PLLSAI2Q_DIV_SUPPORT)
  assert_param(IS_RCC_PLLSAI2Q_VALUE(PLLSAI2Init->PLLSAI2Q));
#endif /* RCC_PLLSAI2Q_DIV_SUPPORT */
  assert_param(IS_RCC_PLLSAI2R_VALUE(PLLSAI2Init->PLLSAI2R));
  assert_param(IS_RCC_PLLSAI2CLOCKOUT_VALUE(PLLSAI2Init->PLLSAI2ClockOut));

  /* Disable the PLLSAI2 */
  __HAL_RCC_PLLSAI2_DISABLE();

  /* Get Start Tick*/
  tickstart = HAL_GetTick();

  /* Wait till PLLSAI2 is ready to be updated */
  while(READ_BIT(RCC->CR, RCC_CR_PLLSAI2RDY) != 0U)
  {
    if((HAL_GetTick() - tickstart) > PLLSAI2_TIMEOUT_VALUE)
    {
      status = HAL_TIMEOUT;
      break;
    }
  }

  if(status == HAL_OK)
  {
#if defined(RCC_PLLSAI2M_DIV_1_16_SUPPORT) && defined(RCC_PLLSAI2Q_DIV_SUPPORT)
    /* Configure the PLLSAI2 Multiplication factor N */
    /* Configure the PLLSAI2 Division factors M, P, Q and R */
    __HAL_RCC_PLLSAI2_CONFIG(PLLSAI2Init->PLLSAI2M, PLLSAI2Init->PLLSAI2N, PLLSAI2Init->PLLSAI2P, PLLSAI2Init->PLLSAI2Q, PLLSAI2Init->PLLSAI2R);
#elif defined(RCC_PLLSAI2M_DIV_1_16_SUPPORT)
    /* Configure the PLLSAI2 Multiplication factor N */
    /* Configure the PLLSAI2 Division factors M, P and R */
    __HAL_RCC_PLLSAI2_CONFIG(PLLSAI2Init->PLLSAI2M, PLLSAI2Init->PLLSAI2N, PLLSAI2Init->PLLSAI2P, PLLSAI2Init->PLLSAI2R);
#elif defined(RCC_PLLSAI2Q_DIV_SUPPORT)
    /* Configure the PLLSAI2 Multiplication factor N */
    /* Configure the PLLSAI2 Division factors P, Q and R */
    __HAL_RCC_PLLSAI2_CONFIG(PLLSAI2Init->PLLSAI2N, PLLSAI2Init->PLLSAI2P, PLLSAI2Init->PLLSAI2Q, PLLSAI2Init->PLLSAI2R);
#else
    /* Configure the PLLSAI2 Multiplication factor N */
    /* Configure the PLLSAI2 Division factors P and R */
    __HAL_RCC_PLLSAI2_CONFIG(PLLSAI2Init->PLLSAI2N, PLLSAI2Init->PLLSAI2P, PLLSAI2Init->PLLSAI2R);
#endif /* RCC_PLLSAI2M_DIV_1_16_SUPPORT && RCC_PLLSAI2Q_DIV_SUPPORT */
    /* Configure the PLLSAI2 Clock output(s) */
    __HAL_RCC_PLLSAI2CLKOUT_ENABLE(PLLSAI2Init->PLLSAI2ClockOut);

    /* Enable the PLLSAI2 again by setting PLLSAI2ON to 1*/
    __HAL_RCC_PLLSAI2_ENABLE();

    /* Get Start Tick*/
    tickstart = HAL_GetTick();

    /* Wait till PLLSAI2 is ready */
    while(READ_BIT(RCC->CR, RCC_CR_PLLSAI2RDY) == 0U)
    {
      if((HAL_GetTick() - tickstart) > PLLSAI2_TIMEOUT_VALUE)
      {
        status = HAL_TIMEOUT;
        break;
      }
    }
  }

  return status;
}

/**
  * @brief  Disable PLLISAI2.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RCCEx_DisablePLLSAI2(void)
{
  uint32_t tickstart;
  HAL_StatusTypeDef status = HAL_OK;

  /* Disable the PLLSAI2 */
  __HAL_RCC_PLLSAI2_DISABLE();

  /* Get Start Tick*/
  tickstart = HAL_GetTick();

  /* Wait till PLLSAI2 is ready */
  while(READ_BIT(RCC->CR, RCC_CR_PLLSAI2RDY) != 0U)
  {
    if((HAL_GetTick() - tickstart) > PLLSAI2_TIMEOUT_VALUE)
    {
      status = HAL_TIMEOUT;
      break;
    }
  }

  /* Disable the PLLSAI2 Clock outputs */
#if defined(RCC_PLLSAI2Q_DIV_SUPPORT)
  __HAL_RCC_PLLSAI2CLKOUT_DISABLE(RCC_PLLSAI2CFGR_PLLSAI2PEN|RCC_PLLSAI2CFGR_PLLSAI2QEN|RCC_PLLSAI2CFGR_PLLSAI2REN);
#else
  __HAL_RCC_PLLSAI2CLKOUT_DISABLE(RCC_PLLSAI2CFGR_PLLSAI2PEN|RCC_PLLSAI2CFGR_PLLSAI2REN);
#endif /* RCC_PLLSAI2M_DIV_1_16_SUPPORT && RCC_PLLSAI2Q_DIV_SUPPORT */

  /* Reset PLL source to save power if no PLLs on */
  if(READ_BIT(RCC->CR, (RCC_CR_PLLRDY | RCC_CR_PLLSAI1RDY)) == 0U)
  {
    MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC, RCC_PLLSOURCE_NONE);
  }

  return status;
}

#endif /* RCC_PLLSAI2_SUPPORT */

/**
  * @brief  Configure the oscillator clock source for wakeup from Stop and CSS backup clock.
  * @param  WakeUpClk  Wakeup clock
  *         This parameter can be one of the following values:
  *            @arg @ref RCC_STOP_WAKEUPCLOCK_MSI  MSI oscillator selection
  *            @arg @ref RCC_STOP_WAKEUPCLOCK_HSI  HSI oscillator selection
  * @note   This function shall not be called after the Clock Security System on HSE has been
  *         enabled.
  * @retval None
  */
void HAL_RCCEx_WakeUpStopCLKConfig(uint32_t WakeUpClk)
{
  assert_param(IS_RCC_STOP_WAKEUPCLOCK(WakeUpClk));

  __HAL_RCC_WAKEUPSTOP_CLK_CONFIG(WakeUpClk);
}

/**
  * @brief  Configure the MSI range after standby mode.
  * @note   After Standby its frequency can be selected between 4 possible values (1, 2, 4 or 8 MHz).
  * @param  MSIRange  MSI range
  *         This parameter can be one of the following values:
  *            @arg @ref RCC_MSIRANGE_4  Range 4 around 1 MHz
  *            @arg @ref RCC_MSIRANGE_5  Range 5 around 2 MHz
  *            @arg @ref RCC_MSIRANGE_6  Range 6 around 4 MHz (reset value)
  *            @arg @ref RCC_MSIRANGE_7  Range 7 around 8 MHz
  * @retval None
  */
void HAL_RCCEx_StandbyMSIRangeConfig(uint32_t MSIRange)
{
  assert_param(IS_RCC_MSI_STANDBY_CLOCK_RANGE(MSIRange));

