Newer
Older
mbed-os / targets / TARGET_STM / TARGET_STM32U5 / STM32Cube_FW / STM32U5xx_HAL_Driver / stm32u5xx_ll_utils.c
@Jerome Coutant Jerome Coutant on 10 Sep 2021 31 KB STM32U5: STM32Cube_FW_U5_V1.0.0
/**
  ******************************************************************************
  * @file    stm32u5xx_ll_utils.c
  * @author  MCD Application Team
  * @brief   UTILS LL module driver.
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2021 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* Includes ------------------------------------------------------------------*/
#include "stm32u5xx_ll_utils.h"
#include "stm32u5xx_ll_rcc.h"
#include "stm32u5xx_ll_system.h"
#include "stm32u5xx_ll_pwr.h"
#include <math.h>
#ifdef  USE_FULL_ASSERT
#include "stm32_assert.h"
#else
#define assert_param(expr) ((void)0U)
#endif /* USE_FULL_ASSERT */

/** @addtogroup STM32U5xx_LL_Driver
  * @{
  */

/** @addtogroup UTILS_LL
  * @{
  */

/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/** @addtogroup UTILS_LL_Private_Constants
  * @{
  */
#define UTILS_MAX_FREQUENCY_SCALE0  160000000U         /*!< Maximum frequency for system clock at power scale0, in Hz */
#define UTILS_MAX_FREQUENCY_SCALE1  100000000U         /*!< Maximum frequency for system clock at power scale1, in Hz */
#define UTILS_MAX_FREQUENCY_SCALE2   50000000U         /*!< Maximum frequency for system clock at power scale2, in Hz */
#define UTILS_MAX_FREQUENCY_SCALE3   24000000U         /*!< Maximum frequency for system clock at power scale3, in Hz */

/* Defines used for PLL range */
#define UTILS_PLLVCO_INPUT_MIN        4000000U         /*!< Frequency min for PLLVCO input, in Hz   */
#define UTILS_PLLVCO_INPUT_MAX       16000000U         /*!< Frequency max for PLLVCO input, in Hz   */
#define UTILS_PLLVCO_OUTPUT_MIN      64000000U         /*!< Frequency min for PLLVCO output, in Hz  */
#define UTILS_PLLVCO_OUTPUT_MAX      344000000U        /*!< Frequency max for PLLVCO output, in Hz  */

/* Defines used for HSE range */
#define UTILS_HSE_FREQUENCY_MIN      4000000U          /*!< Frequency min for HSE frequency, in Hz   */
#define UTILS_HSE_FREQUENCY_MAX      50000000U         /*!< Frequency max for HSE frequency, in Hz   */

/* Defines used for FLASH latency according to HCLK Frequency */
#define UTILS_SCALE1_LATENCY0_FREQ    (32000000U)      /*!< HCLK frequency to set FLASH latency 0 in power scale 1 */
#define UTILS_SCALE1_LATENCY1_FREQ    (64000000U)      /*!< HCLK frequency to set FLASH latency 1 in power scale 1 */
#define UTILS_SCALE1_LATENCY2_FREQ    (96000000U)      /*!< HCLK frequency to set FLASH latency 2 in power scale 1 */
#define UTILS_SCALE1_LATENCY3_FREQ    (128000000U)     /*!< HCLK frequency to set FLASH latency 3 in power scale 1 */
#define UTILS_SCALE1_LATENCY4_FREQ    (160000000U)     /*!< HCLK frequency to set FLASH latency 4 in power scale 1 */
#define UTILS_SCALE2_LATENCY0_FREQ    (25000000U)      /*!< HCLK frequency to set FLASH latency 0 in power scale 2 */
#define UTILS_SCALE2_LATENCY1_FREQ    (50000000U)      /*!< HCLK frequency to set FLASH latency 1 in power scale 2 */
#define UTILS_SCALE2_LATENCY2_FREQ    (75000000U)      /*!< HCLK frequency to set FLASH latency 2 in power scale 2 */
#define UTILS_SCALE2_LATENCY3_FREQ    (100000000U)     /*!< HCLK frequency to set FLASH latency 3 in power scale 2 */
#define UTILS_SCALE3_LATENCY0_FREQ    (12.5000000)    /*!< HCLK frequency to set FLASH latency 0 in power scale 3 */
#define UTILS_SCALE3_LATENCY1_FREQ    (25000000U)      /*!< HCLK frequency to set FLASH latency 1 in power scale 3 */
#define UTILS_SCALE3_LATENCY2_FREQ    (37.5000000)    /*!< HCLK frequency to set FLASH latency 2 in power scale 3 */
#define UTILS_SCALE3_LATENCY3_FREQ    (50000000U)      /*!< HCLK frequency to set FLASH latency 3 in power scale 3 */
#define UTILS_SCALE4_LATENCY0_FREQ    (8000000U)       /*!< HCLK frequency to set FLASH latency 0 in power scale 4 */
#define UTILS_SCALE4_LATENCY1_FREQ    (16000000U)      /*!< HCLK frequency to set FLASH latency 1 in power scale 4 */
#define UTILS_SCALE4_LATENCY2_FREQ    (24000000U)      /*!< HCLK frequency to set FLASH latency 2 in power scale 4 */
/**
  * @}
  */

