Newer
Older
mbed-os / targets / TARGET_STM / TARGET_STM32U5 / STM32Cube_FW / STM32U5xx_HAL_Driver / stm32u5xx_hal_tim_ex.c
@Jerome Coutant Jerome Coutant on 10 Sep 2021 121 KB STM32U5: STM32Cube_FW_U5_V1.0.0
/**
  ******************************************************************************
  * @file    stm32u5xx_hal_tim_ex.c
  * @author  MCD Application Team
  * @brief   TIM HAL module driver.
  *          This file provides firmware functions to manage the following
  *          functionalities of the Timer Extended peripheral:
  *           + Time Hall Sensor Interface Initialization
  *           + Time Hall Sensor Interface Start
  *           + Time Complementary signal break and dead time configuration
  *           + Time Master and Slave synchronization configuration
  *           + Time Output Compare/PWM Channel Configuration (for channels 5 and 6)
  *           + Time OCRef clear configuration
  *           + Timer remapping capabilities configuration
  *           + Timer encoder index configuration
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2021 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  @verbatim
  ==============================================================================
                      ##### TIMER Extended features #####
  ==============================================================================
  [..]
    The Timer Extended features include:
    (#) Complementary outputs with programmable dead-time for :
        (++) Output Compare
        (++) PWM generation (Edge and Center-aligned Mode)
        (++) One-pulse mode output
    (#) Synchronization circuit to control the timer with external signals and to
        interconnect several timers together.
    (#) Break input to put the timer output signals in reset state or in a known state.
    (#) Supports incremental (quadrature) encoder and hall-sensor circuitry for
        positioning purposes
    (#) In case of Pulse on compare, configure pulse length and delay
    (#) Encoder index configuration

            ##### How to use this driver #####
  ==============================================================================
    [..]
     (#) Initialize the TIM low level resources by implementing the following functions
         depending on the selected feature:
           (++) Hall Sensor output : HAL_TIMEx_HallSensor_MspInit()

     (#) Initialize the TIM low level resources :
        (##) Enable the TIM interface clock using __HAL_RCC_TIMx_CLK_ENABLE();
        (##) TIM pins configuration
            (+++) Enable the clock for the TIM GPIOs using the following function:
              __HAL_RCC_GPIOx_CLK_ENABLE();
            (+++) Configure these TIM pins in Alternate function mode using HAL_GPIO_Init();

     (#) The external Clock can be configured, if needed (the default clock is the
         internal clock from the APBx), using the following function:
         HAL_TIM_ConfigClockSource, the clock configuration should be done before
         any start function.

     (#) Configure the TIM in the desired functioning mode using one of the
         initialization function of this driver:
          (++) HAL_TIMEx_HallSensor_Init() and HAL_TIMEx_ConfigCommutEvent(): to use the
               Timer Hall Sensor Interface and the commutation event with the corresponding
               Interrupt and DMA request if needed (Note that One Timer is used to interface
               with the Hall sensor Interface and another Timer should be used to use
               the commutation event).
     (#) In case of Pulse On Compare:
           (++) HAL_TIMEx_OC_ConfigPulseOnCompare(): to configure pulse width and prescaler


     (#) Activate the TIM peripheral using one of the start functions:
           (++) Complementary Output Compare : HAL_TIMEx_OCN_Start(), HAL_TIMEx_OCN_Start_DMA(),
                HAL_TIMEx_OCN_Start_IT()
           (++) Complementary PWM generation : HAL_TIMEx_PWMN_Start(), HAL_TIMEx_PWMN_Start_DMA(),
                HAL_TIMEx_PWMN_Start_IT()
           (++) Complementary One-pulse mode output : HAL_TIMEx_OnePulseN_Start(), HAL_TIMEx_OnePulseN_Start_IT()
           (++) Hall Sensor output : HAL_TIMEx_HallSensor_Start(), HAL_TIMEx_HallSensor_Start_DMA(),
                HAL_TIMEx_HallSensor_Start_IT().

  @endverbatim
  ******************************************************************************
  */

/* Includes ------------------------------------------------------------------*/
#include "stm32u5xx_hal.h"

/** @addtogroup STM32U5xx_HAL_Driver
  * @{
  */

/** @defgroup TIMEx TIMEx
  * @brief TIM Extended HAL module driver
  * @{
  */

#ifdef HAL_TIM_MODULE_ENABLED

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/** @defgroup TIMEx_Private_Constants TIM Extended Private Constants
  * @{
  */
/* Timeout for break input rearm */
#define TIM_BREAKINPUT_REARM_TIMEOUT    5UL /* 5 milliseconds */
/**
  * @}
  */
/* End of private constants --------------------------------------------------*/

/* Private macros ------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
static void TIM_DMADelayPulseNCplt(DMA_HandleTypeDef *hdma);
static void TIM_DMAErrorCCxN(DMA_HandleTypeDef *hdma);
static void TIM_CCxNChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelNState);

/* Exported functions --------------------------------------------------------*/
/** @defgroup TIMEx_Exported_Functions TIM Extended Exported Functions
  * @{
  */

/** @defgroup TIMEx_Exported_Functions_Group1 Extended Timer Hall Sensor functions
  * @brief    Timer Hall Sensor functions
  *
@verbatim
  ==============================================================================
                      ##### Timer Hall Sensor functions #####
  ==============================================================================
  [..]
    This section provides functions allowing to:
    (+) Initialize and configure TIM HAL Sensor.
    (+) De-initialize TIM HAL Sensor.
    (+) Start the Hall Sensor Interface.
    (+) Stop the Hall Sensor Interface.
    (+) Start the Hall Sensor Interface and enable interrupts.
    (+) Stop the Hall Sensor Interface and disable interrupts.
    (+) Start the Hall Sensor Interface and enable DMA transfers.
    (+) Stop the Hall Sensor Interface and disable DMA transfers.

@endverbatim
  * @{
  */
/**
  * @brief  Initializes the TIM Hall Sensor Interface and initialize the associated handle.
  * @note   When the timer instance is initialized in Hall Sensor Interface mode,
  *         timer channels 1 and channel 2 are reserved and cannot be used for
  *         other purpose.
  * @param  htim TIM Hall Sensor Interface handle
  * @param  sConfig TIM Hall Sensor configuration structure
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Init(TIM_HandleTypeDef *htim, TIM_HallSensor_InitTypeDef *sConfig)
{
  TIM_OC_InitTypeDef OC_Config;

  /* Check the TIM handle allocation */
  if (htim == NULL)
  {
    return HAL_ERROR;
  }

  /* Check the parameters */
  assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));
  assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
  assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
  assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
  assert_param(IS_TIM_IC_POLARITY(sConfig->IC1Polarity));
  assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler));
  assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter));

  if (htim->State == HAL_TIM_STATE_RESET)
  {
    /* Allocate lock resource and initialize it */
    htim->Lock = HAL_UNLOCKED;

#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
    /* Reset interrupt callbacks to legacy week callbacks */
    TIM_ResetCallback(htim);

    if (htim->HallSensor_MspInitCallback == NULL)
    {
      htim->HallSensor_MspInitCallback = HAL_TIMEx_HallSensor_MspInit;
    }
    /* Init the low level hardware : GPIO, CLOCK, NVIC */
    htim->HallSensor_MspInitCallback(htim);
#else
    /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
    HAL_TIMEx_HallSensor_MspInit(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
  }

  /* Set the TIM state */
  htim->State = HAL_TIM_STATE_BUSY;

  /* Configure the Time base in the Encoder Mode */
  TIM_Base_SetConfig(htim->Instance, &htim->Init);

  /* Configure the Channel 1 as Input Channel to interface with the three Outputs of the  Hall sensor */
  TIM_TI1_SetConfig(htim->Instance, sConfig->IC1Polarity, TIM_ICSELECTION_TRC, sConfig->IC1Filter);

  /* Reset the IC1PSC Bits */
  htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC;
  /* Set the IC1PSC value */
  htim->Instance->CCMR1 |= sConfig->IC1Prescaler;

  /* Enable the Hall sensor interface (XOR function of the three inputs) */
  htim->Instance->CR2 |= TIM_CR2_TI1S;

  /* Select the TIM_TS_TI1F_ED signal as Input trigger for the TIM */
  htim->Instance->SMCR &= ~TIM_SMCR_TS;
  htim->Instance->SMCR |= TIM_TS_TI1F_ED;

  /* Use the TIM_TS_TI1F_ED signal to reset the TIM counter each edge detection */
  htim->Instance->SMCR &= ~TIM_SMCR_SMS;
  htim->Instance->SMCR |= TIM_SLAVEMODE_RESET;

  /* Program channel 2 in PWM 2 mode with the desired Commutation_Delay*/
  OC_Config.OCFastMode = TIM_OCFAST_DISABLE;
  OC_Config.OCIdleState = TIM_OCIDLESTATE_RESET;
  OC_Config.OCMode = TIM_OCMODE_PWM2;
  OC_Config.OCNIdleState = TIM_OCNIDLESTATE_RESET;
  OC_Config.OCNPolarity = TIM_OCNPOLARITY_HIGH;
  OC_Config.OCPolarity = TIM_OCPOLARITY_HIGH;
  OC_Config.Pulse = sConfig->Commutation_Delay;

  TIM_OC2_SetConfig(htim->Instance, &OC_Config);

  /* Select OC2REF as trigger output on TRGO: write the MMS bits in the TIMx_CR2
    register to 101 */
  htim->Instance->CR2 &= ~TIM_CR2_MMS;
  htim->Instance->CR2 |= TIM_TRGO_OC2REF;

  /* Initialize the DMA burst operation state */
  htim->DMABurstState = HAL_DMA_BURST_STATE_READY;

  /* Initialize the TIM channels state */
  TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
  TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
  TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
  TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);

  /* Initialize the TIM state*/
  htim->State = HAL_TIM_STATE_READY;

  return HAL_OK;
}

/**
  * @brief  DeInitializes the TIM Hall Sensor interface
  * @param  htim TIM Hall Sensor Interface handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_HallSensor_DeInit(TIM_HandleTypeDef *htim)
{
  /* Check the parameters */
  assert_param(IS_TIM_INSTANCE(htim->Instance));

  htim->State = HAL_TIM_STATE_BUSY;

  /* Disable the TIM Peripheral Clock */
  __HAL_TIM_DISABLE(htim);

#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
  if (htim->HallSensor_MspDeInitCallback == NULL)
  {
    htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit;
  }
  /* DeInit the low level hardware */
  htim->HallSensor_MspDeInitCallback(htim);
#else
  /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
  HAL_TIMEx_HallSensor_MspDeInit(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */

  /* Change the DMA burst operation state */
  htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;

  /* Change the TIM channels state */
  TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
  TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
  TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
  TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);

  /* Change TIM state */
  htim->State = HAL_TIM_STATE_RESET;

  /* Release Lock */
  __HAL_UNLOCK(htim);

  return HAL_OK;
}

/**
  * @brief  Initializes the TIM Hall Sensor MSP.
  * @param  htim TIM Hall Sensor Interface handle
  * @retval None
  */
__weak void HAL_TIMEx_HallSensor_MspInit(TIM_HandleTypeDef *htim)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(htim);

  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_TIMEx_HallSensor_MspInit could be implemented in the user file
   */
}

/**
  * @brief  DeInitializes TIM Hall Sensor MSP.
  * @param  htim TIM Hall Sensor Interface handle
  * @retval None
  */
__weak void HAL_TIMEx_HallSensor_MspDeInit(TIM_HandleTypeDef *htim)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(htim);

  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_TIMEx_HallSensor_MspDeInit could be implemented in the user file
   */
}

/**
  * @brief  Starts the TIM Hall Sensor Interface.
  * @param  htim TIM Hall Sensor Interface handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start(TIM_HandleTypeDef *htim)
{
  uint32_t tmpsmcr;
  HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
  HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
  HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
  HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);

  /* Check the parameters */
  assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));

  /* Check the TIM channels state */
  if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
      || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
      || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
      || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
  {
    return HAL_ERROR;
  }

  /* Set the TIM channels state */
  TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
  TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
  TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
  TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);

  /* Enable the Input Capture channel 1
  (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1,
  TIM_CHANNEL_2 and TIM_CHANNEL_3) */
  TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);

  /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
  if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
  {
    tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
    if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
    {
      __HAL_TIM_ENABLE(htim);
    }
  }
  else
  {
    __HAL_TIM_ENABLE(htim);
  }

  /* Return function status */
  return HAL_OK;
}

/**
  * @brief  Stops the TIM Hall sensor Interface.
  * @param  htim TIM Hall Sensor Interface handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop(TIM_HandleTypeDef *htim)
{
  /* Check the parameters */
  assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));

  /* Disable the Input Capture channels 1, 2 and 3
  (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1,
  TIM_CHANNEL_2 and TIM_CHANNEL_3) */
  TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);

  /* Disable the Peripheral */
  __HAL_TIM_DISABLE(htim);

  /* Set the TIM channels state */
  TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
  TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
  TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
  TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);

  /* Return function status */
  return HAL_OK;
}

/**
  * @brief  Starts the TIM Hall Sensor Interface in interrupt mode.
  * @param  htim TIM Hall Sensor Interface handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_IT(TIM_HandleTypeDef *htim)
{
  uint32_t tmpsmcr;
  HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
  HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
  HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
  HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);

  /* Check the parameters */
  assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));

  /* Check the TIM channels state */
  if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
      || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
      || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
      || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
  {
    return HAL_ERROR;
  }

  /* Set the TIM channels state */
  TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
  TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
  TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
  TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);

  /* Enable the capture compare Interrupts 1 event */
  __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);

  /* Enable the Input Capture channel 1
  (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1,
  TIM_CHANNEL_2 and TIM_CHANNEL_3) */
  TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);

  /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
  if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
  {
    tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
    if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
    {
      __HAL_TIM_ENABLE(htim);
    }
  }
  else
  {
    __HAL_TIM_ENABLE(htim);
  }