  __HAL_RCC_MSI_STANDBY_RANGE_CONFIG(MSIRange);
}

/**
  * @brief  Enable the LSE Clock Security System.
  * @note   Prior to enable the LSE Clock Security System, LSE oscillator is to be enabled
  *         with HAL_RCC_OscConfig() and the LSE oscillator clock is to be selected as RTC
  *         clock with HAL_RCCEx_PeriphCLKConfig().
  * @retval None
  */
void HAL_RCCEx_EnableLSECSS(void)
{
  SET_BIT(RCC->BDCR, RCC_BDCR_LSECSSON) ;
}

/**
  * @brief  Disable the LSE Clock Security System.
  * @note   LSE Clock Security System can only be disabled after a LSE failure detection.
  * @retval None
  */
void HAL_RCCEx_DisableLSECSS(void)
{
  CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSECSSON) ;

  /* Disable LSE CSS IT if any */
  __HAL_RCC_DISABLE_IT(RCC_IT_LSECSS);
}

/**
  * @brief  Enable the LSE Clock Security System Interrupt & corresponding EXTI line.
  * @note   LSE Clock Security System Interrupt is mapped on RTC EXTI line 19
  * @retval None
  */
void HAL_RCCEx_EnableLSECSS_IT(void)
{
  /* Enable LSE CSS */
  SET_BIT(RCC->BDCR, RCC_BDCR_LSECSSON) ;

  /* Enable LSE CSS IT */
  __HAL_RCC_ENABLE_IT(RCC_IT_LSECSS);

  /* Enable IT on EXTI Line 19 */
  __HAL_RCC_LSECSS_EXTI_ENABLE_IT();
  __HAL_RCC_LSECSS_EXTI_ENABLE_RISING_EDGE();
}

/**
  * @brief Handle the RCC LSE Clock Security System interrupt request.
  * @retval None
  */
void HAL_RCCEx_LSECSS_IRQHandler(void)
{
  /* Check RCC LSE CSSF flag  */
  if(__HAL_RCC_GET_IT(RCC_IT_LSECSS))
  {
    /* RCC LSE Clock Security System interrupt user callback */
    HAL_RCCEx_LSECSS_Callback();

    /* Clear RCC LSE CSS pending bit */
    __HAL_RCC_CLEAR_IT(RCC_IT_LSECSS);
  }
}

/**
  * @brief  RCCEx LSE Clock Security System interrupt callback.
  * @retval none
  */
__weak void HAL_RCCEx_LSECSS_Callback(void)
{
  /* NOTE : This function should not be modified, when the callback is needed,
            the @ref HAL_RCCEx_LSECSS_Callback should be implemented in the user file
   */
}

/**
  * @brief  Select the Low Speed clock source to output on LSCO pin (PA2).
  * @param  LSCOSource  specifies the Low Speed clock source to output.
  *          This parameter can be one of the following values:
  *            @arg @ref RCC_LSCOSOURCE_LSI  LSI clock selected as LSCO source
  *            @arg @ref RCC_LSCOSOURCE_LSE  LSE clock selected as LSCO source
  * @retval None
  */
void HAL_RCCEx_EnableLSCO(uint32_t LSCOSource)
{
  GPIO_InitTypeDef GPIO_InitStruct;
  FlagStatus       pwrclkchanged = RESET;
  FlagStatus       backupchanged = RESET;

  /* Check the parameters */
  assert_param(IS_RCC_LSCOSOURCE(LSCOSource));

  /* LSCO Pin Clock Enable */
  __LSCO_CLK_ENABLE();

  /* Configue the LSCO pin in analog mode */
  GPIO_InitStruct.Pin = LSCO_PIN;
  GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  HAL_GPIO_Init(LSCO_GPIO_PORT, &GPIO_InitStruct);

  /* Update LSCOSEL clock source in Backup Domain control register */
  if(__HAL_RCC_PWR_IS_CLK_DISABLED())
  {
    __HAL_RCC_PWR_CLK_ENABLE();
    pwrclkchanged = SET;
  }
  if(HAL_IS_BIT_CLR(PWR->CR1, PWR_CR1_DBP))
  {
    HAL_PWR_EnableBkUpAccess();
    backupchanged = SET;
  }

  MODIFY_REG(RCC->BDCR, RCC_BDCR_LSCOSEL | RCC_BDCR_LSCOEN, LSCOSource | RCC_BDCR_LSCOEN);

  if(backupchanged == SET)
  {
    HAL_PWR_DisableBkUpAccess();
  }
  if(pwrclkchanged == SET)
  {
    __HAL_RCC_PWR_CLK_DISABLE();
  }
}

/**
  * @brief  Disable the Low Speed clock output.
  * @retval None
  */
void HAL_RCCEx_DisableLSCO(void)
{
  FlagStatus       pwrclkchanged = RESET;
  FlagStatus       backupchanged = RESET;

  /* Update LSCOEN bit in Backup Domain control register */
  if(__HAL_RCC_PWR_IS_CLK_DISABLED())
  {
    __HAL_RCC_PWR_CLK_ENABLE();
    pwrclkchanged = SET;
  }
  if(HAL_IS_BIT_CLR(PWR->CR1, PWR_CR1_DBP))
  {
    /* Enable access to the backup domain */
    HAL_PWR_EnableBkUpAccess();
    backupchanged = SET;
  }

  CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSCOEN);

  /* Restore previous configuration */
  if(backupchanged == SET)
  {
    /* Disable access to the backup domain */
    HAL_PWR_DisableBkUpAccess();
  }
  if(pwrclkchanged == SET)
  {
    __HAL_RCC_PWR_CLK_DISABLE();
  }
}

/**
  * @brief  Enable the PLL-mode of the MSI.
  * @note   Prior to enable the PLL-mode of the MSI for automatic hardware
  *         calibration LSE oscillator is to be enabled with HAL_RCC_OscConfig().
  * @retval None
  */
void HAL_RCCEx_EnableMSIPLLMode(void)
{
  SET_BIT(RCC->CR, RCC_CR_MSIPLLEN) ;
}

/**
  * @brief  Disable the PLL-mode of the MSI.
  * @note   PLL-mode of the MSI is automatically reset when LSE oscillator is disabled.
  * @retval None
  */
void HAL_RCCEx_DisableMSIPLLMode(void)
{
  CLEAR_BIT(RCC->CR, RCC_CR_MSIPLLEN) ;
}

/**
  * @}
  */

#if defined(CRS)

/** @defgroup RCCEx_Exported_Functions_Group3 Extended Clock Recovery System Control functions
 *  @brief  Extended Clock Recovery System Control functions
 *
@verbatim
 ===============================================================================
                ##### Extended Clock Recovery System Control functions  #####
 ===============================================================================
    [..]
      For devices with Clock Recovery System feature (CRS), RCC Extention HAL driver can be used as follows:

      (#) In System clock config, HSI48 needs to be enabled

      (#) Enable CRS clock in IP MSP init which will use CRS functions

      (#) Call CRS functions as follows:
          (##) Prepare synchronization configuration necessary for HSI48 calibration
              (+++) Default values can be set for frequency Error Measurement (reload and error limit)
                        and also HSI48 oscillator smooth trimming.
              (+++) Macro __HAL_RCC_CRS_RELOADVALUE_CALCULATE can be also used to calculate
                        directly reload value with target and sychronization frequencies values
          (##) Call function HAL_RCCEx_CRSConfig which
              (+++) Resets CRS registers to their default values.
              (+++) Configures CRS registers with synchronization configuration
              (+++) Enables automatic calibration and frequency error counter feature
           Note: When using USB LPM (Link Power Management) and the device is in Sleep mode, the
           periodic USB SOF will not be generated by the host. No SYNC signal will therefore be
           provided to the CRS to calibrate the HSI48 on the run. To guarantee the required clock
           precision after waking up from Sleep mode, the LSE or reference clock on the GPIOs
           should be used as SYNC signal.