/* Private macros ------------------------------------------------------------*/
/** @addtogroup UTILS_LL_Private_Macros
  * @{
  */
#define IS_LL_UTILS_SYSCLK_DIV(__VALUE__) (((__VALUE__) == LL_RCC_SYSCLK_DIV_1)   \
                                           || ((__VALUE__) == LL_RCC_SYSCLK_DIV_2)   \
                                           || ((__VALUE__) == LL_RCC_SYSCLK_DIV_4)   \
                                           || ((__VALUE__) == LL_RCC_SYSCLK_DIV_8)   \
                                           || ((__VALUE__) == LL_RCC_SYSCLK_DIV_16)  \
                                           || ((__VALUE__) == LL_RCC_SYSCLK_DIV_64)  \
                                           || ((__VALUE__) == LL_RCC_SYSCLK_DIV_128) \
                                           || ((__VALUE__) == LL_RCC_SYSCLK_DIV_256) \
                                           || ((__VALUE__) == LL_RCC_SYSCLK_DIV_512))

#define IS_LL_UTILS_APB1_DIV(__VALUE__) (((__VALUE__) == LL_RCC_APB1_DIV_1) \
                                         || ((__VALUE__) == LL_RCC_APB1_DIV_2) \
                                         || ((__VALUE__) == LL_RCC_APB1_DIV_4) \
                                         || ((__VALUE__) == LL_RCC_APB1_DIV_8) \
                                         || ((__VALUE__) == LL_RCC_APB1_DIV_16))

#define IS_LL_UTILS_APB2_DIV(__VALUE__) (((__VALUE__) == LL_RCC_APB2_DIV_1) \
                                         || ((__VALUE__) == LL_RCC_APB2_DIV_2) \
                                         || ((__VALUE__) == LL_RCC_APB2_DIV_4) \
                                         || ((__VALUE__) == LL_RCC_APB2_DIV_8) \
                                         || ((__VALUE__) == LL_RCC_APB2_DIV_16))

#define IS_LL_UTILS_APB3_DIV(__VALUE__) (((__VALUE__) == LL_RCC_APB3_DIV_1) \
                                         || ((__VALUE__) == LL_RCC_APB3_DIV_2) \
                                         || ((__VALUE__) == LL_RCC_APB3_DIV_4) \
                                         || ((__VALUE__) == LL_RCC_APB3_DIV_8) \
                                         || ((__VALUE__) == LL_RCC_APB3_DIV_16))

#define IS_LL_UTILS_PLLM_VALUE(__VALUE__) ((1U <= (__VALUE__)) && ((__VALUE__) <= 16U))

#define IS_LL_UTILS_PLLN_VALUE(__VALUE__) ((4U <= (__VALUE__)) && ((__VALUE__) <= 512U))