  /* Return function status */
  return HAL_OK;
}

/**
  * @brief  Stops the TIM Hall Sensor Interface in interrupt mode.
  * @param  htim TIM Hall Sensor Interface handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_IT(TIM_HandleTypeDef *htim)
{
  /* Check the parameters */
  assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));

  /* Disable the Input Capture channel 1
  (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1,
  TIM_CHANNEL_2 and TIM_CHANNEL_3) */
  TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);

  /* Disable the capture compare Interrupts event */
  __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);

  /* Disable the Peripheral */
  __HAL_TIM_DISABLE(htim);

  /* Set the TIM channels state */
  TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
  TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
  TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
  TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);

  /* Return function status */
  return HAL_OK;
}

/**
  * @brief  Starts the TIM Hall Sensor Interface in DMA mode.
  * @param  htim TIM Hall Sensor Interface handle
  * @param  pData The destination Buffer address.
  * @param  Length The length of data to be transferred from TIM peripheral to memory.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_DMA(TIM_HandleTypeDef *htim, uint32_t *pData, uint16_t Length)
{
  uint32_t tmpsmcr;
  HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
  HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);

  /* Check the parameters */
  assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));

  /* Set the TIM channel state */
  if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)
      || (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY))
  {
    return HAL_BUSY;
  }
  else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY)
           && (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY))
  {
    if ((pData == NULL) && (Length > 0U))
    {
      return HAL_ERROR;
    }
    else
    {
      TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
      TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
    }
  }
  else
  {
    return HAL_ERROR;
  }

  /* Enable the Input Capture channel 1
  (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1,
  TIM_CHANNEL_2 and TIM_CHANNEL_3) */
  TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);

  /* Set the DMA Input Capture 1 Callbacks */
  htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
  htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
  /* Set the DMA error callback */
  htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;

  /* Enable the DMA channel for Capture 1*/
  if (TIM_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData, Length) != HAL_OK)
  {
    /* Return error status */
    return HAL_ERROR;
  }
  /* Enable the capture compare 1 Interrupt */
  __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);

  /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
  if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
  {
    tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
    if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
    {
      __HAL_TIM_ENABLE(htim);
    }
  }
  else
  {
    __HAL_TIM_ENABLE(htim);
  }

  /* Return function status */
  return HAL_OK;
}

/**
  * @brief  Stops the TIM Hall Sensor Interface in DMA mode.
  * @param  htim TIM Hall Sensor Interface handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_DMA(TIM_HandleTypeDef *htim)
{
  /* Check the parameters */
  assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));

  /* Disable the Input Capture channel 1
  (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1,
  TIM_CHANNEL_2 and TIM_CHANNEL_3) */
  TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);


  /* Disable the capture compare Interrupts 1 event */
  __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);

  (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);

  /* Disable the Peripheral */
  __HAL_TIM_DISABLE(htim);

  /* Set the TIM channel state */
  TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
  TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);

  /* Return function status */
  return HAL_OK;
}

/**
  * @}
  */

/** @defgroup TIMEx_Exported_Functions_Group2 Extended Timer Complementary Output Compare functions
  *  @brief   Timer Complementary Output Compare functions
  *
@verbatim
  ==============================================================================
              ##### Timer Complementary Output Compare functions #####
  ==============================================================================
  [..]
    This section provides functions allowing to:
    (+) Start the Complementary Output Compare/PWM.
    (+) Stop the Complementary Output Compare/PWM.
    (+) Start the Complementary Output Compare/PWM and enable interrupts.
    (+) Stop the Complementary Output Compare/PWM and disable interrupts.
    (+) Start the Complementary Output Compare/PWM and enable DMA transfers.
    (+) Stop the Complementary Output Compare/PWM and disable DMA transfers.

@endverbatim
  * @{
  */

/**
  * @brief  Starts the TIM Output Compare signal generation on the complementary
  *         output.
  * @param  htim TIM Output Compare handle
  * @param  Channel TIM Channel to be enabled
  *          This parameter can be one of the following values:
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_OCN_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
{
  uint32_t tmpsmcr;

  /* Check the parameters */
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));

  /* Check the TIM complementary channel state */
  if (TIM_CHANNEL_N_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
  {
    return HAL_ERROR;
  }

  /* Set the TIM complementary channel state */
  TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);

  /* Enable the Capture compare channel N */
  TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);

  /* Enable the Main Output */
  __HAL_TIM_MOE_ENABLE(htim);

  /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
  if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
  {
    tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
    if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
    {
      __HAL_TIM_ENABLE(htim);
    }
  }
  else
  {
    __HAL_TIM_ENABLE(htim);
  }

  /* Return function status */
  return HAL_OK;
}

/**
  * @brief  Stops the TIM Output Compare signal generation on the complementary
  *         output.
  * @param  htim TIM handle
  * @param  Channel TIM Channel to be disabled
  *          This parameter can be one of the following values:
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_OCN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
{
  /* Check the parameters */
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));

  /* Disable the Capture compare channel N */
  TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);

  /* Disable the Main Output */
  __HAL_TIM_MOE_DISABLE(htim);

  /* Disable the Peripheral */
  __HAL_TIM_DISABLE(htim);

  /* Set the TIM complementary channel state */
  TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);

  /* Return function status */
  return HAL_OK;
}

/**
  * @brief  Starts the TIM Output Compare signal generation in interrupt mode
  *         on the complementary output.
  * @param  htim TIM OC handle
  * @param  Channel TIM Channel to be enabled
  *          This parameter can be one of the following values:
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_OCN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
{
  HAL_StatusTypeDef status = HAL_OK;
  uint32_t tmpsmcr;

  /* Check the parameters */
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));

  /* Check the TIM complementary channel state */
  if (TIM_CHANNEL_N_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
  {
    return HAL_ERROR;
  }

  /* Set the TIM complementary channel state */
  TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);

  switch (Channel)
  {
    case TIM_CHANNEL_1:
    {
      /* Enable the TIM Output Compare interrupt */
      __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
      break;
    }

    case TIM_CHANNEL_2:
    {
      /* Enable the TIM Output Compare interrupt */
      __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
      break;
    }

    case TIM_CHANNEL_3:
    {
      /* Enable the TIM Output Compare interrupt */
      __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
      break;
    }


    case TIM_CHANNEL_4:
    {
      /* Enable the TIM Output Compare interrupt */
      __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
      break;
    }

    default:
      status = HAL_ERROR;
      break;
  }

  if (status == HAL_OK)
  {
    /* Enable the TIM Break interrupt */
    __HAL_TIM_ENABLE_IT(htim, TIM_IT_BREAK);

    /* Enable the Capture compare channel N */
    TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);

    /* Enable the Main Output */
    __HAL_TIM_MOE_ENABLE(htim);

    /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
    if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
    {
      tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
      if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
      {
        __HAL_TIM_ENABLE(htim);
      }
    }
    else
    {
      __HAL_TIM_ENABLE(htim);
    }
  }

  /* Return function status */
  return status;
}

/**
  * @brief  Stops the TIM Output Compare signal generation in interrupt mode
  *         on the complementary output.
  * @param  htim TIM Output Compare handle
  * @param  Channel TIM Channel to be disabled
  *          This parameter can be one of the following values:
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
{
  HAL_StatusTypeDef status = HAL_OK;
  uint32_t tmpccer;

  /* Check the parameters */
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));

  switch (Channel)
  {
    case TIM_CHANNEL_1:
    {
      /* Disable the TIM Output Compare interrupt */
      __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
      break;
    }

    case TIM_CHANNEL_2:
    {
      /* Disable the TIM Output Compare interrupt */
      __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
      break;
    }

    case TIM_CHANNEL_3:
    {
      /* Disable the TIM Output Compare interrupt */
      __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
      break;
    }

    case TIM_CHANNEL_4:
    {
      /* Disable the TIM Output Compare interrupt */
      __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
      break;
    }

    default:
      status = HAL_ERROR;
      break;
  }

  if (status == HAL_OK)
  {
    /* Disable the Capture compare channel N */
    TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);

    /* Disable the TIM Break interrupt (only if no more channel is active) */
    tmpccer = htim->Instance->CCER;
    if ((tmpccer & (TIM_CCER_CC1NE | TIM_CCER_CC2NE | TIM_CCER_CC3NE  | TIM_CCER_CC4NE)) == (uint32_t)RESET)
    {
      __HAL_TIM_DISABLE_IT(htim, TIM_IT_BREAK);
    }

    /* Disable the Main Output */
    __HAL_TIM_MOE_DISABLE(htim);

    /* Disable the Peripheral */
    __HAL_TIM_DISABLE(htim);

    /* Set the TIM complementary channel state */
    TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
  }

  /* Return function status */
  return status;
}

/**
  * @brief  Starts the TIM Output Compare signal generation in DMA mode
  *         on the complementary output.
  * @param  htim TIM Output Compare handle
  * @param  Channel TIM Channel to be enabled
  *          This parameter can be one of the following values:
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
  * @param  pData The source Buffer address.
  * @param  Length The length of data to be transferred from memory to TIM peripheral
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_OCN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length)
{
  HAL_StatusTypeDef status = HAL_OK;
  uint32_t tmpsmcr;

  /* Check the parameters */
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));

  /* Set the TIM complementary channel state */
  if (TIM_CHANNEL_N_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY)
  {
    return HAL_BUSY;
  }
  else if (TIM_CHANNEL_N_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY)
  {
    if ((pData == NULL) && (Length > 0U))
    {
      return HAL_ERROR;
    }
    else
    {
      TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
    }
  }
  else
  {
    return HAL_ERROR;
  }

  switch (Channel)
  {
    case TIM_CHANNEL_1:
    {
      /* Set the DMA compare callbacks */
      htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseNCplt;
      htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;

      /* Set the DMA error callback */
      htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAErrorCCxN ;

      /* Enable the DMA channel */
      if (TIM_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1,
                           Length) != HAL_OK)
      {
        /* Return error status */
        return HAL_ERROR;
      }
      /* Enable the TIM Output Compare DMA request */
      __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
      break;
    }

    case TIM_CHANNEL_2:
    {
      /* Set the DMA compare callbacks */
      htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseNCplt;
      htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;

      /* Set the DMA error callback */
      htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAErrorCCxN ;

      /* Enable the DMA channel */
      if (TIM_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2,
                           Length) != HAL_OK)
      {
        /* Return error status */
        return HAL_ERROR;
      }
      /* Enable the TIM Output Compare DMA request */
      __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
      break;
    }

    case TIM_CHANNEL_3:
    {
      /* Set the DMA compare callbacks */
      htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseNCplt;
      htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;

      /* Set the DMA error callback */
      htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAErrorCCxN ;

      /* Enable the DMA channel */
      if (TIM_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,
                           Length) != HAL_OK)
      {
        /* Return error status */
        return HAL_ERROR;
      }
      /* Enable the TIM Output Compare DMA request */
      __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
      break;
    }

    case TIM_CHANNEL_4:
    {
      /* Set the DMA compare callbacks */
      htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseNCplt;
      htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;

      /* Set the DMA error callback */
      htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAErrorCCxN ;

      /* Enable the DMA channel */
      if (TIM_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4,
                           Length) != HAL_OK)
      {
        /* Return error status */
        return HAL_ERROR;
      }
      /* Enable the TIM Output Compare DMA request */
      __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
      break;
    }

    default:
      status = HAL_ERROR;
      break;
  }

  if (status == HAL_OK)
  {
    /* Enable the Capture compare channel N */
    TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);

    /* Enable the Main Output */
    __HAL_TIM_MOE_ENABLE(htim);

    /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
    if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
    {
      tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
      if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
      {
        __HAL_TIM_ENABLE(htim);
      }
    }
    else
    {
      __HAL_TIM_ENABLE(htim);
    }
  }

  /* Return function status */
  return status;
}

/**
  * @brief  Stops the TIM Output Compare signal generation in DMA mode
  *         on the complementary output.
  * @param  htim TIM Output Compare handle
  * @param  Channel TIM Channel to be disabled
  *          This parameter can be one of the following values:
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check the parameters */
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));

  switch (Channel)
  {
    case TIM_CHANNEL_1:
    {
      /* Disable the TIM Output Compare DMA request */
      __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
      (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
      break;
    }

    case TIM_CHANNEL_2:
    {
      /* Disable the TIM Output Compare DMA request */
      __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
      (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
      break;
    }

    case TIM_CHANNEL_3:
    {
      /* Disable the TIM Output Compare DMA request */
      __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
      (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
      break;
    }

    case TIM_CHANNEL_4:
    {
      /* Disable the TIM Output Compare interrupt */
      __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
      (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
      break;
    }

    default:
      status = HAL_ERROR;
      break;
  }

  if (status == HAL_OK)
  {
    /* Disable the Capture compare channel N */
    TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);

    /* Disable the Main Output */
    __HAL_TIM_MOE_DISABLE(htim);

    /* Disable the Peripheral */
    __HAL_TIM_DISABLE(htim);

    /* Set the TIM complementary channel state */
    TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
  }

  /* Return function status */
  return status;
}

/**
  * @}
  */

/** @defgroup TIMEx_Exported_Functions_Group3 Extended Timer Complementary PWM functions
  * @brief    Timer Complementary PWM functions
  *
@verbatim
  ==============================================================================
                 ##### Timer Complementary PWM functions #####
  ==============================================================================
  [..]
    This section provides functions allowing to:
    (+) Start the Complementary PWM.
    (+) Stop the Complementary PWM.
    (+) Start the Complementary PWM and enable interrupts.
    (+) Stop the Complementary PWM and disable interrupts.
    (+) Start the Complementary PWM and enable DMA transfers.
    (+) Stop the Complementary PWM and disable DMA transfers.
    (+) Start the Complementary Input Capture measurement.
    (+) Stop the Complementary Input Capture.
    (+) Start the Complementary Input Capture and enable interrupts.
    (+) Stop the Complementary Input Capture and disable interrupts.
    (+) Start the Complementary Input Capture and enable DMA transfers.
    (+) Stop the Complementary Input Capture and disable DMA transfers.
    (+) Start the Complementary One Pulse generation.
    (+) Stop the Complementary One Pulse.
    (+) Start the Complementary One Pulse and enable interrupts.
    (+) Stop the Complementary One Pulse and disable interrupts.