          (##) A polling function is provided to wait for complete synchronization
              (+++) Call function HAL_RCCEx_CRSWaitSynchronization()
              (+++) According to CRS status, user can decide to adjust again the calibration or continue
                        application if synchronization is OK

      (#) User can retrieve information related to synchronization in calling function
            HAL_RCCEx_CRSGetSynchronizationInfo()

      (#) Regarding synchronization status and synchronization information, user can try a new calibration
           in changing synchronization configuration and call again HAL_RCCEx_CRSConfig.
           Note: When the SYNC event is detected during the downcounting phase (before reaching the zero value),
           it means that the actual frequency is lower than the target (and so, that the TRIM value should be
           incremented), while when it is detected during the upcounting phase it means that the actual frequency
           is higher (and that the TRIM value should be decremented).

      (#) In interrupt mode, user can resort to the available macros (__HAL_RCC_CRS_XXX_IT). Interrupts will go
          through CRS Handler (CRS_IRQn/CRS_IRQHandler)
              (++) Call function HAL_RCCEx_CRSConfig()
              (++) Enable CRS_IRQn (thanks to NVIC functions)
              (++) Enable CRS interrupt (__HAL_RCC_CRS_ENABLE_IT)
              (++) Implement CRS status management in the following user callbacks called from
                   HAL_RCCEx_CRS_IRQHandler():
                   (+++) HAL_RCCEx_CRS_SyncOkCallback()
                   (+++) HAL_RCCEx_CRS_SyncWarnCallback()
                   (+++) HAL_RCCEx_CRS_ExpectedSyncCallback()
                   (+++) HAL_RCCEx_CRS_ErrorCallback()

      (#) To force a SYNC EVENT, user can use the function HAL_RCCEx_CRSSoftwareSynchronizationGenerate().
          This function can be called before calling HAL_RCCEx_CRSConfig (for instance in Systick handler)

@endverbatim
 * @{
 */

/**
  * @brief  Start automatic synchronization for polling mode
  * @param  pInit Pointer on RCC_CRSInitTypeDef structure
  * @retval None
  */
void HAL_RCCEx_CRSConfig(RCC_CRSInitTypeDef *pInit)
{
  uint32_t value;  /* no init needed */

  /* Check the parameters */
  assert_param(IS_RCC_CRS_SYNC_DIV(pInit->Prescaler));
  assert_param(IS_RCC_CRS_SYNC_SOURCE(pInit->Source));
  assert_param(IS_RCC_CRS_SYNC_POLARITY(pInit->Polarity));
  assert_param(IS_RCC_CRS_RELOADVALUE(pInit->ReloadValue));
  assert_param(IS_RCC_CRS_ERRORLIMIT(pInit->ErrorLimitValue));
  assert_param(IS_RCC_CRS_HSI48CALIBRATION(pInit->HSI48CalibrationValue));

  /* CONFIGURATION */

  /* Before configuration, reset CRS registers to their default values*/
  __HAL_RCC_CRS_FORCE_RESET();
  __HAL_RCC_CRS_RELEASE_RESET();

  /* Set the SYNCDIV[2:0] bits according to Prescaler value */
  /* Set the SYNCSRC[1:0] bits according to Source value */
  /* Set the SYNCSPOL bit according to Polarity value */
  value = (pInit->Prescaler | pInit->Source | pInit->Polarity);
  /* Set the RELOAD[15:0] bits according to ReloadValue value */
  value |= pInit->ReloadValue;
  /* Set the FELIM[7:0] bits according to ErrorLimitValue value */
  value |= (pInit->ErrorLimitValue << CRS_CFGR_FELIM_Pos);
  WRITE_REG(CRS->CFGR, value);

  /* Adjust HSI48 oscillator smooth trimming */
  /* Set the TRIM[6:0] bits for STM32L412xx/L422xx or TRIM[5:0] bits otherwise
     according to RCC_CRS_HSI48CalibrationValue value */
  MODIFY_REG(CRS->CR, CRS_CR_TRIM, (pInit->HSI48CalibrationValue << CRS_CR_TRIM_Pos));

  /* START AUTOMATIC SYNCHRONIZATION*/

  /* Enable Automatic trimming & Frequency error counter */
  SET_BIT(CRS->CR, CRS_CR_AUTOTRIMEN | CRS_CR_CEN);
}

/**
  * @brief  Generate the software synchronization event
  * @retval None
  */
void HAL_RCCEx_CRSSoftwareSynchronizationGenerate(void)
{
  SET_BIT(CRS->CR, CRS_CR_SWSYNC);
}

/**
  * @brief  Return synchronization info
  * @param  pSynchroInfo Pointer on RCC_CRSSynchroInfoTypeDef structure
  * @retval None
  */
void HAL_RCCEx_CRSGetSynchronizationInfo(RCC_CRSSynchroInfoTypeDef *pSynchroInfo)
{
  /* Check the parameter */
  assert_param(pSynchroInfo != (void *)NULL);

  /* Get the reload value */
  pSynchroInfo->ReloadValue = (READ_BIT(CRS->CFGR, CRS_CFGR_RELOAD));

  /* Get HSI48 oscillator smooth trimming */
  pSynchroInfo->HSI48CalibrationValue = (READ_BIT(CRS->CR, CRS_CR_TRIM) >> CRS_CR_TRIM_Pos);

  /* Get Frequency error capture */
  pSynchroInfo->FreqErrorCapture = (READ_BIT(CRS->ISR, CRS_ISR_FECAP) >> CRS_ISR_FECAP_Pos);

  /* Get Frequency error direction */
  pSynchroInfo->FreqErrorDirection = (READ_BIT(CRS->ISR, CRS_ISR_FEDIR));
}

/**
* @brief Wait for CRS Synchronization status.
* @param Timeout  Duration of the timeout
* @note  Timeout is based on the maximum time to receive a SYNC event based on synchronization
*        frequency.
* @note    If Timeout set to HAL_MAX_DELAY, HAL_TIMEOUT will be never returned.
* @retval Combination of Synchronization status
*          This parameter can be a combination of the following values:
*            @arg @ref RCC_CRS_TIMEOUT
*            @arg @ref RCC_CRS_SYNCOK
*            @arg @ref RCC_CRS_SYNCWARN
*            @arg @ref RCC_CRS_SYNCERR
*            @arg @ref RCC_CRS_SYNCMISS
*            @arg @ref RCC_CRS_TRIMOVF
*/
uint32_t HAL_RCCEx_CRSWaitSynchronization(uint32_t Timeout)
{
  uint32_t crsstatus = RCC_CRS_NONE;
  uint32_t tickstart;

  /* Get timeout */
  tickstart = HAL_GetTick();

  /* Wait for CRS flag or timeout detection */
  do
  {
    if(Timeout != HAL_MAX_DELAY)
    {
      if(((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
      {
        crsstatus = RCC_CRS_TIMEOUT;
      }
    }
    /* Check CRS SYNCOK flag  */
    if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCOK))
    {
      /* CRS SYNC event OK */
      crsstatus |= RCC_CRS_SYNCOK;

      /* Clear CRS SYNC event OK bit */
      __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCOK);
    }

    /* Check CRS SYNCWARN flag  */
    if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCWARN))
    {
      /* CRS SYNC warning */
      crsstatus |= RCC_CRS_SYNCWARN;

      /* Clear CRS SYNCWARN bit */
      __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCWARN);
    }

    /* Check CRS TRIM overflow flag  */
    if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_TRIMOVF))
    {
      /* CRS SYNC Error */
      crsstatus |= RCC_CRS_TRIMOVF;