#define IS_LL_UTILS_PLLR_VALUE(__VALUE__) ((1U <= (__VALUE__)) && ((__VALUE__) <= 128U))

#define IS_LL_UTILS_PLLVCO_INPUT(__VALUE__)  ((UTILS_PLLVCO_INPUT_MIN <= (__VALUE__))\
                                              && ((__VALUE__) <= UTILS_PLLVCO_INPUT_MAX))

#define IS_LL_UTILS_PLLVCO_OUTPUT(__VALUE__) ((UTILS_PLLVCO_OUTPUT_MIN <= (__VALUE__))\
                                              && ((__VALUE__) <= UTILS_PLLVCO_OUTPUT_MAX))

#define IS_LL_UTILS_PLL_FREQUENCY(__VALUE__) ((LL_PWR_GetRegulVoltageScaling() == LL_PWR_REGU_VOLTAGE_SCALE4) ? \
                                              ((__VALUE__) <= UTILS_MAX_FREQUENCY_SCALE0) : \
                                              (LL_PWR_GetRegulVoltageScaling() == LL_PWR_REGU_VOLTAGE_SCALE1) ? \
                                              ((__VALUE__) <= UTILS_MAX_FREQUENCY_SCALE1) : \
                                              (LL_PWR_GetRegulVoltageScaling() == LL_PWR_REGU_VOLTAGE_SCALE2) ? \
                                              ((__VALUE__) <= UTILS_MAX_FREQUENCY_SCALE2) : \
                                              ((__VALUE__) <= UTILS_MAX_FREQUENCY_SCALE3))

#define IS_LL_UTILS_HSE_BYPASS(__STATE__) (((__STATE__) == LL_UTILS_HSEBYPASS_ON) \
                                           || ((__STATE__) == LL_UTILS_HSEBYPASS_OFF))

#define IS_LL_UTILS_HSE_FREQUENCY(__FREQUENCY__) (((__FREQUENCY__) >= UTILS_HSE_FREQUENCY_MIN)\
                                                  && ((__FREQUENCY__) <= UTILS_HSE_FREQUENCY_MAX))
/**
  * @}
  */
/* Private function prototypes -----------------------------------------------*/
/** @defgroup UTILS_LL_Private_Functions UTILS Private functions
  * @{
  */
static uint32_t    UTILS_GetPLLOutputFrequency(uint32_t PLL_InputFrequency,
                                               LL_UTILS_PLLInitTypeDef *UTILS_PLLInitStruct);
static ErrorStatus UTILS_EnablePLLAndSwitchSystem(uint32_t SYSCLK_Frequency,
                                                  LL_UTILS_ClkInitTypeDef *UTILS_ClkInitStruct);
static ErrorStatus UTILS_PLL_IsBusy(void);
/**
  * @}
  */

/* Exported functions --------------------------------------------------------*/
/** @addtogroup UTILS_LL_Exported_Functions
  * @{
  */

/** @addtogroup UTILS_LL_EF_DELAY
  * @{
  */

/**
  * @brief  This function configures the Cortex-M SysTick source to have 1ms time base.
  * @note   When a RTOS is used, it is recommended to avoid changing the Systick
  *         configuration by calling this function, for a delay use rather osDelay RTOS service.
  * @param  HCLKFrequency HCLK frequency in Hz
  * @note   HCLK frequency can be calculated thanks to RCC helper macro or function @ref LL_RCC_GetSystemClocksFreq
  * @retval None
  */
void LL_Init1msTick(uint32_t HCLKFrequency)
{
  /* Use frequency provided in argument */
  LL_InitTick(HCLKFrequency, 1000U);
}

/**
  * @brief  This function provides accurate delay (in milliseconds) based
  *         on SysTick counter flag
  * @note   When a RTOS is used, it is recommended to avoid using blocking delay
  *         and use rather osDelay service.
  * @note   To respect 1ms timebase, user should call @ref LL_Init1msTick function which
  *         will configure Systick to 1ms
  * @param  Delay specifies the delay time length, in milliseconds.
  * @retval None
  */

void LL_mDelay(uint32_t Delay)
{
  __IO uint32_t  tmp = SysTick->CTRL;  /* Clear the COUNTFLAG first */
  uint32_t tmpDelay = Delay;