@endverbatim
  * @{
  */

/**
  * @brief  Starts the PWM signal generation on the complementary output.
  * @param  htim TIM handle
  * @param  Channel TIM Channel to be enabled
  *          This parameter can be one of the following values:
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_PWMN_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
{
  uint32_t tmpsmcr;

  /* Check the parameters */
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));

  /* Check the TIM complementary channel state */
  if (TIM_CHANNEL_N_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
  {
    return HAL_ERROR;
  }

  /* Set the TIM complementary channel state */
  TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);

  /* Enable the complementary PWM output  */
  TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);

  /* Enable the Main Output */
  __HAL_TIM_MOE_ENABLE(htim);

  /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
  if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
  {
    tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
    if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
    {
      __HAL_TIM_ENABLE(htim);
    }
  }
  else
  {
    __HAL_TIM_ENABLE(htim);
  }

  /* Return function status */
  return HAL_OK;
}

/**
  * @brief  Stops the PWM signal generation on the complementary output.
  * @param  htim TIM handle
  * @param  Channel TIM Channel to be disabled
  *          This parameter can be one of the following values:
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
{
  /* Check the parameters */
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));

  /* Disable the complementary PWM output  */
  TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);

  /* Disable the Main Output */
  __HAL_TIM_MOE_DISABLE(htim);

  /* Disable the Peripheral */
  __HAL_TIM_DISABLE(htim);

  /* Set the TIM complementary channel state */
  TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);

  /* Return function status */
  return HAL_OK;
}

/**
  * @brief  Starts the PWM signal generation in interrupt mode on the
  *         complementary output.
  * @param  htim TIM handle
  * @param  Channel TIM Channel to be disabled
  *          This parameter can be one of the following values:
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
{
  HAL_StatusTypeDef status = HAL_OK;
  uint32_t tmpsmcr;

  /* Check the parameters */
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));

  /* Check the TIM complementary channel state */
  if (TIM_CHANNEL_N_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
  {
    return HAL_ERROR;
  }

  /* Set the TIM complementary channel state */
  TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);

  switch (Channel)
  {
    case TIM_CHANNEL_1:
    {
      /* Enable the TIM Capture/Compare 1 interrupt */
      __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
      break;
    }

    case TIM_CHANNEL_2:
    {
      /* Enable the TIM Capture/Compare 2 interrupt */
      __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
      break;
    }

    case TIM_CHANNEL_3:
    {
      /* Enable the TIM Capture/Compare 3 interrupt */
      __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
      break;
    }

    case TIM_CHANNEL_4:
    {
      /* Enable the TIM Capture/Compare 4 interrupt */
      __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
      break;
    }

    default:
      status = HAL_ERROR;
      break;
  }

  if (status == HAL_OK)
  {
    /* Enable the TIM Break interrupt */
    __HAL_TIM_ENABLE_IT(htim, TIM_IT_BREAK);

    /* Enable the complementary PWM output  */
    TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);

    /* Enable the Main Output */
    __HAL_TIM_MOE_ENABLE(htim);

    /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
    if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
    {
      tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
      if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
      {
        __HAL_TIM_ENABLE(htim);
      }
    }
    else
    {
      __HAL_TIM_ENABLE(htim);
    }
  }

  /* Return function status */
  return status;
}

/**
  * @brief  Stops the PWM signal generation in interrupt mode on the
  *         complementary output.
  * @param  htim TIM handle
  * @param  Channel TIM Channel to be disabled
  *          This parameter can be one of the following values:
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
{
  HAL_StatusTypeDef status = HAL_OK;
  uint32_t tmpccer;

  /* Check the parameters */
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));

  switch (Channel)
  {
    case TIM_CHANNEL_1:
    {
      /* Disable the TIM Capture/Compare 1 interrupt */
      __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
      break;
    }

    case TIM_CHANNEL_2:
    {
      /* Disable the TIM Capture/Compare 2 interrupt */
      __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
      break;
    }

    case TIM_CHANNEL_3:
    {
      /* Disable the TIM Capture/Compare 3 interrupt */
      __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
      break;
    }

    case TIM_CHANNEL_4:
    {
      /* Disable the TIM Capture/Compare 4 interrupt */
      __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
      break;
    }

    default:
      status = HAL_ERROR;
      break;
  }

  if (status == HAL_OK)
  {
    /* Disable the complementary PWM output  */
    TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);

    /* Disable the TIM Break interrupt (only if no more channel is active) */
    tmpccer = htim->Instance->CCER;
    if ((tmpccer & (TIM_CCER_CC1NE | TIM_CCER_CC2NE | TIM_CCER_CC3NE  | TIM_CCER_CC4NE)) == (uint32_t)RESET)
    {
      __HAL_TIM_DISABLE_IT(htim, TIM_IT_BREAK);
    }

    /* Disable the Main Output */
    __HAL_TIM_MOE_DISABLE(htim);

    /* Disable the Peripheral */
    __HAL_TIM_DISABLE(htim);

    /* Set the TIM complementary channel state */
    TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
  }

  /* Return function status */
  return status;
}

/**
  * @brief  Starts the TIM PWM signal generation in DMA mode on the
  *         complementary output
  * @param  htim TIM handle
  * @param  Channel TIM Channel to be enabled
  *          This parameter can be one of the following values:
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
  * @param  pData The source Buffer address.
  * @param  Length The length of data to be transferred from memory to TIM peripheral
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length)
{
  HAL_StatusTypeDef status = HAL_OK;
  uint32_t tmpsmcr;

  /* Check the parameters */
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));

  /* Set the TIM complementary channel state */
  if (TIM_CHANNEL_N_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY)
  {
    return HAL_BUSY;
  }
  else if (TIM_CHANNEL_N_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY)
  {
    if ((pData == NULL) && (Length > 0U))
    {
      return HAL_ERROR;
    }
    else
    {
      TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
    }
  }
  else
  {
    return HAL_ERROR;
  }

  switch (Channel)
  {
    case TIM_CHANNEL_1:
    {
      /* Set the DMA compare callbacks */
      htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseNCplt;
      htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;

      /* Set the DMA error callback */
      htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAErrorCCxN ;

      /* Enable the DMA channel */
      if (TIM_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1,
                           Length) != HAL_OK)
      {
        /* Return error status */
        return HAL_ERROR;
      }
      /* Enable the TIM Capture/Compare 1 DMA request */
      __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
      break;
    }

    case TIM_CHANNEL_2:
    {
      /* Set the DMA compare callbacks */
      htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseNCplt;
      htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;

      /* Set the DMA error callback */
      htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAErrorCCxN ;

      /* Enable the DMA channel */
      if (TIM_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2,
                           Length) != HAL_OK)
      {
        /* Return error status */
        return HAL_ERROR;
      }
      /* Enable the TIM Capture/Compare 2 DMA request */
      __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
      break;
    }

    case TIM_CHANNEL_3:
    {
      /* Set the DMA compare callbacks */
      htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseNCplt;
      htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;

      /* Set the DMA error callback */
      htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAErrorCCxN ;

      /* Enable the DMA channel */
      if (TIM_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,
                           Length) != HAL_OK)
      {
        /* Return error status */
        return HAL_ERROR;
      }
      /* Enable the TIM Capture/Compare 3 DMA request */
      __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
      break;
    }

    case TIM_CHANNEL_4:
    {
      /* Set the DMA compare callbacks */
      htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseNCplt;
      htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;

      /* Set the DMA error callback */
      htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAErrorCCxN ;

      /* Enable the DMA channel */
      if (TIM_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4,
                           Length) != HAL_OK)
      {
        /* Return error status */
        return HAL_ERROR;
      }
      /* Enable the TIM Capture/Compare 4 DMA request */
      __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
      break;
    }

    default:
      status = HAL_ERROR;
      break;
  }

  if (status == HAL_OK)
  {
    /* Enable the complementary PWM output  */
    TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);

    /* Enable the Main Output */
    __HAL_TIM_MOE_ENABLE(htim);

    /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
    if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
    {
      tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
      if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
      {
        __HAL_TIM_ENABLE(htim);
      }
    }
    else
    {
      __HAL_TIM_ENABLE(htim);
    }
  }

  /* Return function status */
  return status;
}

/**
  * @brief  Stops the TIM PWM signal generation in DMA mode on the complementary
  *         output
  * @param  htim TIM handle
  * @param  Channel TIM Channel to be disabled
  *          This parameter can be one of the following values:
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check the parameters */
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));

  switch (Channel)
  {
    case TIM_CHANNEL_1:
    {
      /* Disable the TIM Capture/Compare 1 DMA request */
      __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
      (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
      break;
    }

    case TIM_CHANNEL_2:
    {
      /* Disable the TIM Capture/Compare 2 DMA request */
      __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
      (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
      break;
    }

    case TIM_CHANNEL_3:
    {
      /* Disable the TIM Capture/Compare 3 DMA request */
      __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
      (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
      break;
    }

    case TIM_CHANNEL_4:
    {
      /* Disable the TIM Capture/Compare 4 DMA request */
      __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
      (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
      break;
    }

    default:
      status = HAL_ERROR;
      break;
  }

  if (status == HAL_OK)
  {
    /* Disable the complementary PWM output */
    TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);

    /* Disable the Main Output */
    __HAL_TIM_MOE_DISABLE(htim);

    /* Disable the Peripheral */
    __HAL_TIM_DISABLE(htim);

    /* Set the TIM complementary channel state */
    TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
  }

  /* Return function status */
  return status;
}

/**
  * @}
  */

/** @defgroup TIMEx_Exported_Functions_Group4 Extended Timer Complementary One Pulse functions
  * @brief    Timer Complementary One Pulse functions
  *
@verbatim
  ==============================================================================
                ##### Timer Complementary One Pulse functions #####
  ==============================================================================
  [..]
    This section provides functions allowing to:
    (+) Start the Complementary One Pulse generation.
    (+) Stop the Complementary One Pulse.
    (+) Start the Complementary One Pulse and enable interrupts.
    (+) Stop the Complementary One Pulse and disable interrupts.

@endverbatim
  * @{
  */

/**
  * @brief  Starts the TIM One Pulse signal generation on the complementary
  *         output.
  * @note OutputChannel must match the pulse output channel chosen when calling
  *       @ref HAL_TIM_OnePulse_ConfigChannel().
  * @param  htim TIM One Pulse handle
  * @param  OutputChannel pulse output channel to enable
  *          This parameter can be one of the following values:
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
{
  uint32_t input_channel = (OutputChannel == TIM_CHANNEL_1) ? TIM_CHANNEL_2 : TIM_CHANNEL_1;
  HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
  HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
  HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
  HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);

  /* Check the parameters */
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel));

  /* Check the TIM channels state */
  if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
      || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
      || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
      || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
  {
    return HAL_ERROR;
  }

  /* Set the TIM channels state */
  TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
  TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
  TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
  TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);

  /* Enable the complementary One Pulse output channel and the Input Capture channel */
  TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_ENABLE);
  TIM_CCxChannelCmd(htim->Instance, input_channel, TIM_CCx_ENABLE);

  /* Enable the Main Output */
  __HAL_TIM_MOE_ENABLE(htim);

  /* Return function status */
  return HAL_OK;
}

/**
  * @brief  Stops the TIM One Pulse signal generation on the complementary
  *         output.
  * @note OutputChannel must match the pulse output channel chosen when calling
  *       @ref HAL_TIM_OnePulse_ConfigChannel().
  * @param  htim TIM One Pulse handle
  * @param  OutputChannel pulse output channel to disable
  *          This parameter can be one of the following values:
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
{
  uint32_t input_channel = (OutputChannel == TIM_CHANNEL_1) ? TIM_CHANNEL_2 : TIM_CHANNEL_1;

  /* Check the parameters */
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel));

  /* Disable the complementary One Pulse output channel and the Input Capture channel */
  TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_DISABLE);
  TIM_CCxChannelCmd(htim->Instance, input_channel, TIM_CCx_DISABLE);

  /* Disable the Main Output */
  __HAL_TIM_MOE_DISABLE(htim);

  /* Disable the Peripheral */
  __HAL_TIM_DISABLE(htim);

  /* Set the TIM  channels state */
  TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
  TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
  TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
  TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);

  /* Return function status */
  return HAL_OK;
}

/**
  * @brief  Starts the TIM One Pulse signal generation in interrupt mode on the
  *         complementary channel.
  * @note OutputChannel must match the pulse output channel chosen when calling
  *       @ref HAL_TIM_OnePulse_ConfigChannel().
  * @param  htim TIM One Pulse handle
  * @param  OutputChannel pulse output channel to enable
  *          This parameter can be one of the following values:
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
{
  uint32_t input_channel = (OutputChannel == TIM_CHANNEL_1) ? TIM_CHANNEL_2 : TIM_CHANNEL_1;
  HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
  HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
  HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
  HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);

  /* Check the parameters */
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel));

  /* Check the TIM channels state */
  if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
      || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
      || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
      || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
  {
    return HAL_ERROR;
  }

  /* Set the TIM channels state */
  TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
  TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
  TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
  TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);

  /* Enable the TIM Capture/Compare 1 interrupt */
  __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);

  /* Enable the TIM Capture/Compare 2 interrupt */
  __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);

  /* Enable the complementary One Pulse output channel and the Input Capture channel */
  TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_ENABLE);
  TIM_CCxChannelCmd(htim->Instance, input_channel, TIM_CCx_ENABLE);

  /* Enable the Main Output */
  __HAL_TIM_MOE_ENABLE(htim);

  /* Return function status */
  return HAL_OK;
}

/**
  * @brief  Stops the TIM One Pulse signal generation in interrupt mode on the
  *         complementary channel.
  * @note OutputChannel must match the pulse output channel chosen when calling
  *       @ref HAL_TIM_OnePulse_ConfigChannel().
  * @param  htim TIM One Pulse handle
  * @param  OutputChannel pulse output channel to disable
  *          This parameter can be one of the following values:
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
{
  uint32_t input_channel = (OutputChannel == TIM_CHANNEL_1) ? TIM_CHANNEL_2 : TIM_CHANNEL_1;

  /* Check the parameters */
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel));

  /* Disable the TIM Capture/Compare 1 interrupt */
  __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);

  /* Disable the TIM Capture/Compare 2 interrupt */
  __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);

  /* Disable the complementary One Pulse output channel and the Input Capture channel */
  TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_DISABLE);
  TIM_CCxChannelCmd(htim->Instance, input_channel, TIM_CCx_DISABLE);

  /* Disable the Main Output */
  __HAL_TIM_MOE_DISABLE(htim);

  /* Disable the Peripheral */
  __HAL_TIM_DISABLE(htim);

  /* Set the TIM  channels state */
  TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
  TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
  TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
  TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);

  /* Return function status */
  return HAL_OK;
}

/**
  * @}
  */

/** @defgroup TIMEx_Exported_Functions_Group5 Extended Peripheral Control functions
  * @brief    Peripheral Control functions
  *
@verbatim
  ==============================================================================
                    ##### Peripheral Control functions #####
  ==============================================================================
  [..]
    This section provides functions allowing to:
      (+) Configure the commutation event in case of use of the Hall sensor interface.
      (+) Configure Output channels for OC and PWM mode.