      /* Clear CRS Error bit */
      __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_TRIMOVF);
    }

    /* Check CRS Error flag  */
    if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCERR))
    {
      /* CRS SYNC Error */
      crsstatus |= RCC_CRS_SYNCERR;

      /* Clear CRS Error bit */
      __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCERR);
    }

    /* Check CRS SYNC Missed flag  */
    if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCMISS))
    {
      /* CRS SYNC Missed */
      crsstatus |= RCC_CRS_SYNCMISS;

      /* Clear CRS SYNC Missed bit */
      __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCMISS);
    }

    /* Check CRS Expected SYNC flag  */
    if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_ESYNC))
    {
      /* frequency error counter reached a zero value */
      __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_ESYNC);
    }
  } while(RCC_CRS_NONE == crsstatus);

  return crsstatus;
}

/**
  * @brief Handle the Clock Recovery System interrupt request.
  * @retval None
  */
void HAL_RCCEx_CRS_IRQHandler(void)
{
  uint32_t crserror = RCC_CRS_NONE;
  /* Get current IT flags and IT sources values */
  uint32_t itflags = READ_REG(CRS->ISR);
  uint32_t itsources = READ_REG(CRS->CR);

  /* Check CRS SYNCOK flag  */
  if(((itflags & RCC_CRS_FLAG_SYNCOK) != 0U) && ((itsources & RCC_CRS_IT_SYNCOK) != 0U))
  {
    /* Clear CRS SYNC event OK flag */
    WRITE_REG(CRS->ICR, CRS_ICR_SYNCOKC);

    /* user callback */
    HAL_RCCEx_CRS_SyncOkCallback();
  }
  /* Check CRS SYNCWARN flag  */
  else if(((itflags & RCC_CRS_FLAG_SYNCWARN) != 0U) && ((itsources & RCC_CRS_IT_SYNCWARN) != 0U))
  {
    /* Clear CRS SYNCWARN flag */
    WRITE_REG(CRS->ICR, CRS_ICR_SYNCWARNC);

    /* user callback */
    HAL_RCCEx_CRS_SyncWarnCallback();
  }
  /* Check CRS Expected SYNC flag  */
  else if(((itflags & RCC_CRS_FLAG_ESYNC) != 0U) && ((itsources & RCC_CRS_IT_ESYNC) != 0U))
  {
    /* frequency error counter reached a zero value */
    WRITE_REG(CRS->ICR, CRS_ICR_ESYNCC);

    /* user callback */
    HAL_RCCEx_CRS_ExpectedSyncCallback();
  }
  /* Check CRS Error flags  */
  else
  {
    if(((itflags & RCC_CRS_FLAG_ERR) != 0U) && ((itsources & RCC_CRS_IT_ERR) != 0U))
    {
      if((itflags & RCC_CRS_FLAG_SYNCERR) != 0U)
      {
        crserror |= RCC_CRS_SYNCERR;
      }
      if((itflags & RCC_CRS_FLAG_SYNCMISS) != 0U)
      {
        crserror |= RCC_CRS_SYNCMISS;
      }
      if((itflags & RCC_CRS_FLAG_TRIMOVF) != 0U)
      {
        crserror |= RCC_CRS_TRIMOVF;
      }

      /* Clear CRS Error flags */
      WRITE_REG(CRS->ICR, CRS_ICR_ERRC);

      /* user error callback */
      HAL_RCCEx_CRS_ErrorCallback(crserror);
    }
  }
}

/**
  * @brief  RCCEx Clock Recovery System SYNCOK interrupt callback.
  * @retval none
  */
__weak void HAL_RCCEx_CRS_SyncOkCallback(void)
{
  /* NOTE : This function should not be modified, when the callback is needed,
            the @ref HAL_RCCEx_CRS_SyncOkCallback should be implemented in the user file
   */
}

/**
  * @brief  RCCEx Clock Recovery System SYNCWARN interrupt callback.
  * @retval none
  */
__weak void HAL_RCCEx_CRS_SyncWarnCallback(void)
{
  /* NOTE : This function should not be modified, when the callback is needed,
            the @ref HAL_RCCEx_CRS_SyncWarnCallback should be implemented in the user file
   */
}

/**
  * @brief  RCCEx Clock Recovery System Expected SYNC interrupt callback.
  * @retval none
  */
__weak void HAL_RCCEx_CRS_ExpectedSyncCallback(void)
{
  /* NOTE : This function should not be modified, when the callback is needed,
            the @ref HAL_RCCEx_CRS_ExpectedSyncCallback should be implemented in the user file
   */
}

/**
  * @brief  RCCEx Clock Recovery System Error interrupt callback.
  * @param  Error Combination of Error status.
  *         This parameter can be a combination of the following values:
  *           @arg @ref RCC_CRS_SYNCERR
  *           @arg @ref RCC_CRS_SYNCMISS
  *           @arg @ref RCC_CRS_TRIMOVF
  * @retval none
  */
__weak void HAL_RCCEx_CRS_ErrorCallback(uint32_t Error)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(Error);

  /* NOTE : This function should not be modified, when the callback is needed,
            the @ref HAL_RCCEx_CRS_ErrorCallback should be implemented in the user file
   */
}

/**
  * @}
  */

#endif /* CRS */

/**
  * @}
  */

/** @addtogroup RCCEx_Private_Functions
 * @{
 */

#if defined(RCC_PLLSAI1_SUPPORT)

/**
  * @brief  Configure the parameters N & P & optionally M of PLLSAI1 and enable PLLSAI1 output clock(s).
  * @param  PllSai1  pointer to an RCC_PLLSAI1InitTypeDef structure that
  *         contains the configuration parameters N & P & optionally M as well as PLLSAI1 output clock(s)
  * @param  Divider  divider parameter to be updated
  *
  * @note   PLLSAI1 is temporary disable to apply new parameters
  *
  * @retval HAL status
  */
static HAL_StatusTypeDef RCCEx_PLLSAI1_Config(RCC_PLLSAI1InitTypeDef *PllSai1, uint32_t Divider)
{
  uint32_t tickstart;
  HAL_StatusTypeDef status = HAL_OK;

  /* check for PLLSAI1 Parameters used to output PLLSAI1CLK */
  /* P, Q and R dividers are verified in each specific divider case below */
  assert_param(IS_RCC_PLLSAI1SOURCE(PllSai1->PLLSAI1Source));
  assert_param(IS_RCC_PLLSAI1M_VALUE(PllSai1->PLLSAI1M));
  assert_param(IS_RCC_PLLSAI1N_VALUE(PllSai1->PLLSAI1N));
  assert_param(IS_RCC_PLLSAI1CLOCKOUT_VALUE(PllSai1->PLLSAI1ClockOut));