  /* Add this code to indicate that local variable is not used */
  ((void)tmp);

  /* Add a period to guaranty minimum wait */
  if (tmpDelay < LL_MAX_DELAY)
  {
    tmpDelay++;
  }

  while (tmpDelay != 0U)
  {
    if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) != 0U)
    {
      tmpDelay--;
    }
  }
}

/**
  * @}
  */

/** @addtogroup UTILS_EF_SYSTEM
  *  @brief    System Configuration functions
  *
  @verbatim
 ===============================================================================
           ##### System Configuration functions #####
 ===============================================================================
    [..]
         System, AHB and APB buses clocks configuration

         (+) The maximum frequency of the SYSCLK, HCLK, PCLK1 and PCLK2, PCLK3 is
             160000000 Hz.
  @endverbatim
  @internal
             Depending on the device voltage range, the maximum frequency should be
             adapted accordingly:

             (++) Table 1. HCLK clock frequency for STM32U5 devices
             (++) +-----------------------------------------------------------------------------------------------+
             (++) | Latency         |                          HCLK clock frequency (MHz)                         |
             (++) |                 |-----------------------------------------------------------------------------|
             (++) |                 |  voltage range 1  |  voltage range 2 | voltage range 3  | voltage range 4   |
             (++) |                 |       1.2 V       |       1.1 V      |     1.0 V        |      0.9 V        |
             (++) |-----------------|-------------------|------------------|------------------|-------------------|
             (++) |0WS(1 CPU cycles)|   0 < HCLK <= 32  |  0 < HCLK <= 25  |  0 < HCLK <= 12.5| 0 < HCLK <= 8     |
             (++) |-----------------|-------------------|------------------|------------------|-------------------|
             (++) |1WS(2 CPU cycles)|  32 < HCLK <= 64  |  25 < HCLK <= 50 | 12.5 < HCLK <= 25| 0 < HCLK <= 16    |
             (++) |-----------------|-------------------|------------------|------------------|-------------------|
             (++) |2WS(3 CPU cycles)|  64 < HCLK <= 96  |  50 < HCLK <= 75 | 25 < HCLK <= 37.5| 0 < HCLK <= 24    |
             (++) |-----------------|-------------------|------------------|------------------|-------------------|
             (++) |3WS(4 CPU cycles)|  96 < HCLK <= 128 |  75 < HCLK <= 100| 37.5 < HCLK <= 50|                   |
             (++) |-----------------|-------------------|------------------|------------------|                   |
             (++) |4WS(5 CPU cycles)|  128 < HCLK <= 160|                  |                  |                   |
             (++) +-----------------+-------------------+------------------+------------------+-------------------+

  @endinternal
  * @{
  */

/**
  * @brief  This function sets directly SystemCoreClock CMSIS variable.
  * @note   Variable can be calculated also through SystemCoreClockUpdate function.
  * @param  HCLKFrequency HCLK frequency in Hz (can be calculated thanks to RCC helper macro)
  * @retval None
  */
void LL_SetSystemCoreClock(uint32_t HCLKFrequency)
{
  /* HCLK clock frequency */
  SystemCoreClock = HCLKFrequency;
}

/**
  * @brief  Update number of Flash wait states in line with new frequency and current
            voltage range.
  * @param  HCLK_Frequency  HCLK frequency
  * @retval An ErrorStatus enumeration value:
  *          - SUCCESS: Latency has been modified
  *          - ERROR: Latency cannot be modified
  */
ErrorStatus LL_SetFlashLatency(uint32_t HCLK_Frequency)
{
  ErrorStatus status = SUCCESS;
  uint32_t timeout;
  uint32_t getlatency;
  uint32_t latency = LL_FLASH_LATENCY_0;  /* default value 0WS */