      (+) Configure Complementary channels, break features and dead time.
      (+) Configure Master synchronization.
      (+) Configure timer remapping capabilities.
      (+) Select timer input source.
      (+) Enable or disable channel grouping.
      (+) Configure Pulse on compare.
      (+) Configure Encoder index.

@endverbatim
  * @{
  */

/**
  * @brief  Configure the TIM commutation event sequence.
  * @note  This function is mandatory to use the commutation event in order to
  *        update the configuration at each commutation detection on the TRGI input of the Timer,
  *        the typical use of this feature is with the use of another Timer(interface Timer)
  *        configured in Hall sensor interface, this interface Timer will generate the
  *        commutation at its TRGO output (connected to Timer used in this function) each time
  *        the TI1 of the Interface Timer detect a commutation at its input TI1.
  * @param  htim TIM handle
  * @param  InputTrigger the Internal trigger corresponding to the Timer Interfacing with the Hall sensor
  *          This parameter can be one of the following values:
  *            @arg TIM_TS_ITR0: Internal trigger 0 selected
  *            @arg TIM_TS_ITR1: Internal trigger 1 selected
  *            @arg TIM_TS_ITR2: Internal trigger 2 selected
  *            @arg TIM_TS_ITR3: Internal trigger 3 selected
  *            @arg TIM_TS_ITR4: Internal trigger 4 selected
  *            @arg TIM_TS_ITR5: Internal trigger 5 selected
  *            @arg TIM_TS_ITR6: Internal trigger 6 selected
  *            @arg TIM_TS_ITR7: Internal trigger 7 selected
  *            @arg TIM_TS_ITR8: Internal trigger 8 selected
  *            @arg TIM_TS_ITR11: Internal trigger 11 selected
  *            @arg TIM_TS_NONE: No trigger is needed
  * @param  CommutationSource the Commutation Event source
  *          This parameter can be one of the following values:
  *            @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer
  *            @arg TIM_COMMUTATION_SOFTWARE:  Commutation source is set by software using the COMG bit
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent(TIM_HandleTypeDef *htim, uint32_t  InputTrigger,
                                              uint32_t  CommutationSource)
{
  /* Check the parameters */
  assert_param(IS_TIM_COMMUTATION_EVENT_INSTANCE(htim->Instance));
  assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_INSTANCE(htim->Instance, InputTrigger));

  __HAL_LOCK(htim);

  if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) ||
      (InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3) ||
      (InputTrigger == TIM_TS_ITR4) || (InputTrigger == TIM_TS_ITR5) ||
      (InputTrigger == TIM_TS_ITR6) || (InputTrigger == TIM_TS_ITR7) ||
      (InputTrigger == TIM_TS_ITR8) || (InputTrigger == TIM_TS_ITR11))
  {
    /* Select the Input trigger */
    htim->Instance->SMCR &= ~TIM_SMCR_TS;
    htim->Instance->SMCR |= InputTrigger;
  }

  /* Select the Capture Compare preload feature */
  htim->Instance->CR2 |= TIM_CR2_CCPC;
  /* Select the Commutation event source */
  htim->Instance->CR2 &= ~TIM_CR2_CCUS;
  htim->Instance->CR2 |= CommutationSource;

  /* Disable Commutation Interrupt */
  __HAL_TIM_DISABLE_IT(htim, TIM_IT_COM);

  /* Disable Commutation DMA request */
  __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_COM);

  __HAL_UNLOCK(htim);

  return HAL_OK;
}

/**
  * @brief  Configure the TIM commutation event sequence with interrupt.
  * @note  This function is mandatory to use the commutation event in order to
  *        update the configuration at each commutation detection on the TRGI input of the Timer,
  *        the typical use of this feature is with the use of another Timer(interface Timer)
  *        configured in Hall sensor interface, this interface Timer will generate the
  *        commutation at its TRGO output (connected to Timer used in this function) each time
  *        the TI1 of the Interface Timer detect a commutation at its input TI1.
  * @param  htim TIM handle
  * @param  InputTrigger the Internal trigger corresponding to the Timer Interfacing with the Hall sensor
  *          This parameter can be one of the following values:
  *            @arg TIM_TS_ITR0: Internal trigger 0 selected
  *            @arg TIM_TS_ITR1: Internal trigger 1 selected
  *            @arg TIM_TS_ITR2: Internal trigger 2 selected
  *            @arg TIM_TS_ITR3: Internal trigger 3 selected
  *            @arg TIM_TS_ITR4: Internal trigger 4 selected
  *            @arg TIM_TS_ITR5: Internal trigger 5 selected
  *            @arg TIM_TS_ITR6: Internal trigger 6 selected
  *            @arg TIM_TS_ITR7: Internal trigger 7 selected
  *            @arg TIM_TS_ITR8: Internal trigger 8 selected
  *            @arg TIM_TS_ITR11: Internal trigger 11 selected
  *            @arg TIM_TS_NONE: No trigger is needed
  * @param  CommutationSource the Commutation Event source
  *          This parameter can be one of the following values:
  *            @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer
  *            @arg TIM_COMMUTATION_SOFTWARE:  Commutation source is set by software using the COMG bit
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent_IT(TIM_HandleTypeDef *htim, uint32_t  InputTrigger,
                                                 uint32_t  CommutationSource)
{
  /* Check the parameters */
  assert_param(IS_TIM_COMMUTATION_EVENT_INSTANCE(htim->Instance));
  assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_INSTANCE(htim->Instance, InputTrigger));

  __HAL_LOCK(htim);

  if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) ||
      (InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3) ||
      (InputTrigger == TIM_TS_ITR4) || (InputTrigger == TIM_TS_ITR5) ||
      (InputTrigger == TIM_TS_ITR6) || (InputTrigger == TIM_TS_ITR7) ||
      (InputTrigger == TIM_TS_ITR8) || (InputTrigger == TIM_TS_ITR11))
  {
    /* Select the Input trigger */
    htim->Instance->SMCR &= ~TIM_SMCR_TS;
    htim->Instance->SMCR |= InputTrigger;
  }

  /* Select the Capture Compare preload feature */
  htim->Instance->CR2 |= TIM_CR2_CCPC;
  /* Select the Commutation event source */
  htim->Instance->CR2 &= ~TIM_CR2_CCUS;
  htim->Instance->CR2 |= CommutationSource;

  /* Disable Commutation DMA request */
  __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_COM);

  /* Enable the Commutation Interrupt */
  __HAL_TIM_ENABLE_IT(htim, TIM_IT_COM);

  __HAL_UNLOCK(htim);

  return HAL_OK;
}

/**
  * @brief  Configure the TIM commutation event sequence with DMA.
  * @note  This function is mandatory to use the commutation event in order to
  *        update the configuration at each commutation detection on the TRGI input of the Timer,
  *        the typical use of this feature is with the use of another Timer(interface Timer)
  *        configured in Hall sensor interface, this interface Timer will generate the
  *        commutation at its TRGO output (connected to Timer used in this function) each time
  *        the TI1 of the Interface Timer detect a commutation at its input TI1.
  * @note  The user should configure the DMA in his own software, in This function only the COMDE bit is set
  * @param  htim TIM handle
  * @param  InputTrigger the Internal trigger corresponding to the Timer Interfacing with the Hall sensor
  *          This parameter can be one of the following values:
  *            @arg TIM_TS_ITR0: Internal trigger 0 selected
  *            @arg TIM_TS_ITR1: Internal trigger 1 selected
  *            @arg TIM_TS_ITR2: Internal trigger 2 selected
  *            @arg TIM_TS_ITR3: Internal trigger 3 selected
  *            @arg TIM_TS_ITR4: Internal trigger 4 selected
  *            @arg TIM_TS_ITR5: Internal trigger 5 selected
  *            @arg TIM_TS_ITR6: Internal trigger 6 selected
  *            @arg TIM_TS_ITR7: Internal trigger 7 selected
  *            @arg TIM_TS_ITR8: Internal trigger 8 selected
  *            @arg TIM_TS_ITR11: Internal trigger 11 selected
  *            @arg TIM_TS_NONE: No trigger is needed
  * @param  CommutationSource the Commutation Event source
  *          This parameter can be one of the following values:
  *            @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer
  *            @arg TIM_COMMUTATION_SOFTWARE:  Commutation source is set by software using the COMG bit
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent_DMA(TIM_HandleTypeDef *htim, uint32_t  InputTrigger,
                                                  uint32_t  CommutationSource)
{
  /* Check the parameters */
  assert_param(IS_TIM_COMMUTATION_EVENT_INSTANCE(htim->Instance));
  assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_INSTANCE(htim->Instance, InputTrigger));

  __HAL_LOCK(htim);

  if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) ||
      (InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3) ||
      (InputTrigger == TIM_TS_ITR4) || (InputTrigger == TIM_TS_ITR5) ||
      (InputTrigger == TIM_TS_ITR6) || (InputTrigger == TIM_TS_ITR7) ||
      (InputTrigger == TIM_TS_ITR8) || (InputTrigger == TIM_TS_ITR11))
  {
    /* Select the Input trigger */
    htim->Instance->SMCR &= ~TIM_SMCR_TS;
    htim->Instance->SMCR |= InputTrigger;
  }

  /* Select the Capture Compare preload feature */
  htim->Instance->CR2 |= TIM_CR2_CCPC;
  /* Select the Commutation event source */
  htim->Instance->CR2 &= ~TIM_CR2_CCUS;
  htim->Instance->CR2 |= CommutationSource;

  /* Enable the Commutation DMA Request */
  /* Set the DMA Commutation Callback */
  htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt;
  htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback = TIMEx_DMACommutationHalfCplt;
  /* Set the DMA error callback */
  htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError;

  /* Disable Commutation Interrupt */
  __HAL_TIM_DISABLE_IT(htim, TIM_IT_COM);

  /* Enable the Commutation DMA Request */
  __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_COM);

  __HAL_UNLOCK(htim);

  return HAL_OK;
}

/**
  * @brief  Configures the TIM in master mode.
  * @param  htim TIM handle.
  * @param  sMasterConfig pointer to a TIM_MasterConfigTypeDef structure that
  *         contains the selected trigger output (TRGO) and the Master/Slave
  *         mode.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_MasterConfigSynchronization(TIM_HandleTypeDef *htim,
                                                        TIM_MasterConfigTypeDef *sMasterConfig)
{
  uint32_t tmpcr2;
  uint32_t tmpsmcr;

  /* Check the parameters */
  assert_param(IS_TIM_MASTER_INSTANCE(htim->Instance));
  assert_param(IS_TIM_TRGO_SOURCE(sMasterConfig->MasterOutputTrigger));
  assert_param(IS_TIM_MSM_STATE(sMasterConfig->MasterSlaveMode));

  /* Check input state */
  __HAL_LOCK(htim);

  /* Change the handler state */
  htim->State = HAL_TIM_STATE_BUSY;

  /* Get the TIMx CR2 register value */
  tmpcr2 = htim->Instance->CR2;

  /* Get the TIMx SMCR register value */
  tmpsmcr = htim->Instance->SMCR;

  /* If the timer supports ADC synchronization through TRGO2, set the master mode selection 2 */
  if (IS_TIM_TRGO2_INSTANCE(htim->Instance))
  {
    /* Check the parameters */
    assert_param(IS_TIM_TRGO2_SOURCE(sMasterConfig->MasterOutputTrigger2));

    /* Clear the MMS2 bits */
    tmpcr2 &= ~TIM_CR2_MMS2;
    /* Select the TRGO2 source*/
    tmpcr2 |= sMasterConfig->MasterOutputTrigger2;
  }

  /* Reset the MMS Bits */
  tmpcr2 &= ~TIM_CR2_MMS;
  /* Select the TRGO source */
  tmpcr2 |=  sMasterConfig->MasterOutputTrigger;

  /* Update TIMx CR2 */
  htim->Instance->CR2 = tmpcr2;

  if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
  {
    /* Reset the MSM Bit */
    tmpsmcr &= ~TIM_SMCR_MSM;
    /* Set master mode */
    tmpsmcr |= sMasterConfig->MasterSlaveMode;

    /* Update TIMx SMCR */
    htim->Instance->SMCR = tmpsmcr;
  }

  /* Change the htim state */
  htim->State = HAL_TIM_STATE_READY;