  /* Check that PLLSAI1 clock source and divider M can be applied */
  if(__HAL_RCC_GET_PLL_OSCSOURCE() != RCC_PLLSOURCE_NONE)
  {
    /* PLL clock source and divider M already set, check that no request for change  */
    if((__HAL_RCC_GET_PLL_OSCSOURCE() != PllSai1->PLLSAI1Source)
       ||
       (PllSai1->PLLSAI1Source == RCC_PLLSOURCE_NONE)
#if !defined(RCC_PLLSAI1M_DIV_1_16_SUPPORT)
       ||
       (((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLM) >> RCC_PLLCFGR_PLLM_Pos) + 1U) != PllSai1->PLLSAI1M)
#endif
      )
    {
      status = HAL_ERROR;
    }
  }
  else
  {
    /* Check PLLSAI1 clock source availability */
    switch(PllSai1->PLLSAI1Source)
    {
    case RCC_PLLSOURCE_MSI:
      if(HAL_IS_BIT_CLR(RCC->CR, RCC_CR_MSIRDY))
      {
        status = HAL_ERROR;
      }
      break;
    case RCC_PLLSOURCE_HSI:
      if(HAL_IS_BIT_CLR(RCC->CR, RCC_CR_HSIRDY))
      {
        status = HAL_ERROR;
      }
      break;
    case RCC_PLLSOURCE_HSE:
      if(HAL_IS_BIT_CLR(RCC->CR, RCC_CR_HSERDY))
      {
        if(HAL_IS_BIT_CLR(RCC->CR, RCC_CR_HSEBYP))
        {
          status = HAL_ERROR;
        }
      }
      break;
    default:
      status = HAL_ERROR;
      break;
    }

    if(status == HAL_OK)
    {
#if defined(RCC_PLLSAI1M_DIV_1_16_SUPPORT)
      /* Set PLLSAI1 clock source */
      MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC, PllSai1->PLLSAI1Source);
#else
      /* Set PLLSAI1 clock source and divider M */
      MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC | RCC_PLLCFGR_PLLM, PllSai1->PLLSAI1Source | (PllSai1->PLLSAI1M - 1U) << RCC_PLLCFGR_PLLM_Pos);
#endif
    }
  }

  if(status == HAL_OK)
  {
    /* Disable the PLLSAI1 */
    __HAL_RCC_PLLSAI1_DISABLE();

    /* Get Start Tick*/
    tickstart = HAL_GetTick();

    /* Wait till PLLSAI1 is ready to be updated */
    while(READ_BIT(RCC->CR, RCC_CR_PLLSAI1RDY) != 0U)
    {
      if((HAL_GetTick() - tickstart) > PLLSAI1_TIMEOUT_VALUE)
      {
        status = HAL_TIMEOUT;
        break;
      }
    }

    if(status == HAL_OK)
    {
      if(Divider == DIVIDER_P_UPDATE)
      {
        assert_param(IS_RCC_PLLSAI1P_VALUE(PllSai1->PLLSAI1P));
#if defined(RCC_PLLSAI1M_DIV_1_16_SUPPORT)

        /* Configure the PLLSAI1 Division factor M, P and Multiplication factor N*/
#if defined(RCC_PLLSAI1P_DIV_2_31_SUPPORT)
        MODIFY_REG(RCC->PLLSAI1CFGR,
                   RCC_PLLSAI1CFGR_PLLSAI1N | RCC_PLLSAI1CFGR_PLLSAI1PDIV | RCC_PLLSAI1CFGR_PLLSAI1M,
                   (PllSai1->PLLSAI1N << RCC_PLLSAI1CFGR_PLLSAI1N_Pos) |
                   (PllSai1->PLLSAI1P << RCC_PLLSAI1CFGR_PLLSAI1PDIV_Pos) |
                   ((PllSai1->PLLSAI1M - 1U) << RCC_PLLSAI1CFGR_PLLSAI1M_Pos));
#else
        MODIFY_REG(RCC->PLLSAI1CFGR,
                   RCC_PLLSAI1CFGR_PLLSAI1N | RCC_PLLSAI1CFGR_PLLSAI1P | RCC_PLLSAI1CFGR_PLLSAI1M,
                   (PllSai1->PLLSAI1N << RCC_PLLSAI1CFGR_PLLSAI1N_Pos) |
                   ((PllSai1->PLLSAI1P >> 4U) << RCC_PLLSAI1CFGR_PLLSAI1P_Pos) |
                   ((PllSai1->PLLSAI1M - 1U) << RCC_PLLSAI1CFGR_PLLSAI1M_Pos));
#endif /* RCC_PLLSAI1P_DIV_2_31_SUPPORT */

#else
        /* Configure the PLLSAI1 Division factor P and Multiplication factor N*/
#if defined(RCC_PLLSAI1P_DIV_2_31_SUPPORT)
        MODIFY_REG(RCC->PLLSAI1CFGR,
                   RCC_PLLSAI1CFGR_PLLSAI1N | RCC_PLLSAI1CFGR_PLLSAI1PDIV,
                   (PllSai1->PLLSAI1N << RCC_PLLSAI1CFGR_PLLSAI1N_Pos) |
                   (PllSai1->PLLSAI1P << RCC_PLLSAI1CFGR_PLLSAI1PDIV_Pos));
#else
        MODIFY_REG(RCC->PLLSAI1CFGR,
                   RCC_PLLSAI1CFGR_PLLSAI1N | RCC_PLLSAI1CFGR_PLLSAI1P,
                   (PllSai1->PLLSAI1N << RCC_PLLSAI1CFGR_PLLSAI1N_Pos) |
                   ((PllSai1->PLLSAI1P >> 4U) << RCC_PLLSAI1CFGR_PLLSAI1P_Pos));
#endif /* RCC_PLLSAI1P_DIV_2_31_SUPPORT */

#endif /* RCC_PLLSAI1M_DIV_1_16_SUPPORT */
      }
      else if(Divider == DIVIDER_Q_UPDATE)
      {
        assert_param(IS_RCC_PLLSAI1Q_VALUE(PllSai1->PLLSAI1Q));
#if defined(RCC_PLLSAI1M_DIV_1_16_SUPPORT)
        /* Configure the PLLSAI1 Division factor M, Q and Multiplication factor N*/
        MODIFY_REG(RCC->PLLSAI1CFGR,
                   RCC_PLLSAI1CFGR_PLLSAI1N | RCC_PLLSAI1CFGR_PLLSAI1Q | RCC_PLLSAI1CFGR_PLLSAI1M,
                   (PllSai1->PLLSAI1N << RCC_PLLSAI1CFGR_PLLSAI1N_Pos) |
                   (((PllSai1->PLLSAI1Q >> 1U) - 1U) << RCC_PLLSAI1CFGR_PLLSAI1Q_Pos) |
                   ((PllSai1->PLLSAI1M - 1U) << RCC_PLLSAI1CFGR_PLLSAI1M_Pos));
#else
        /* Configure the PLLSAI1 Division factor Q and Multiplication factor N*/
        MODIFY_REG(RCC->PLLSAI1CFGR,
                   RCC_PLLSAI1CFGR_PLLSAI1N | RCC_PLLSAI1CFGR_PLLSAI1Q,
                   (PllSai1->PLLSAI1N << RCC_PLLSAI1CFGR_PLLSAI1N_Pos) |
                   (((PllSai1->PLLSAI1Q >> 1U) - 1U) << RCC_PLLSAI1CFGR_PLLSAI1Q_Pos));
#endif /* RCC_PLLSAI1M_DIV_1_16_SUPPORT */
      }
      else
      {
        assert_param(IS_RCC_PLLSAI1R_VALUE(PllSai1->PLLSAI1R));
#if defined(RCC_PLLSAI1M_DIV_1_16_SUPPORT)
        /* Configure the PLLSAI1 Division factor M, R and Multiplication factor N*/
        MODIFY_REG(RCC->PLLSAI1CFGR,
                   RCC_PLLSAI1CFGR_PLLSAI1N | RCC_PLLSAI1CFGR_PLLSAI1R | RCC_PLLSAI1CFGR_PLLSAI1M,
                   (PllSai1->PLLSAI1N << RCC_PLLSAI1CFGR_PLLSAI1N_Pos) |
                   (((PllSai1->PLLSAI1R >> 1U) - 1U) << RCC_PLLSAI1CFGR_PLLSAI1R_Pos) |
                   ((PllSai1->PLLSAI1M - 1U) << RCC_PLLSAI1CFGR_PLLSAI1M_Pos));
#else
        /* Configure the PLLSAI1 Division factor R and Multiplication factor N*/
        MODIFY_REG(RCC->PLLSAI1CFGR,
                   RCC_PLLSAI1CFGR_PLLSAI1N | RCC_PLLSAI1CFGR_PLLSAI1R,
                   (PllSai1->PLLSAI1N << RCC_PLLSAI1CFGR_PLLSAI1N_Pos) |
                   (((PllSai1->PLLSAI1R >> 1U) - 1U) << RCC_PLLSAI1CFGR_PLLSAI1R_Pos));
#endif /* RCC_PLLSAI1M_DIV_1_16_SUPPORT */
      }

      /* Enable the PLLSAI1 again by setting PLLSAI1ON to 1*/
      __HAL_RCC_PLLSAI1_ENABLE();

      /* Get Start Tick*/
      tickstart = HAL_GetTick();

      /* Wait till PLLSAI1 is ready */
      while(READ_BIT(RCC->CR, RCC_CR_PLLSAI1RDY) == 0U)
      {
        if((HAL_GetTick() - tickstart) > PLLSAI1_TIMEOUT_VALUE)
        {
          status = HAL_TIMEOUT;
          break;
        }
      }

      if(status == HAL_OK)
      {
        /* Configure the PLLSAI1 Clock output(s) */
        __HAL_RCC_PLLSAI1CLKOUT_ENABLE(PllSai1->PLLSAI1ClockOut);
      }
    }
  }

  return status;
}

#endif /* RCC_PLLSAI1_SUPPORT */

#if defined(RCC_PLLSAI2_SUPPORT)

/**
  * @brief  Configure the parameters N & P & optionally M of PLLSAI2 and enable PLLSAI2 output clock(s).
  * @param  PllSai2  pointer to an RCC_PLLSAI2InitTypeDef structure that
  *         contains the configuration parameters N & P & optionally M as well as PLLSAI2 output clock(s)
  * @param  Divider  divider parameter to be updated
  *
  * @note   PLLSAI2 is temporary disable to apply new parameters
  *
  * @retval HAL status
  */
static HAL_StatusTypeDef RCCEx_PLLSAI2_Config(RCC_PLLSAI2InitTypeDef *PllSai2, uint32_t Divider)
{
  uint32_t tickstart;
  HAL_StatusTypeDef status = HAL_OK;

  /* check for PLLSAI2 Parameters used to output PLLSAI2CLK */
  /* P, Q and R dividers are verified in each specific divider case below */
  assert_param(IS_RCC_PLLSAI2SOURCE(PllSai2->PLLSAI2Source));
  assert_param(IS_RCC_PLLSAI2M_VALUE(PllSai2->PLLSAI2M));
  assert_param(IS_RCC_PLLSAI2N_VALUE(PllSai2->PLLSAI2N));
  assert_param(IS_RCC_PLLSAI2CLOCKOUT_VALUE(PllSai2->PLLSAI2ClockOut));

  /* Check that PLLSAI2 clock source and divider M can be applied */
  if(__HAL_RCC_GET_PLL_OSCSOURCE() != RCC_PLLSOURCE_NONE)
  {
    /* PLL clock source and divider M already set, check that no request for change  */
    if((__HAL_RCC_GET_PLL_OSCSOURCE() != PllSai2->PLLSAI2Source)
       ||
       (PllSai2->PLLSAI2Source == RCC_PLLSOURCE_NONE)
#if !defined(RCC_PLLSAI2M_DIV_1_16_SUPPORT)
       ||
       (((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLM) >> RCC_PLLCFGR_PLLM_Pos) + 1U) != PllSai2->PLLSAI2M)
#endif
      )
    {
      status = HAL_ERROR;
    }
  }
  else
  {
    /* Check PLLSAI2 clock source availability */
    switch(PllSai2->PLLSAI2Source)
    {
    case RCC_PLLSOURCE_MSI:
      if(HAL_IS_BIT_CLR(RCC->CR, RCC_CR_MSIRDY))
      {
        status = HAL_ERROR;
      }
      break;
    case RCC_PLLSOURCE_HSI:
      if(HAL_IS_BIT_CLR(RCC->CR, RCC_CR_HSIRDY))
      {
        status = HAL_ERROR;
      }
      break;
    case RCC_PLLSOURCE_HSE:
      if(HAL_IS_BIT_CLR(RCC->CR, RCC_CR_HSERDY))
      {
        if(HAL_IS_BIT_CLR(RCC->CR, RCC_CR_HSEBYP))
        {
          status = HAL_ERROR;
        }
      }
      break;
    default:
      status = HAL_ERROR;
      break;
    }

    if(status == HAL_OK)
    {
#if defined(RCC_PLLSAI2M_DIV_1_16_SUPPORT)
      /* Set PLLSAI2 clock source */
      MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC, PllSai2->PLLSAI2Source);
#else
      /* Set PLLSAI2 clock source and divider M */
      MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC | RCC_PLLCFGR_PLLM, PllSai2->PLLSAI2Source | (PllSai2->PLLSAI2M - 1U) << RCC_PLLCFGR_PLLM_Pos);
#endif
    }
  }

  if(status == HAL_OK)
  {
    /* Disable the PLLSAI2 */
    __HAL_RCC_PLLSAI2_DISABLE();

    /* Get Start Tick*/
    tickstart = HAL_GetTick();

    /* Wait till PLLSAI2 is ready to be updated */
    while(READ_BIT(RCC->CR, RCC_CR_PLLSAI2RDY) != 0U)
    {
      if((HAL_GetTick() - tickstart) > PLLSAI2_TIMEOUT_VALUE)
      {
        status = HAL_TIMEOUT;
        break;
      }
    }

    if(status == HAL_OK)
    {
      if(Divider == DIVIDER_P_UPDATE)
      {
        assert_param(IS_RCC_PLLSAI2P_VALUE(PllSai2->PLLSAI2P));
#if defined(RCC_PLLSAI2M_DIV_1_16_SUPPORT)

        /* Configure the PLLSAI2 Division factor M, P and Multiplication factor N*/
#if defined(RCC_PLLSAI2P_DIV_2_31_SUPPORT)
        MODIFY_REG(RCC->PLLSAI2CFGR,
                   RCC_PLLSAI2CFGR_PLLSAI2N | RCC_PLLSAI2CFGR_PLLSAI2PDIV | RCC_PLLSAI2CFGR_PLLSAI2M,
                   (PllSai2->PLLSAI2N << RCC_PLLSAI2CFGR_PLLSAI2N_Pos) |
                   (PllSai2->PLLSAI2P << RCC_PLLSAI2CFGR_PLLSAI2PDIV_Pos) |
                   ((PllSai2->PLLSAI2M - 1U) << RCC_PLLSAI2CFGR_PLLSAI2M_Pos));
#else
        MODIFY_REG(RCC->PLLSAI2CFGR,
                   RCC_PLLSAI2CFGR_PLLSAI2N | RCC_PLLSAI2CFGR_PLLSAI2P | RCC_PLLSAI2CFGR_PLLSAI2M,
                   (PllSai2->PLLSAI2N << RCC_PLLSAI2CFGR_PLLSAI2N_Pos) |
                   ((PllSai2->PLLSAI2P >> 4U) << RCC_PLLSAI2CFGR_PLLSAI2P_Pos) |
                   ((PllSai2->PLLSAI2M - 1U) << RCC_PLLSAI2CFGR_PLLSAI2M_Pos));
#endif /* RCC_PLLSAI2P_DIV_2_31_SUPPORT */