  __HAL_UNLOCK(htim);

  return HAL_OK;
}

/**
  * @brief  Configures the Break feature, dead time, Lock level, OSSI/OSSR State
  *         and the AOE(automatic output enable).
  * @param  htim TIM handle
  * @param  sBreakDeadTimeConfig pointer to a TIM_ConfigBreakDeadConfigTypeDef structure that
  *         contains the BDTR Register configuration  information for the TIM peripheral.
  * @note   Interrupts can be generated when an active level is detected on the
  *         break input, the break 2 input or the system break input. Break
  *         interrupt can be enabled by calling the @ref __HAL_TIM_ENABLE_IT macro.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_ConfigBreakDeadTime(TIM_HandleTypeDef *htim,
                                                TIM_BreakDeadTimeConfigTypeDef *sBreakDeadTimeConfig)
{
  /* Keep this variable initialized to 0 as it is used to configure BDTR register */
  uint32_t tmpbdtr = 0U;

  /* Check the parameters */
  assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance));
  assert_param(IS_TIM_OSSR_STATE(sBreakDeadTimeConfig->OffStateRunMode));
  assert_param(IS_TIM_OSSI_STATE(sBreakDeadTimeConfig->OffStateIDLEMode));
  assert_param(IS_TIM_LOCK_LEVEL(sBreakDeadTimeConfig->LockLevel));
  assert_param(IS_TIM_DEADTIME(sBreakDeadTimeConfig->DeadTime));
  assert_param(IS_TIM_BREAK_STATE(sBreakDeadTimeConfig->BreakState));
  assert_param(IS_TIM_BREAK_POLARITY(sBreakDeadTimeConfig->BreakPolarity));
  assert_param(IS_TIM_BREAK_FILTER(sBreakDeadTimeConfig->BreakFilter));
  assert_param(IS_TIM_AUTOMATIC_OUTPUT_STATE(sBreakDeadTimeConfig->AutomaticOutput));

  /* Check input state */
  __HAL_LOCK(htim);

  /* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State,
     the OSSI State, the dead time value and the Automatic Output Enable Bit */

  /* Set the BDTR bits */
  MODIFY_REG(tmpbdtr, TIM_BDTR_DTG, sBreakDeadTimeConfig->DeadTime);
  MODIFY_REG(tmpbdtr, TIM_BDTR_LOCK, sBreakDeadTimeConfig->LockLevel);
  MODIFY_REG(tmpbdtr, TIM_BDTR_OSSI, sBreakDeadTimeConfig->OffStateIDLEMode);
  MODIFY_REG(tmpbdtr, TIM_BDTR_OSSR, sBreakDeadTimeConfig->OffStateRunMode);
  MODIFY_REG(tmpbdtr, TIM_BDTR_BKE, sBreakDeadTimeConfig->BreakState);
  MODIFY_REG(tmpbdtr, TIM_BDTR_BKP, sBreakDeadTimeConfig->BreakPolarity);
  MODIFY_REG(tmpbdtr, TIM_BDTR_AOE, sBreakDeadTimeConfig->AutomaticOutput);
  MODIFY_REG(tmpbdtr, TIM_BDTR_BKF, (sBreakDeadTimeConfig->BreakFilter << TIM_BDTR_BKF_Pos));

  if (IS_TIM_ADVANCED_INSTANCE(htim->Instance))
  {
    /* Check the parameters */
    assert_param(IS_TIM_BREAK_AFMODE(sBreakDeadTimeConfig->BreakAFMode));

    /* Set BREAK AF mode */
    MODIFY_REG(tmpbdtr, TIM_BDTR_BKBID, sBreakDeadTimeConfig->BreakAFMode);
  }

  if (IS_TIM_BKIN2_INSTANCE(htim->Instance))
  {
    /* Check the parameters */
    assert_param(IS_TIM_BREAK2_STATE(sBreakDeadTimeConfig->Break2State));
    assert_param(IS_TIM_BREAK2_POLARITY(sBreakDeadTimeConfig->Break2Polarity));
    assert_param(IS_TIM_BREAK_FILTER(sBreakDeadTimeConfig->Break2Filter));

    /* Set the BREAK2 input related BDTR bits */
    MODIFY_REG(tmpbdtr, TIM_BDTR_BK2F, (sBreakDeadTimeConfig->Break2Filter << TIM_BDTR_BK2F_Pos));
    MODIFY_REG(tmpbdtr, TIM_BDTR_BK2E, sBreakDeadTimeConfig->Break2State);
    MODIFY_REG(tmpbdtr, TIM_BDTR_BK2P, sBreakDeadTimeConfig->Break2Polarity);

    if (IS_TIM_ADVANCED_INSTANCE(htim->Instance))
    {
      /* Check the parameters */
      assert_param(IS_TIM_BREAK2_AFMODE(sBreakDeadTimeConfig->Break2AFMode));

      /* Set BREAK2 AF mode */
      MODIFY_REG(tmpbdtr, TIM_BDTR_BK2BID, sBreakDeadTimeConfig->Break2AFMode);
    }
  }

  /* Set TIMx_BDTR */
  htim->Instance->BDTR = tmpbdtr;

  __HAL_UNLOCK(htim);

  return HAL_OK;
}

/**
  * @brief  Configures the break input source.
  * @param  htim TIM handle.
  * @param  BreakInput Break input to configure
  *          This parameter can be one of the following values:
  *            @arg TIM_BREAKINPUT_BRK: Timer break input
  *            @arg TIM_BREAKINPUT_BRK2: Timer break 2 input
  * @param  sBreakInputConfig Break input source configuration
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_ConfigBreakInput(TIM_HandleTypeDef *htim,
                                             uint32_t BreakInput,
                                             TIMEx_BreakInputConfigTypeDef *sBreakInputConfig)

{
  HAL_StatusTypeDef status = HAL_OK;
  uint32_t tmporx;
  uint32_t bkin_enable_mask;
  uint32_t bkin_polarity_mask;
  uint32_t bkin_enable_bitpos;
  uint32_t bkin_polarity_bitpos;

  /* Check the parameters */
  assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance));
  assert_param(IS_TIM_BREAKINPUT(BreakInput));
  assert_param(IS_TIM_BREAKINPUTSOURCE(sBreakInputConfig->Source));
  assert_param(IS_TIM_BREAKINPUTSOURCE_STATE(sBreakInputConfig->Enable));
  if (sBreakInputConfig->Source != TIM_BREAKINPUTSOURCE_MDF1)
  {
    assert_param(IS_TIM_BREAKINPUTSOURCE_POLARITY(sBreakInputConfig->Polarity));
  }

  /* Check input state */
  __HAL_LOCK(htim);

  switch (sBreakInputConfig->Source)
  {
    case TIM_BREAKINPUTSOURCE_BKIN:
    {
      bkin_enable_mask = TIM1_AF1_BKINE;
      bkin_enable_bitpos = TIM1_AF1_BKINE_Pos;
      bkin_polarity_mask = TIM1_AF1_BKINP;
      bkin_polarity_bitpos = TIM1_AF1_BKINP_Pos;
      break;
    }
    case TIM_BREAKINPUTSOURCE_COMP1:
    {
      bkin_enable_mask = TIM1_AF1_BKCMP1E;
      bkin_enable_bitpos = TIM1_AF1_BKCMP1E_Pos;
      bkin_polarity_mask = TIM1_AF1_BKCMP1P;
      bkin_polarity_bitpos = TIM1_AF1_BKCMP1P_Pos;
      break;
    }
    case TIM_BREAKINPUTSOURCE_COMP2:
    {
      bkin_enable_mask = TIM1_AF1_BKCMP2E;
      bkin_enable_bitpos = TIM1_AF1_BKCMP2E_Pos;
      bkin_polarity_mask = TIM1_AF1_BKCMP2P;
      bkin_polarity_bitpos = TIM1_AF1_BKCMP2P_Pos;
      break;
    }
    case TIM_BREAKINPUTSOURCE_MDF1:
    {
      bkin_enable_mask = TIM1_AF1_BKDF1BK0E;
      bkin_enable_bitpos = 8U;
      bkin_polarity_mask = 0U;
      bkin_polarity_bitpos = 0U;
      break;
    }

    default:
    {
      bkin_enable_mask = 0U;
      bkin_polarity_mask = 0U;
      bkin_enable_bitpos = 0U;
      bkin_polarity_bitpos = 0U;
      break;
    }
  }

  switch (BreakInput)
  {
    case TIM_BREAKINPUT_BRK:
    {
      /* Get the TIMx_AF1 register value */
      tmporx = htim->Instance->AF1;

      /* Enable the break input */
      tmporx &= ~bkin_enable_mask;
      tmporx |= (sBreakInputConfig->Enable << bkin_enable_bitpos) & bkin_enable_mask;

      /* Set the break input polarity */
      tmporx &= ~bkin_polarity_mask;
      tmporx |= (sBreakInputConfig->Polarity << bkin_polarity_bitpos) & bkin_polarity_mask;

      /* Set TIMx_AF1 */
      htim->Instance->AF1 = tmporx;
      break;
    }
    case TIM_BREAKINPUT_BRK2:
    {
      /* Get the TIMx_AF2 register value */
      tmporx = htim->Instance->AF2;

      /* Enable the break input */
      tmporx &= ~bkin_enable_mask;
      tmporx |= (sBreakInputConfig->Enable << bkin_enable_bitpos) & bkin_enable_mask;

      /* Set the break input polarity */
      tmporx &= ~bkin_polarity_mask;
      tmporx |= (sBreakInputConfig->Polarity << bkin_polarity_bitpos) & bkin_polarity_mask;

      /* Set TIMx_AF2 */
      htim->Instance->AF2 = tmporx;
      break;
    }
    default:
      status = HAL_ERROR;
      break;
  }

  __HAL_UNLOCK(htim);

  return status;
}

/**
  * @brief  Configures the TIMx Remapping input capabilities.
  * @param  htim TIM handle.
  * @param  Remap specifies the TIM remapping source.
  *         For TIM1, the parameter can take one of the following values:
  *            @arg TIM_TIM1_ETR_GPIO           TIM1 ETR is connected to GPIO
  *            @arg TIM_TIM1_ETR_COMP1          TIM1 ETR is connected to COMP1 output
  *            @arg TIM_TIM1_ETR_COMP2          TIM1 ETR is connected to COMP2 output
  *            @arg TIM_TIM1_ETR_HSI            TIM1 ETR is connected to HSI
  *            @arg TIM_TIM1_ETR_MSIS           TIM1_ETR is connected to MSIS
  *            @arg TIM_TIM1_ETR_ADC1_AWD1      TIM1 ETR is connected to ADC1 AWD1
  *            @arg TIM_TIM1_ETR_ADC1_AWD2      TIM1 ETR is connected to ADC1 AWD2
  *            @arg TIM_TIM1_ETR_ADC1_AWD3      TIM1 ETR is connected to ADC1 AWD3
  *            @arg TIM_TIM1_ETR_ADC4_AWD1      TIM1 ETR is connected to ADC4 AWD1
  *            @arg TIM_TIM1_ETR_ADC4_AWD2      TIM1 ETR is connected to ADC4 AWD2
  *            @arg TIM_TIM1_ETR_ADC4_AWD3      TIM1 ETR is connected to ADC4 AWD3
  *
  *         For TIM2, the parameter can take one of the following values:
  *            @arg TIM_TIM2_ETR_GPIO            TIM2 ETR is connected to GPIO
  *            @arg TIM_TIM2_ETR_COMP1           TIM2 ETR is connected to COMP1 output
  *            @arg TIM_TIM2_ETR_COMP2           TIM2 ETR is connected to COMP2 output
  *            @arg TIM_TIM2_ETR_MSIK            TIM2 ETR is connected to MSIK
  *            @arg TIM_TIM2_ETR_HSI             TIM2 ETR is connected to HSI
  *            @arg TIM_TIM2_ETR_MSIS            TIM2_ETR is connected to MSIS
  *            @arg TIM_TIM2_ETR_TIM3_ETR        TIM2 ETR is connected to TIM3 ETR pin
  *            @arg TIM_TIM2_ETR_TIM4_ETR        TIM2 ETR is connected to TIM4 ETR pin
  *            @arg TIM_TIM2_ETR_TIM5_ETR        TIM2 ETR is connected to TIM5 ETR pin
  *            @arg TIM_TIM2_ETR_LSE             TIM2 ETR is connected to LSE
  *
  *         For TIM3, the parameter can take one of the following values:
  *            @arg TIM_TIM3_ETR_GPIO            TIM3 ETR is connected to GPIO
  *            @arg TIM_TIM3_ETR_COMP1           TIM3 ETR is connected to COMP1 output
  *            @arg TIM_TIM3_ETR_COMP2           TIM3 ETR is connected to COMP2 output
  *            @arg TIM_TIM3_ETR_MSIK            TIM3 ETR is connected to MSIK
  *            @arg TIM_TIM3_ETR_HSI             TIM3 ETR is connected to HSI
  *            @arg TIM_TIM3_ETR_MSIS            TIM3_ETR is connected to MSIS
  *            @arg TIM_TIM3_ETR_TIM2_ETR        TIM3 ETR is connected to TIM2 ETR pin
  *            @arg TIM_TIM3_ETR_TIM4_ETR        TIM3 ETR is connected to TIM4 ETR pin
  *            @arg TIM_TIM3_ETR_ADC1_AWD1       TIM3 ETR is connected to ADC1 AWD1
  *            @arg TIM_TIM3_ETR_ADC1_AWD2       TIM3 ETR is connected to ADC1 AWD2
  *            @arg TIM_TIM3_ETR_ADC1_AWD3       TIM3 ETR is connected to ADC1 AWD3
  *
  *         For TIM4, the parameter can take one of the following values:
  *            @arg TIM_TIM4_ETR_GPIO              TIM4 ETR is connected to GPIO
  *            @arg TIM_TIM4_ETR_COMP1             TIM4 ETR is connected to COMP1 output
  *            @arg TIM_TIM4_ETR_COMP2             TIM4 ETR is connected to COMP2 output
  *            @arg TIM_TIM4_ETR_MSIK              TIM4 ETR is connected to MSIK
  *            @arg TIM_TIM4_ETR_HSI               TIM4 ETR is connected to HSI
  *            @arg TIM_TIM4_ETR_MSIS              TIM4_ETR is connected to MSIS
  *            @arg TIM_TIM4_ETR_TIM3_ETR          TIM4 ETR is connected to TIM3 ETR pin
  *            @arg TIM_TIM4_ETR_TIM5_ETR          TIM4 ETR is connected to TIM5 ETR pin
  *
  *         For TIM5, the parameter can take one of the following values:
  *            @arg TIM_TIM5_ETR_GPIO              TIM5 ETR is connected to GPIO
  *            @arg TIM_TIM5_ETR_COMP1             TIM5 ETR is connected to COMP1 output
  *            @arg TIM_TIM5_ETR_COMP2             TIM5 ETR is connected to COMP2 output
  *            @arg TIM_TIM5_ETR_MSIK              TIM5 ETR is connected to MSIK
  *            @arg TIM_TIM5_ETR_HSI               TIM5 ETR is connected to HSI
  *            @arg TIM_TIM5_ETR_MSIS              TIM5_ETR is connected to MSIS
  *            @arg TIM_TIM5_ETR_TIM2_ETR          TIM5 ETR is connected to TIM2 ETR pin
  *            @arg TIM_TIM5_ETR_TIM3_ETR          TIM5 ETR is connected to TIM3 ETR pin
  *
  *         For TIM8, the parameter can take one of the following values:
  *            @arg TIM_TIM8_ETR_GPIO            TIM8 ETR is connected to GPIO
  *            @arg TIM_TIM8_ETR_COMP1           TIM8 ETR is connected to COMP1 output
  *            @arg TIM_TIM8_ETR_COMP2           TIM8 ETR is connected to COMP2 output
  *            @arg TIM_TIM8_ETR_MSIK            TIM8 ETR is connected to MSIK
  *            @arg TIM_TIM8_ETR_HSI             TIM8 ETR is connected to HSI
  *            @arg TIM_TIM8_ETR_MSIS            TIM8_ETR is connected to MSIS
  *            @arg TIM_TIM8_ETR_ADC1_AWD1       TIM8 ETR is connected to ADC1 AWD1
  *            @arg TIM_TIM8_ETR_ADC1_AWD2       TIM8 ETR is connected to ADC1 AWD2
  *            @arg TIM_TIM8_ETR_ADC1_AWD3       TIM8 ETR is connected to ADC1 AWD3
  *            @arg TIM_TIM8_ETR_ADC4_AWD1       TIM8 ETR is connected to ADC4 AWD1
  *            @arg TIM_TIM8_ETR_ADC4_AWD2       TIM8 ETR is connected to ADC4 AWD2
  *            @arg TIM_TIM8_ETR_ADC4_AWD3       TIM8 ETR is connected to ADC4 AWD3
  *
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_RemapConfig(TIM_HandleTypeDef *htim, uint32_t Remap)
{
  /* Check parameters */
  assert_param(IS_TIM_REMAP_INSTANCE(htim->Instance));
  assert_param(IS_TIM_REMAP(Remap));