#else
        /* Configure the PLLSAI2 Division factor P and Multiplication factor N*/
#if defined(RCC_PLLSAI2P_DIV_2_31_SUPPORT)
        MODIFY_REG(RCC->PLLSAI2CFGR,
                   RCC_PLLSAI2CFGR_PLLSAI2N | RCC_PLLSAI2CFGR_PLLSAI2PDIV,
                   (PllSai2->PLLSAI2N << RCC_PLLSAI2CFGR_PLLSAI2N_Pos) |
                   (PllSai2->PLLSAI2P << RCC_PLLSAI2CFGR_PLLSAI2PDIV_Pos));
#else
        MODIFY_REG(RCC->PLLSAI2CFGR,
                   RCC_PLLSAI2CFGR_PLLSAI2N | RCC_PLLSAI2CFGR_PLLSAI2P,
                   (PllSai2->PLLSAI2N << RCC_PLLSAI2CFGR_PLLSAI2N_Pos) |
                   ((PllSai2->PLLSAI2P >> 4U) << RCC_PLLSAI2CFGR_PLLSAI2P_Pos));
#endif /* RCC_PLLSAI2P_DIV_2_31_SUPPORT */

#endif /* RCC_PLLSAI2M_DIV_1_16_SUPPORT */
      }
#if defined(RCC_PLLSAI2Q_DIV_SUPPORT)
      else if(Divider == DIVIDER_Q_UPDATE)
      {
        assert_param(IS_RCC_PLLSAI2Q_VALUE(PllSai2->PLLSAI2Q));
#if defined(RCC_PLLSAI2M_DIV_1_16_SUPPORT)
        /* Configure the PLLSAI2 Division factor M, Q and Multiplication factor N*/
        MODIFY_REG(RCC->PLLSAI2CFGR,
                   RCC_PLLSAI2CFGR_PLLSAI2N | RCC_PLLSAI2CFGR_PLLSAI2Q | RCC_PLLSAI2CFGR_PLLSAI2M,
                   (PllSai2->PLLSAI2N << RCC_PLLSAI2CFGR_PLLSAI2N_Pos) |
                   (((PllSai2->PLLSAI2Q >> 1U) - 1U) << RCC_PLLSAI2CFGR_PLLSAI2Q_Pos) |
                   ((PllSai2->PLLSAI2M - 1U) << RCC_PLLSAI2CFGR_PLLSAI2M_Pos));
#else
        /* Configure the PLLSAI2 Division factor Q and Multiplication factor N*/
        MODIFY_REG(RCC->PLLSAI2CFGR,
                   RCC_PLLSAI2CFGR_PLLSAI2N | RCC_PLLSAI2CFGR_PLLSAI2Q,
                   (PllSai2->PLLSAI2N << RCC_PLLSAI2CFGR_PLLSAI2N_Pos) |
                   (((PllSai2->PLLSAI2Q >> 1U) - 1U) << RCC_PLLSAI2CFGR_PLLSAI2Q_Pos));
#endif /* RCC_PLLSAI2M_DIV_1_16_SUPPORT */
      }
#endif /* RCC_PLLSAI2Q_DIV_SUPPORT */
      else
      {
        assert_param(IS_RCC_PLLSAI2R_VALUE(PllSai2->PLLSAI2R));
#if defined(RCC_PLLSAI2M_DIV_1_16_SUPPORT)
        /* Configure the PLLSAI2 Division factor M, R and Multiplication factor N*/
        MODIFY_REG(RCC->PLLSAI2CFGR,
                   RCC_PLLSAI2CFGR_PLLSAI2N | RCC_PLLSAI2CFGR_PLLSAI2R | RCC_PLLSAI2CFGR_PLLSAI2M,
                   (PllSai2->PLLSAI2N << RCC_PLLSAI2CFGR_PLLSAI2N_Pos) |
                   (((PllSai2->PLLSAI2R >> 1U) - 1U) << RCC_PLLSAI2CFGR_PLLSAI2R_Pos) |
                   ((PllSai2->PLLSAI2M - 1U) << RCC_PLLSAI2CFGR_PLLSAI2M_Pos));
#else
        /* Configure the PLLSAI2 Division factor R and Multiplication factor N*/
        MODIFY_REG(RCC->PLLSAI2CFGR,
                   RCC_PLLSAI2CFGR_PLLSAI2N | RCC_PLLSAI2CFGR_PLLSAI2R,
                   (PllSai2->PLLSAI2N << RCC_PLLSAI2CFGR_PLLSAI2N_Pos) |
                   (((PllSai2->PLLSAI2R >> 1U) - 1U) << RCC_PLLSAI2CFGR_PLLSAI2R_Pos));
#endif /* RCC_PLLSAI2M_DIV_1_16_SUPPORT */
      }

      /* Enable the PLLSAI2 again by setting PLLSAI2ON to 1*/
      __HAL_RCC_PLLSAI2_ENABLE();

      /* Get Start Tick*/
      tickstart = HAL_GetTick();

      /* Wait till PLLSAI2 is ready */
      while(READ_BIT(RCC->CR, RCC_CR_PLLSAI2RDY) == 0U)
      {
        if((HAL_GetTick() - tickstart) > PLLSAI2_TIMEOUT_VALUE)
        {
          status = HAL_TIMEOUT;
          break;
        }
      }

      if(status == HAL_OK)
      {
        /* Configure the PLLSAI2 Clock output(s) */
        __HAL_RCC_PLLSAI2CLKOUT_ENABLE(PllSai2->PLLSAI2ClockOut);
      }
    }
  }

  return status;
}

#endif /* RCC_PLLSAI2_SUPPORT */

#if defined(SAI1)

static uint32_t RCCEx_GetSAIxPeriphCLKFreq(uint32_t PeriphClk, uint32_t InputFrequency)
{
  uint32_t frequency = 0U;
  uint32_t srcclk = 0U;
  uint32_t pllvco, plln;    /* no init needed */
#if defined(RCC_PLLP_SUPPORT)
  uint32_t pllp = 0U;
#endif /* RCC_PLLP_SUPPORT */

  /* Handle SAIs */
  if(PeriphClk == RCC_PERIPHCLK_SAI1)
  {
    srcclk = __HAL_RCC_GET_SAI1_SOURCE();
    if(srcclk == RCC_SAI1CLKSOURCE_PIN)
    {
      frequency = EXTERNAL_SAI1_CLOCK_VALUE;
    }
    /* Else, PLL clock output to check below */
  }
#if defined(SAI2)
  else
  {
    if(PeriphClk == RCC_PERIPHCLK_SAI2)
    {
      srcclk = __HAL_RCC_GET_SAI2_SOURCE();
      if(srcclk == RCC_SAI2CLKSOURCE_PIN)
      {
        frequency = EXTERNAL_SAI2_CLOCK_VALUE;
      }
      /* Else, PLL clock output to check below */
    }
  }
#endif /* SAI2 */

  if(frequency == 0U)
  {
    pllvco = InputFrequency;