  __HAL_LOCK(htim);

  MODIFY_REG(htim->Instance->AF1, TIM1_AF1_ETRSEL_Msk, Remap);

  __HAL_UNLOCK(htim);

  return HAL_OK;
}

/**
  * @brief  Select the timer input source
  * @param  htim TIM handle.
  * @param  Channel specifies the TIM Channel
  *          This parameter can be one of the following values:
  *            @arg TIM_CHANNEL_1: TI1 input channel
  *            @arg TIM_CHANNEL_2: TI2 input channel
  *            @arg TIM_CHANNEL_4: TIM Channel 4
  * @param  TISelection parameter of the TIM_TISelectionStruct structure is detailed as follows:
  *         For TIM1, the parameter is one of the following values:
  *            @arg TIM_TIM1_TI1_GPIO:                TIM1 TI1 is connected to GPIO
  *            @arg TIM_TIM1_TI1_COMP1:               TIM1 TI1 is connected to COMP1 output
  *            @arg TIM_TIM1_TI1_COMP2:               TIM1 TI1 is connected to COMP2 output
  *
  *         For TIM2, the parameter is one of the following values:
  *            @arg TIM_TIM2_TI1_GPIO:                TIM2 TI1 is connected to GPIO
  *            @arg TIM_TIM2_TI1_COMP1:               TIM2 TI1 is connected to COMP1 output
  *            @arg TIM_TIM2_TI1_COMP2:               TIM2 TI1 is connected to COMP1 output
  *            @arg TIM_TIM2_TI2_GPIO:                TIM2 TI2 is connected to GPIO
  *            @arg TIM_TIM2_TI2_COMP1:               TIM2 TI2 is connected to COMP1 output
  *            @arg TIM_TIM2_TI2_COMP2:               TIM2 TI2 is connected to COMP1 output
  *            @arg TIM_TIM2_TI4_GPIO:                TIM2 TI4 is connected to GPIO
  *            @arg TIM_TIM2_TI4_COMP1:               TIM2 TI4 is connected to COMP1 output
  *            @arg TIM_TIM2_TI4_COMP2:               TIM2 TI4 is connected to COMP2 output
  *
  *         For TIM3, the parameter is one of the following values:
  *            @arg TIM_TIM3_TI1_GPIO:                TIM3 TI1 is connected to GPIO
  *            @arg TIM_TIM3_TI1_COMP1:               TIM3 TI1 is connected to COMP1 output
  *            @arg TIM_TIM3_TI1_COMP2:               TIM3 TI1 is connected to COMP2 output
  *            @arg TIM_TIM3_TI2_GPIO:                TIM3 TI2 is connected to GPIO
  *            @arg TIM_TIM3_TI2_COMP1:               TIM3 TI2 is connected to COMP1 output
  *            @arg TIM_TIM3_TI2_COMP2:               TIM3 TI2 is connected to COMP1 output
  *
  *         For TIM4, the parameter is one of the following values:
  *            @arg TIM_TIM4_TI1_GPIO:                TIM4 TI1 is connected to GPIO
  *            @arg TIM_TIM4_TI1_COMP1:               TIM4 TI1 is connected to COMP1 output
  *            @arg TIM_TIM4_TI1_COMP2:               TIM4 TI1 is connected to COMP2 output
  *            @arg TIM_TIM4_TI2_GPIO:                TIM4 TI2 is connected to GPIO
  *            @arg TIM_TIM4_TI2_COMP1:               TIM4 TI2 is connected to COMP1 output
  *            @arg TIM_TIM4_TI2_COMP2:               TIM4 TI2 is connected to COMP2 output
  *
  *         For TIM5, the parameter is one of the following values:
  *            @arg TIM_TIM5_TI1_GPIO:                TIM5 TI1 is connected to GPIO
  *            @arg TIM_TIM5_TI1_LSI:                 TIM5 TI1 is connected to LSI
  *            @arg TIM_TIM5_TI1_LSE:                 TIM5 TI1 is connected to LSE
  *            @arg TIM_TIM5_TI1_RTC_WKUP:            TIM5 TI1 is connected to RTC wakeup interrupt
  *            @arg TIM_TIM5_TI1_COMP1:               TIM5 TI1 is connected to COMP1 output
  *            @arg TIM_TIM5_TI1_COMP2:               TIM5 TI1 is connected to COMP2 output
  *            @arg TIM_TIM5_TI2_GPIO:                TIM5 TI2 is connected to GPIO
  *            @arg TIM_TIM5_TI2_COMP1:               TIM5 TI2 is connected to COMP1 output
  *            @arg TIM_TIM5_TI2_COMP2:               TIM5 TI2 is connected to COMP2 output
  *
  *         For TIM8, the parameter is one of the following values:
  *            @arg TIM_TIM8_TI1_GPIO:                TIM8 TI1 is connected to GPIO
  *            @arg TIM_TIM8_TI1_COMP1:               TIM8 TI1 is connected to COMP1 output
  *            @arg TIM_TIM8_TI1_COMP2:               TIM8 TI1 is connected to COMP2 output
  *
  *         For TIM15, the parameter is one of the following values:
  *            @arg TIM_TIM15_TI1_GPIO:              TIM15 TI1 is connected to GPIO
  *            @arg TIM_TIM15_TI1_LSE:               TIM15 TI1 is connected to LSE
  *            @arg TIM_TIM15_TI1_COMP1:             TIM8 TI1 is connected to COMP1 output
  *            @arg TIM_TIM15_TI1_COMP2:             TIM8 TI1 is connected to COMP2 output
  *            @arg TIM_TIM15_TI2_GPIO:              TIM15 TI2 is connected to GPIO
  *            @arg TIM_TIM15_TI2_TIM2:              TIM15 TI2 is connected to TIM2 CH2
  *            @arg TIM_TIM15_TI2_TIM3:              TIM15 TI2 is connected to TIM3 CH2
  *            @arg TIM_TIM15_TI2_COMP2:             TIM8 TI1 is connected to COMP2 output
  *
  *         For TIM16, the parameter can have the following values:
  *            @arg TIM_TIM16_TI1_GPIO:              TIM16 TI1 is connected to GPIO
  *            @arg TIM_TIM16_TI1_MCO:               TIM16 TI1 is connected to MCO
  *            @arg TIM_TIM16_TI1_LSI:               TIM16 TI1 is connected to LSI
  *            @arg TIM_TIM16_TI1_LSE:               TIM16 TI1 is connected to LSE
  *            @arg TIM_TIM16_TI1_RTC_WKUP:          TIM16 TI1 is connected to RTC wakeup interrupt
  *            @arg TIM_TIM16_TI1_HSE_DIV32:         TIM16 TI1 is connected to HSE/32
  *            @arg TIM_TIM16_TI1_MSIS_1024:         TIM16 TI1 is connected to MSIS/1024
  *            @arg TIM_TIM16_TI1_MSIS_4:            TIM16 TI1 is connected to MSIS/4
  *            @arg TIM_TIM16_TI1_HSI_256:           TIM16 TI1 is connected to HSI/256
  *
  *         For TIM17, the parameter can have the following values:
  *            @arg TIM_TIM17_TI1_GPIO:              TIM17 TI1 is connected to GPIO
  *            @arg TIM_TIM17_TI1_MCO:               TIM17 TI1 is connected to MCO
  *            @arg TIM_TIM17_TI1_LSI:               TIM17 TI1 is connected to LSI
  *            @arg TIM_TIM17_TI1_LSE:               TIM17 TI1 is connected to LSE
  *            @arg TIM_TIM17_TI1_RTC_WKUP:          TIM17 TI1 is connected to RTC wakeup interrupt
  *            @arg TIM_TIM17_TI1_HSE_DIV32:         TIM17 TI1 is connected to HSE/32
  *            @arg TIM_TIM17_TI1_MSIS_1024:         TIM17 TI1 is connected to MSIS/024
  *            @arg TIM_TIM17_TI1_MSIS_4:            TIM17 TI1 is connected to MSIS/4
  *            @arg TIM_TIM17_TI1_HSI_256:           TIM17 TI1 is connected to HSI/256
  *
  *         (*)  Value not defined in all devices. \n
  * @retval HAL status
  */
HAL_StatusTypeDef  HAL_TIMEx_TISelection(TIM_HandleTypeDef *htim, uint32_t TISelection, uint32_t Channel)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_TIM_TISEL_INSTANCE(htim->Instance));
  assert_param(IS_TIM_TISEL(TISelection));

  __HAL_LOCK(htim);

  switch (Channel)
  {
    case TIM_CHANNEL_1:
      MODIFY_REG(htim->Instance->TISEL, TIM_TISEL_TI1SEL, TISelection);
      break;
    case TIM_CHANNEL_2:
      MODIFY_REG(htim->Instance->TISEL, TIM_TISEL_TI2SEL, TISelection);
      break;
    case TIM_CHANNEL_4:
      MODIFY_REG(htim->Instance->TISEL, TIM_TISEL_TI4SEL, TISelection);
      break;
    default:
      status = HAL_ERROR;
      break;
  }

  __HAL_UNLOCK(htim);

  return status;
}

/**
  * @brief  Group channel 5 and channel 1, 2 or 3
  * @param  htim TIM handle.
  * @param  Channels specifies the reference signal(s) the OC5REF is combined with.
  *         This parameter can be any combination of the following values:
  *         TIM_GROUPCH5_NONE: No effect of OC5REF on OC1REFC, OC2REFC and OC3REFC
  *         TIM_GROUPCH5_OC1REFC: OC1REFC is the logical AND of OC1REFC and OC5REF
  *         TIM_GROUPCH5_OC2REFC: OC2REFC is the logical AND of OC2REFC and OC5REF
  *         TIM_GROUPCH5_OC3REFC: OC3REFC is the logical AND of OC3REFC and OC5REF
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_GroupChannel5(TIM_HandleTypeDef *htim, uint32_t Channels)
{
  /* Check parameters */
  assert_param(IS_TIM_COMBINED3PHASEPWM_INSTANCE(htim->Instance));
  assert_param(IS_TIM_GROUPCH5(Channels));

  /* Process Locked */
  __HAL_LOCK(htim);

  htim->State = HAL_TIM_STATE_BUSY;

  /* Clear GC5Cx bit fields */
  htim->Instance->CCR5 &= ~(TIM_CCR5_GC5C3 | TIM_CCR5_GC5C2 | TIM_CCR5_GC5C1);

  /* Set GC5Cx bit fields */
  htim->Instance->CCR5 |= Channels;

  /* Change the htim state */
  htim->State = HAL_TIM_STATE_READY;

  __HAL_UNLOCK(htim);

  return HAL_OK;
}

/**
  * @brief  Disarm the designated break input (when it operates in bidirectional mode).
  * @param  htim TIM handle.
  * @param  BreakInput Break input to disarm
  *          This parameter can be one of the following values:
  *            @arg TIM_BREAKINPUT_BRK: Timer break input
  *            @arg TIM_BREAKINPUT_BRK2: Timer break 2 input
  * @note  The break input can be disarmed only when it is configured in
  *        bidirectional mode and when when MOE is reset.
  * @note  Purpose is to be able to have the input voltage back to high-state,
  *        whatever the time constant on the output .
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_DisarmBreakInput(TIM_HandleTypeDef *htim, uint32_t BreakInput)
{
  HAL_StatusTypeDef status = HAL_OK;
  uint32_t tmpbdtr;

  /* Check the parameters */
  assert_param(IS_TIM_ADVANCED_INSTANCE(htim->Instance));
  assert_param(IS_TIM_BREAKINPUT(BreakInput));

  switch (BreakInput)
  {
    case TIM_BREAKINPUT_BRK:
    {
      /* Check initial conditions */
      tmpbdtr = READ_REG(htim->Instance->BDTR);
      if ((READ_BIT(tmpbdtr, TIM_BDTR_BKBID) == TIM_BDTR_BKBID) &&
          (READ_BIT(tmpbdtr, TIM_BDTR_MOE) == 0U))
      {
        /* Break input BRK is disarmed */
        SET_BIT(htim->Instance->BDTR, TIM_BDTR_BKDSRM);
      }
      break;
    }

    case TIM_BREAKINPUT_BRK2:
    {
      /* Check initial conditions */
      tmpbdtr = READ_REG(htim->Instance->BDTR);
      if ((READ_BIT(tmpbdtr, TIM_BDTR_BK2BID) == TIM_BDTR_BK2BID) &&
          (READ_BIT(tmpbdtr, TIM_BDTR_MOE) == 0U))
      {
        /* Break input BRK is disarmed */
        SET_BIT(htim->Instance->BDTR, TIM_BDTR_BK2DSRM);
      }
      break;
    }
    default:
      status = HAL_ERROR;
      break;
  }

  return status;
}

/**
  * @brief  Arm the designated break input (when it operates in bidirectional mode).
  * @param  htim TIM handle.
  * @param  BreakInput Break input to arm
  *          This parameter can be one of the following values:
  *            @arg TIM_BREAKINPUT_BRK: Timer break input
  *            @arg TIM_BREAKINPUT_BRK2: Timer break 2 input
  * @note  Arming is possible at anytime, even if fault is present.
  * @note  Break input is automatically armed as soon as MOE bit is set.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_ReArmBreakInput(TIM_HandleTypeDef *htim, uint32_t BreakInput)
{
  HAL_StatusTypeDef status = HAL_OK;
  uint32_t tickstart;

  /* Check the parameters */
  assert_param(IS_TIM_ADVANCED_INSTANCE(htim->Instance));
  assert_param(IS_TIM_BREAKINPUT(BreakInput));

  switch (BreakInput)
  {
    case TIM_BREAKINPUT_BRK:
    {
      /* Check initial conditions */
      if (READ_BIT(htim->Instance->BDTR, TIM_BDTR_BKBID) == TIM_BDTR_BKBID)
      {
        /* Break input BRK is re-armed automatically by hardware. Poll to check whether fault condition disappeared */
        /* Init tickstart for timeout management */
        tickstart = HAL_GetTick();
        while (READ_BIT(htim->Instance->BDTR, TIM_BDTR_BKDSRM) != 0UL)
        {
          if ((HAL_GetTick() - tickstart) > TIM_BREAKINPUT_REARM_TIMEOUT)
          {
            /* New check to avoid false timeout detection in case of preemption */
            if (READ_BIT(htim->Instance->BDTR, TIM_BDTR_BKDSRM) != 0UL)
            {
              return HAL_TIMEOUT;
            }
          }
        }
      }
      break;
    }

    case TIM_BREAKINPUT_BRK2:
    {
      /* Check initial conditions */
      if (READ_BIT(htim->Instance->BDTR, TIM_BDTR_BK2BID) == TIM_BDTR_BK2BID)
      {
        /* Break input BRK2 is re-armed automatically by hardware. Poll to check whether fault condition disappeared */
        /* Init tickstart for timeout management */
        tickstart = HAL_GetTick();
        while (READ_BIT(htim->Instance->BDTR, TIM_BDTR_BK2DSRM) != 0UL)
        {
          if ((HAL_GetTick() - tickstart) > TIM_BREAKINPUT_REARM_TIMEOUT)
          {
            /* New check to avoid false timeout detection in case of preemption */
            if (READ_BIT(htim->Instance->BDTR, TIM_BDTR_BK2DSRM) != 0UL)
            {
              return HAL_TIMEOUT;
            }
          }
        }
      }
      break;
    }
    default:
      status = HAL_ERROR;
      break;
  }

  return status;
}

/**
  * @brief  Enable dithering
  * @param  htim TIM handle
  * @note   Main usage is PWM mode
  * @note   This function must be called when timer is stopped or disabled (CEN =0)
  * @note   If dithering is activated, pay attention to ARR, CCRx, CNT interpretation:
  *           - CNT: only CNT[11:0] holds the non-dithered part for 16b timers (or CNT[26:0] for 32b timers)
  *           - ARR: ARR[15:4] holds the non-dithered part, and ARR[3:0] the dither part for 16b timers
  *           - CCRx: CCRx[15:4] holds the non-dithered part, and CCRx[3:0] the dither part for 16b timers
  *           - ARR and CCRx values are limited to 0xFFEF in dithering mode for 16b timers
  *             (corresponds to 4094 for the integer part and 15 for the dithered part).
  * @note   Macros @ref __HAL_TIM_CALC_PERIOD_DITHER() __HAL_TIM_CALC_DELAY_DITHER()  __HAL_TIM_CALC_PULSE_DITHER()
  *         can be used to calculate period (ARR) and delay (CCRx) value.
  * @note   Enabling dithering, modifies automatically values of registers ARR/CCRx to keep the same integer part.
  * @note   Enabling dithering, modifies automatically values of registers ARR/CCRx to keep the same integer part.
  *         So it may be necessary to read ARR value or CCRx value with macros @ref __HAL_TIM_GET_AUTORELOAD()
  *         __HAL_TIM_GET_COMPARE() and if necessary update Init structure field htim->Init.Period .
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_DitheringEnable(TIM_HandleTypeDef *htim)
{
  /* Check the parameters */
  assert_param(IS_TIM_INSTANCE(htim->Instance));

  SET_BIT(htim->Instance->CR1, TIM_CR1_DITHEN);
  return HAL_OK;
}

/**
  * @brief  Disable dithering
  * @param  htim TIM handle
  * @note   This function must be called when timer is stopped or disabled (CEN =0)
  * @note   If dithering is activated, pay attention to ARR, CCRx, CNT interpretation:
  *           - CNT: only CNT[11:0] holds the non-dithered part for 16b timers (or CNT[26:0] for 32b timers)
  *           - ARR: ARR[15:4] holds the non-dithered part, and ARR[3:0] the dither part for 16b timers
  *           - CCRx: CCRx[15:4] holds the non-dithered part, and CCRx[3:0] the dither part for 16b timers
  *           - ARR and CCRx values are limited to 0xFFEF in dithering mode
  *             (corresponds to 4094 for the integer part and 15 for the dithered part).
  * @note   Disabling dithering, modifies automatically values of registers ARR/CCRx to keep the same integer part.
  *         So it may be necessary to read ARR value or CCRx value with macros @ref __HAL_TIM_GET_AUTORELOAD()
  *         __HAL_TIM_GET_COMPARE() and if necessary update Init structure field htim->Init.Period .
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_DitheringDisable(TIM_HandleTypeDef *htim)
{
  /* Check the parameters */
  assert_param(IS_TIM_INSTANCE(htim->Instance));

  CLEAR_BIT(htim->Instance->CR1, TIM_CR1_DITHEN);
  return HAL_OK;
}

/**
  * @brief  Initializes the pulse on compare pulse width and pulse prescaler
  * @param  htim TIM Output Compare handle
  * @param  PulseWidthPrescaler  Pulse width prescaler
  *         This parameter can be a number between Min_Data = 0x0 and Max_Data = 0x7
  * @param  PulseWidth  Pulse width
  *         This parameter can be a number between Min_Data = 0x00 and Max_Data = 0xFF
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_OC_ConfigPulseOnCompare(TIM_HandleTypeDef *htim,
                                                    uint32_t PulseWidthPrescaler,
                                                    uint32_t PulseWidth)
{
  uint32_t tmpecr;

  /* Check the parameters */
  assert_param(IS_TIM_PULSEONCOMPARE_INSTANCE(htim->Instance));
  assert_param(IS_TIM_PULSEONCOMPARE_WIDTH(PulseWidth));
  assert_param(IS_TIM_PULSEONCOMPARE_WIDTHPRESCALER(PulseWidthPrescaler));

  /* Process Locked */
  __HAL_LOCK(htim);

  /* Set the TIM state */
  htim->State = HAL_TIM_STATE_BUSY;

  /* Get the TIMx ECR register value */
  tmpecr = htim->Instance->ECR;
  /* Reset the Pulse width prescaler and the Pulse width */
  tmpecr &= ~(TIM_ECR_PWPRSC | TIM_ECR_PW);
  /* Set the Pulse width prescaler and Pulse width*/
  tmpecr |= PulseWidthPrescaler << TIM_ECR_PWPRSC_Pos;
  tmpecr |= PulseWidth << TIM_ECR_PW_Pos;
  /* Write to TIMx ECR */
  htim->Instance->ECR = tmpecr;

  /* Change the TIM state */
  htim->State = HAL_TIM_STATE_READY;

  /* Release Lock */
  __HAL_UNLOCK(htim);

  return HAL_OK;
}

/**
  * @brief  Configure preload source of Slave Mode Selection bitfield (SMS in SMCR register)
  * @param  htim TIM handle
  * @param  Source Source of slave mode selection preload
  *         This parameter can be one of the following values:
  *            @arg TIM_SMS_PRELOAD_SOURCE_UPDATE: Timer update event is used as source of Slave Mode Selection preload
  *            @arg TIM_SMS_PRELOAD_SOURCE_INDEX: Timer index event is used as source of Slave Mode Selection preload
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_ConfigSlaveModePreload(TIM_HandleTypeDef *htim, uint32_t Source)
{
  /* Check the parameters */
  assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance));
  assert_param(IS_TIM_SLAVE_PRELOAD_SOURCE(Source));

  MODIFY_REG(htim->Instance->SMCR, TIM_SMCR_SMSPS, Source);
  return HAL_OK;
}

/**
  * @brief  Enable preload of Slave Mode Selection bitfield (SMS in SMCR register)
  * @param  htim TIM handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_EnableSlaveModePreload(TIM_HandleTypeDef *htim)
{
  /* Check the parameters */
  assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance));

  SET_BIT(htim->Instance->SMCR, TIM_SMCR_SMSPE);
  return HAL_OK;
}

/**
  * @brief  Disable preload of Slave Mode Selection bitfield (SMS in SMCR register)
  * @param  htim TIM handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_DisableSlaveModePreload(TIM_HandleTypeDef *htim)
{
  /* Check the parameters */
  assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance));

  CLEAR_BIT(htim->Instance->SMCR, TIM_SMCR_SMSPE);
  return HAL_OK;
}

/**
  * @brief  Enable deadtime preload
  * @param  htim TIM handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_EnableDeadTimePreload(TIM_HandleTypeDef *htim)
{
  /* Check the parameters */
  assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance));

  SET_BIT(htim->Instance->DTR2, TIM_DTR2_DTPE);
  return HAL_OK;
}

/**
  * @brief  Disable deadtime preload
  * @param  htim TIM handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_DisableDeadTimePreload(TIM_HandleTypeDef *htim)
{
  /* Check the parameters */
  assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance));

  CLEAR_BIT(htim->Instance->DTR2, TIM_DTR2_DTPE);
  return HAL_OK;
}

/**
  * @brief  Configure deadtime
  * @param  htim TIM handle
  * @param  Deadtime Deadtime value
  * @note   This parameter can be a number between Min_Data = 0x00 and Max_Data = 0xFF
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_ConfigDeadTime(TIM_HandleTypeDef *htim, uint32_t Deadtime)
{
  /* Check the parameters */
  assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance));
  assert_param(IS_TIM_DEADTIME(Deadtime));

  MODIFY_REG(htim->Instance->BDTR, TIM_BDTR_DTG, Deadtime);
  return HAL_OK;
}

/**
  * @brief  Configure asymmetrical deadtime
  * @param  htim TIM handle
  * @param  FallingDeadtime Falling edge deadtime value
  * @note   This parameter can be a number between Min_Data = 0x00 and Max_Data = 0xFF
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_ConfigAsymmetricalDeadTime(TIM_HandleTypeDef *htim, uint32_t FallingDeadtime)
{
  /* Check the parameters */
  assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance));
  assert_param(IS_TIM_DEADTIME(FallingDeadtime));

  MODIFY_REG(htim->Instance->DTR2, TIM_DTR2_DTGF, FallingDeadtime);
  return HAL_OK;
}

/**
  * @brief  Enable asymmetrical deadtime
  * @param  htim TIM handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_EnableAsymmetricalDeadTime(TIM_HandleTypeDef *htim)
{
  /* Check the parameters */
  assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance));

  SET_BIT(htim->Instance->DTR2, TIM_DTR2_DTAE);
  return HAL_OK;
}

/**
  * @brief  Disable asymmetrical deadtime
  * @param  htim TIM handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_DisableAsymmetricalDeadTime(TIM_HandleTypeDef *htim)
{
  /* Check the parameters */
  assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance));