#if defined(SAI2)
    if((srcclk == RCC_SAI1CLKSOURCE_PLL) || (srcclk == RCC_SAI2CLKSOURCE_PLL))
    {
      if(__HAL_RCC_GET_PLLCLKOUT_CONFIG(RCC_PLL_SAI3CLK) != 0U)
      {
        /* f(PLL Source) / PLLM */
        pllvco = (pllvco / ((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLM) >> RCC_PLLCFGR_PLLM_Pos) + 1U));
        /* f(PLLSAI3CLK) = f(VCO input) * PLLN / PLLP */
        plln = READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos;
#if defined(RCC_PLLP_DIV_2_31_SUPPORT)
        pllp = READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLPDIV) >> RCC_PLLCFGR_PLLPDIV_Pos;
#endif
        if(pllp == 0U)
        {
          if(READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLP) != 0U)
          {
            pllp = 17U;
          }
          else
          {
            pllp = 7U;
          }
        }
        frequency = (pllvco * plln) / pllp;
      }
    }
    else if(srcclk == 0U)  /* RCC_SAI1CLKSOURCE_PLLSAI1 || RCC_SAI2CLKSOURCE_PLLSAI1 */
    {
      if(__HAL_RCC_GET_PLLSAI1CLKOUT_CONFIG(RCC_PLLSAI1_SAI1CLK) != 0U)
      {
#if defined(RCC_PLLSAI1M_DIV_1_16_SUPPORT)
        /* PLLSAI1M exists: apply PLLSAI1M divider for PLLSAI1 output computation */
        /* f(PLLSAI1 Source) / PLLSAI1M */
        pllvco = (pllvco / ((READ_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1M) >> RCC_PLLSAI1CFGR_PLLSAI1M_Pos) + 1U));
#else
        /* f(PLL Source) / PLLM */
        pllvco = (pllvco / ((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLM) >> RCC_PLLCFGR_PLLM_Pos) + 1U));
#endif
        /* f(PLLSAI1CLK) = f(VCOSAI1 input) * PLLSAI1N / PLLSAI1P */
        plln = READ_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1N) >> RCC_PLLSAI1CFGR_PLLSAI1N_Pos;
#if defined(RCC_PLLSAI1P_DIV_2_31_SUPPORT)
        pllp = READ_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1PDIV) >> RCC_PLLSAI1CFGR_PLLSAI1PDIV_Pos;
#endif
        if(pllp == 0U)
        {
          if(READ_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1P) != 0U)
          {
            pllp = 17U;
          }
          else
          {
            pllp = 7U;
          }
        }
        frequency = (pllvco * plln) / pllp;
      }
    }
#if defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
    else if((srcclk == RCC_SAI1CLKSOURCE_HSI) || (srcclk == RCC_SAI2CLKSOURCE_HSI))
    {
      if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY))
      {
        frequency = HSI_VALUE;
      }
    }
#endif /* STM32L4R5xx || STM32L4R7xx || STM32L4R9xx || STM32L4S5xx || STM32L4S7xx || STM32L4S9xx */

#else
    if(srcclk == RCC_SAI1CLKSOURCE_PLL)
    {
      if(__HAL_RCC_GET_PLLCLKOUT_CONFIG(RCC_PLL_SAI2CLK) != 0U)
      {
        /* f(PLL Source) / PLLM */
        pllvco = (pllvco / ((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLM) >> RCC_PLLCFGR_PLLM_Pos) + 1U));
        /* f(PLLSAI2CLK) = f(VCO input) * PLLN / PLLP */
        plln = READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos;
#if defined(RCC_PLLP_DIV_2_31_SUPPORT)
        pllp = READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLPDIV) >> RCC_PLLCFGR_PLLPDIV_Pos;
#endif
        if(pllp == 0U)
        {
          if(READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLP) != 0U)
          {
            pllp = 17U;
          }
          else
          {
            pllp = 7U;
          }
        }
        frequency = (pllvco * plln) / pllp;
      }
      else if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY))
      {
        /* HSI automatically selected as clock source if PLLs not enabled */
        frequency = HSI_VALUE;
      }
      else
      {
        /* No clock source, frequency default init at 0 */
      }
    }
    else if(srcclk == RCC_SAI1CLKSOURCE_PLLSAI1)
    {
      if(__HAL_RCC_GET_PLLSAI1CLKOUT_CONFIG(RCC_PLLSAI1_SAI1CLK) != 0U)
      {
#if defined(RCC_PLLSAI1M_DIV_1_16_SUPPORT)
        /* PLLSAI1M exists: apply PLLSAI1M divider for PLLSAI1 output computation */
        /* f(PLLSAI1 Source) / PLLSAI1M */
        pllvco = (pllvco / ((READ_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1M) >> RCC_PLLSAI1CFGR_PLLSAI1M_Pos) + 1U));
#else
        /* f(PLL Source) / PLLM */
        pllvco = (pllvco / ((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLM) >> RCC_PLLCFGR_PLLM_Pos) + 1U));
#endif
        /* f(PLLSAI1CLK) = f(VCOSAI1 input) * PLLSAI1N / PLLSAI1P */
        plln = READ_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1N) >> RCC_PLLSAI1CFGR_PLLSAI1N_Pos;
#if defined(RCC_PLLSAI1P_DIV_2_31_SUPPORT)
        pllp = READ_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1PDIV) >> RCC_PLLSAI1CFGR_PLLSAI1PDIV_Pos;
#endif
        if(pllp == 0U)
        {
          if(READ_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1P) != 0U)
          {
            pllp = 17U;
          }
          else
          {
            pllp = 7U;
          }
        }
        frequency = (pllvco * plln) / pllp;
      }
      else if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY))
      {
        /* HSI automatically selected as clock source if PLLs not enabled */
        frequency = HSI_VALUE;
      }
      else
      {
        /* No clock source, frequency default init at 0 */
      }
    }
#endif /* SAI2 */

#if defined(RCC_PLLSAI2_SUPPORT)

    else if((srcclk == RCC_SAI1CLKSOURCE_PLLSAI2) || (srcclk == RCC_SAI2CLKSOURCE_PLLSAI2))
    {
      if(__HAL_RCC_GET_PLLSAI2CLKOUT_CONFIG(RCC_PLLSAI2_SAI2CLK) != 0U)
      {
#if defined(RCC_PLLSAI2M_DIV_1_16_SUPPORT)
        /* PLLSAI2M exists: apply PLLSAI2M divider for PLLSAI2 output computation */
        /* f(PLLSAI2 Source) / PLLSAI2M */
        pllvco = (pllvco / ((READ_BIT(RCC->PLLSAI2CFGR, RCC_PLLSAI2CFGR_PLLSAI2M) >> RCC_PLLSAI2CFGR_PLLSAI2M_Pos) + 1U));
#else
        /* f(PLL Source) / PLLM */
        pllvco = (pllvco / ((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLM) >> RCC_PLLCFGR_PLLM_Pos) + 1U));
#endif
        /* f(PLLSAI2CLK) = f(VCOSAI2 input) * PLLSAI2N / PLLSAI2P */
        plln = READ_BIT(RCC->PLLSAI2CFGR, RCC_PLLSAI2CFGR_PLLSAI2N) >> RCC_PLLSAI2CFGR_PLLSAI2N_Pos;
#if defined(RCC_PLLSAI2P_DIV_2_31_SUPPORT)
        pllp = READ_BIT(RCC->PLLSAI2CFGR, RCC_PLLSAI2CFGR_PLLSAI2PDIV) >> RCC_PLLSAI2CFGR_PLLSAI2PDIV_Pos;
#endif
        if(pllp == 0U)
        {
          if(READ_BIT(RCC->PLLSAI2CFGR, RCC_PLLSAI2CFGR_PLLSAI2P) != 0U)
          {
            pllp = 17U;
          }
          else
          {
            pllp = 7U;
          }
        }
        frequency = (pllvco * plln) / pllp;
      }
    }

#endif /* RCC_PLLSAI2_SUPPORT */

    else
    {
      /* No clock source, frequency default init at 0 */
    }
  }


  return frequency;
}

#endif /* SAI1 */

/**
  * @}
  */

/**
  * @}
  */

#endif /* HAL_RCC_MODULE_ENABLED */
/**
  * @}
  */

/**
  * @}
  */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/