  CLEAR_BIT(htim->Instance->DTR2, TIM_DTR2_DTAE);
  return HAL_OK;
}

/**
  * @brief  Configures the encoder index.
  * @note   warning in case of encoder mode clock plus direction
  *                    @ref TIM_ENCODERMODE_CLOCKPLUSDIRECTION_X1 or @ref TIM_ENCODERMODE_CLOCKPLUSDIRECTION_X2
  *         Direction must be set to @ref TIM_ENCODERINDEX_DIRECTION_UP_DOWN
  * @param  htim TIM handle.
  * @param  sEncoderIndexConfig Encoder index configuration
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_ConfigEncoderIndex(TIM_HandleTypeDef *htim,
                                               TIMEx_EncoderIndexConfigTypeDef *sEncoderIndexConfig)
{
  /* Check the parameters */
  assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
  assert_param(IS_TIM_ENCODERINDEX_POLARITY(sEncoderIndexConfig->Polarity));
  assert_param(IS_TIM_ENCODERINDEX_PRESCALER(sEncoderIndexConfig->Prescaler));
  assert_param(IS_TIM_ENCODERINDEX_FILTER(sEncoderIndexConfig->Filter));
  assert_param(IS_TIM_ENCODERINDEX_BLANKING(sEncoderIndexConfig->Blanking));
  assert_param(IS_FUNCTIONAL_STATE(sEncoderIndexConfig->FirstIndexEnable));
  assert_param(IS_TIM_ENCODERINDEX_POSITION(sEncoderIndexConfig->Position));
  assert_param(IS_TIM_ENCODERINDEX_DIRECTION(sEncoderIndexConfig->Direction));

  /* Process Locked */
  __HAL_LOCK(htim);

  /* Configures the TIMx External Trigger (ETR) which is used as Index input */
  TIM_ETR_SetConfig(htim->Instance,
                    sEncoderIndexConfig->Prescaler,
                    sEncoderIndexConfig->Polarity,
                    sEncoderIndexConfig->Filter);

  /* Configures the encoder index */
  if (HAL_GetREVID() >= REV_ID_B)  /* supported in cut2 */
  {
    MODIFY_REG(htim->Instance->ECR,
               TIM_ECR_IDIR_Msk | TIM_ECR_IBLK_Msk | TIM_ECR_FIDX_Msk | TIM_ECR_IPOS_Msk,
               (sEncoderIndexConfig->Direction |
                (sEncoderIndexConfig->Blanking) |
                ((sEncoderIndexConfig->FirstIndexEnable == ENABLE) ? (0x1U << TIM_ECR_FIDX_Pos) : 0U) |
                sEncoderIndexConfig->Position |
                TIM_ECR_IE));
  }
  else
  {
    MODIFY_REG(htim->Instance->ECR,
               TIM_ECR_IDIR_Msk | TIM_ECR_FIDX_Msk | TIM_ECR_IPOS_Msk,
               (sEncoderIndexConfig->Direction |
                ((sEncoderIndexConfig->FirstIndexEnable == ENABLE) ? (0x1U << TIM_ECR_FIDX_Pos) : 0U) |
                sEncoderIndexConfig->Position |
                TIM_ECR_IE));
  }

  __HAL_UNLOCK(htim);

  return HAL_OK;
}

/**
  * @brief  Enable encoder index
  * @param  htim TIM handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_EnableEncoderIndex(TIM_HandleTypeDef *htim)
{
  /* Check the parameters */
  assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));

  SET_BIT(htim->Instance->ECR, TIM_ECR_IE);
  return HAL_OK;
}

/**
  * @brief  Disable encoder index
  * @param  htim TIM handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_DisableEncoderIndex(TIM_HandleTypeDef *htim)
{
  /* Check the parameters */
  assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));

  CLEAR_BIT(htim->Instance->ECR, TIM_ECR_IE);
  return HAL_OK;
}

/**
  * @brief  Enable encoder first index
  * @param  htim TIM handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_EnableEncoderFirstIndex(TIM_HandleTypeDef *htim)
{
  /* Check the parameters */
  assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));

  SET_BIT(htim->Instance->ECR, TIM_ECR_FIDX);
  return HAL_OK;
}

/**
  * @brief  Disable encoder first index
  * @param  htim TIM handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_DisableEncoderFirstIndex(TIM_HandleTypeDef *htim)
{
  /* Check the parameters */
  assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));

  CLEAR_BIT(htim->Instance->ECR, TIM_ECR_FIDX);
  return HAL_OK;
}

/**
  * @}
  */

/** @defgroup TIMEx_Exported_Functions_Group6 Extended Callbacks functions
  * @brief    Extended Callbacks functions
  *
@verbatim
  ==============================================================================
                    ##### Extended Callbacks functions #####
  ==============================================================================
  [..]
    This section provides Extended TIM callback functions:
    (+) Timer Commutation callback
    (+) Timer Break callback

@endverbatim
  * @{
  */

/**
  * @brief  Hall commutation changed callback in non-blocking mode
  * @param  htim TIM handle
  * @retval None
  */
__weak void HAL_TIMEx_CommutCallback(TIM_HandleTypeDef *htim)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(htim);

  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_TIMEx_CommutCallback could be implemented in the user file
   */
}
/**
  * @brief  Hall commutation changed half complete callback in non-blocking mode
  * @param  htim TIM handle
  * @retval None
  */
__weak void HAL_TIMEx_CommutHalfCpltCallback(TIM_HandleTypeDef *htim)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(htim);

  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_TIMEx_CommutHalfCpltCallback could be implemented in the user file
   */
}

/**
  * @brief  Hall Break detection callback in non-blocking mode
  * @param  htim TIM handle
  * @retval None
  */
__weak void HAL_TIMEx_BreakCallback(TIM_HandleTypeDef *htim)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(htim);

  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_TIMEx_BreakCallback could be implemented in the user file
   */
}

/**
  * @brief  Hall Break2 detection callback in non blocking mode
  * @param  htim: TIM handle
  * @retval None
  */
__weak void HAL_TIMEx_Break2Callback(TIM_HandleTypeDef *htim)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(htim);

  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_TIMEx_Break2Callback could be implemented in the user file
   */
}

/**
  * @brief  Encoder index callback in non-blocking mode
  * @param  htim TIM handle
  * @retval None
  */
__weak void HAL_TIMEx_EncoderIndexCallback(TIM_HandleTypeDef *htim)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(htim);

  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_TIMEx_EncoderIndexCallback could be implemented in the user file
   */
}

/**
  * @brief  Direction change callback in non-blocking mode
  * @param  htim TIM handle
  * @retval None
  */
__weak void HAL_TIMEx_DirectionChangeCallback(TIM_HandleTypeDef *htim)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(htim);

  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_TIMEx_DirectionChangeCallback could be implemented in the user file
   */
}

/**
  * @brief  Index error callback in non-blocking mode
  * @param  htim TIM handle
  * @retval None
  */
__weak void HAL_TIMEx_IndexErrorCallback(TIM_HandleTypeDef *htim)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(htim);

  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_TIMEx_IndexErrorCallback could be implemented in the user file
   */
}

/**
  * @brief  Transition error callback in non-blocking mode
  * @param  htim TIM handle
  * @retval None
  */
__weak void HAL_TIMEx_TransitionErrorCallback(TIM_HandleTypeDef *htim)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(htim);

  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_TIMEx_TransitionErrorCallback could be implemented in the user file
   */
}

/**
  * @}
  */

/** @defgroup TIMEx_Exported_Functions_Group7 Extended Peripheral State functions
  * @brief    Extended Peripheral State functions
  *
@verbatim
  ==============================================================================
                ##### Extended Peripheral State functions #####
  ==============================================================================
  [..]
    This subsection permits to get in run-time the status of the peripheral
    and the data flow.

@endverbatim
  * @{
  */

/**
  * @brief  Return the TIM Hall Sensor interface handle state.
  * @param  htim TIM Hall Sensor handle
  * @retval HAL state
  */
HAL_TIM_StateTypeDef HAL_TIMEx_HallSensor_GetState(TIM_HandleTypeDef *htim)
{
  return htim->State;
}

/**
  * @brief  Return actual state of the TIM complementary channel.
  * @param  htim TIM handle
  * @param  ChannelN TIM Complementary channel
  *          This parameter can be one of the following values:
  *            @arg TIM_CHANNEL_1: TIM Channel 1
  *            @arg TIM_CHANNEL_2: TIM Channel 2
  *            @arg TIM_CHANNEL_3: TIM Channel 3
  *            @arg TIM_CHANNEL_4: TIM Channel 4
  * @retval TIM Complementary channel state
  */
HAL_TIM_ChannelStateTypeDef HAL_TIMEx_GetChannelNState(TIM_HandleTypeDef *htim,  uint32_t ChannelN)
{
  HAL_TIM_ChannelStateTypeDef channel_state;

  /* Check the parameters */
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, ChannelN));

  channel_state = TIM_CHANNEL_N_STATE_GET(htim, ChannelN);

  return channel_state;
}
/**
  * @}
  */

/**
  * @}
  */

/* Private functions ---------------------------------------------------------*/
/** @defgroup TIMEx_Private_Functions TIMEx Private Functions
  * @{
  */

/**
  * @brief  TIM DMA Commutation callback.
  * @param  hdma pointer to DMA handle.
  * @retval None
  */
void TIMEx_DMACommutationCplt(DMA_HandleTypeDef *hdma)
{
  TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;

  /* Change the htim state */
  htim->State = HAL_TIM_STATE_READY;

#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
  htim->CommutationCallback(htim);
#else
  HAL_TIMEx_CommutCallback(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}

/**
  * @brief  TIM DMA Commutation half complete callback.
  * @param  hdma pointer to DMA handle.
  * @retval None
  */
void TIMEx_DMACommutationHalfCplt(DMA_HandleTypeDef *hdma)
{
  TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;

  /* Change the htim state */
  htim->State = HAL_TIM_STATE_READY;

#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
  htim->CommutationHalfCpltCallback(htim);
#else
  HAL_TIMEx_CommutHalfCpltCallback(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}


/**
  * @brief  TIM DMA Delay Pulse complete callback (complementary channel).
  * @param  hdma pointer to DMA handle.
  * @retval None
  */
static void TIM_DMADelayPulseNCplt(DMA_HandleTypeDef *hdma)
{
  TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;

  if (hdma == htim->hdma[TIM_DMA_ID_CC1])
  {
    htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
  }
  else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
  {
    htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
  }
  else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
  {
    htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
  }
  else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
  {
    htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
  }
  else
  {
    /* nothing to do */
  }

#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
  htim->PWM_PulseFinishedCallback(htim);
#else
  HAL_TIM_PWM_PulseFinishedCallback(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */

  htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
}

/**
  * @brief  TIM DMA error callback (complementary channel)
  * @param  hdma pointer to DMA handle.
  * @retval None
  */
static void TIM_DMAErrorCCxN(DMA_HandleTypeDef *hdma)
{
  TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;

  if (hdma == htim->hdma[TIM_DMA_ID_CC1])
  {
    htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
    TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
  }
  else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
  {
    htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
    TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
  }
  else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
  {
    htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
    TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
  }
  else
  {
    /* nothing to do */
  }

#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
  htim->ErrorCallback(htim);
#else
  HAL_TIM_ErrorCallback(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */

  htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
}

/**
  * @brief  Enables or disables the TIM Capture Compare Channel xN.
  * @param  TIMx to select the TIM peripheral
  * @param  Channel specifies the TIM Channel
  *          This parameter can be one of the following values:
  *            @arg TIM_CHANNEL_1: TIM Channel 1
  *            @arg TIM_CHANNEL_2: TIM Channel 2
  *            @arg TIM_CHANNEL_3: TIM Channel 3
  *            @arg TIM_CHANNEL_4: TIM Channel 4
  * @param  ChannelNState specifies the TIM Channel CCxNE bit new state.
  *          This parameter can be: TIM_CCxN_ENABLE or TIM_CCxN_Disable.
  * @retval None
  */
static void TIM_CCxNChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelNState)
{
  uint32_t tmp;

  tmp = TIM_CCER_CC1NE << (Channel & 0x1FU); /* 0x1FU = 31 bits max shift */

  /* Reset the CCxNE Bit */
  TIMx->CCER &=  ~tmp;

  /* Set or reset the CCxNE Bit */
  TIMx->CCER |= (uint32_t)(ChannelNState << (Channel & 0x1FU)); /* 0x1FU = 31 bits max shift */
}

/**
  * @brief  Enable HSE/32 .
  * @note  This function should be called to enable the HSE/32 when it is selected as TIM17_TI1 or TIM16_TI1 input
  *        source.
  * @param htim TIM handle.
  * @retval  HAL status.
  */
HAL_StatusTypeDef HAL_TIMEx_EnableHSE32(TIM_HandleTypeDef *htim)
{
  /* Check the parameters */
  assert_param(IS_TIM_HSE32_INSTANCE(htim->Instance));

  /* The Cut1.x contains a limitation when using HSE/32 as input capture for TIM16
     Bug ID 56: On TIM16, the HSE/32 input capture requires the set of HSE32EN bit of TIM17 Option Register */
  if (HAL_GetREVID() < REV_ID_B)  /* Cut1.x */
  {
    __HAL_RCC_TIM17_CLK_ENABLE();
    SET_BIT(TIM17->OR1, TIM_OR1_HSE32EN);
  }
  else
  {
    SET_BIT(htim->Instance->OR1, TIM_OR1_HSE32EN);
  }

  return HAL_OK;
}

/**
  * @brief  Disable HSE/32 .
  * @note  This function should be called to Disable the HSE/32 .
  * @param htim TIM handle.
  * @retval  HAL status.
  */
HAL_StatusTypeDef HAL_TIMEx_DisableHSE32(TIM_HandleTypeDef *htim)
{
  /* Check the parameters */
  assert_param(IS_TIM_HSE32_INSTANCE(htim->Instance));

  if (HAL_GetREVID() < REV_ID_B) /* Cut1.x */
  {
    __HAL_RCC_TIM17_CLK_ENABLE();
    CLEAR_BIT(TIM17->OR1, TIM_OR1_HSE32EN);
  }
  else
  {
    CLEAR_BIT(htim->Instance->OR1, TIM_OR1_HSE32EN);
  }

  return HAL_OK;
}
/**
  * @}
  */

#endif /* HAL_TIM_MODULE_ENABLED */
/**
  * @}
  */

/**
  * @}
  */