  /* Frequency cannot be equal to 0 */
  if (HCLK_Frequency == 0U)
  {
    status = ERROR;
  }
  else
  {
    if (LL_PWR_GetRegulVoltageScaling() == LL_PWR_REGU_VOLTAGE_SCALE1)
    {
      if (HCLK_Frequency <= UTILS_SCALE1_LATENCY0_FREQ)
      {
        /* 0 < HCLK <= 32 => 0WS (1 CPU cycles) : Do nothing, keep latency to default  LL_FLASH_LATENCY_0 */
      }
      else if ((HCLK_Frequency <= UTILS_SCALE1_LATENCY1_FREQ))
      {
        /* 32 < HCLK <=64  => 1WS (2 CPU cycles) */
        latency = LL_FLASH_LATENCY_1;
      }
      else if (HCLK_Frequency <= UTILS_SCALE1_LATENCY2_FREQ)
      {
        /* 64 < HCLK <= 96 => 2WS (3 CPU cycles) */
        latency = LL_FLASH_LATENCY_2;
      }
      else if (HCLK_Frequency <= UTILS_SCALE1_LATENCY3_FREQ)
      {
        /* 96 < HCLK <= 128 => 3WS (4 CPU cycles) */
        latency = LL_FLASH_LATENCY_3;
      }
      else if (HCLK_Frequency <= UTILS_SCALE1_LATENCY4_FREQ)
      {
        /* 128 < HCLK <= 160 => 4WS (5 CPU cycles) */
        latency = LL_FLASH_LATENCY_4;
      }
      else
      {
        status = ERROR;
      }
      /* else HCLK_Frequency <= 10MHz default LL_FLASH_LATENCY_0 0WS */
    }
    else if (LL_PWR_GetRegulVoltageScaling() == LL_PWR_REGU_VOLTAGE_SCALE2)
    {
      if (HCLK_Frequency <= UTILS_SCALE2_LATENCY0_FREQ)
      {
        /* 0 < HCLK <= 25 => 0WS (1 CPU cycles) : Do nothing, keep latency to default  LL_FLASH_LATENCY_0 */
      }
      else if (HCLK_Frequency <= UTILS_SCALE2_LATENCY1_FREQ)
      {
        /* 25 < HCLK <= 50 => 1WS (2 CPU cycles) */
        latency = LL_FLASH_LATENCY_1;
      }
      else if (HCLK_Frequency <= UTILS_SCALE2_LATENCY2_FREQ)
      {
        /* 50 < HCLK <= 75 => 2WS (3 CPU cycles) */
        latency = LL_FLASH_LATENCY_2;
      }
      else if (HCLK_Frequency <= UTILS_SCALE2_LATENCY3_FREQ)
      {
        /* 75 < HCLK <= 100 => 3WS (4 CPU cycles) */
        latency = LL_FLASH_LATENCY_3;
      }
      else
      {
        status = ERROR;
      }
      /* else HCLK_Frequency <= 10MHz default LL_FLASH_LATENCY_0 0WS */
    }
    else if (LL_PWR_GetRegulVoltageScaling() == LL_PWR_REGU_VOLTAGE_SCALE3)
    {
      if ((float_t)HCLK_Frequency  <= UTILS_SCALE3_LATENCY0_FREQ)
      {
        /* 0 < HCLK <= 12.5 => 0WS (1 CPU cycles) : Do nothing, keep latency to default  LL_FLASH_LATENCY_0 */
      }
      else if (HCLK_Frequency <= UTILS_SCALE3_LATENCY1_FREQ)
      {
        /* 12.5 < HCLK <= 25 => 1WS (2 CPU cycles) */
        latency = LL_FLASH_LATENCY_1;
      }
      else if ((float_t)HCLK_Frequency <= UTILS_SCALE3_LATENCY2_FREQ)
      {
        /* 25 < HCLK <= 37.5 => 2WS (3 CPU cycles) */
        latency = LL_FLASH_LATENCY_2;
      }
      else if (HCLK_Frequency <= UTILS_SCALE3_LATENCY3_FREQ)
      {
        /* 37.5 < HCLK <= 50 => 3WS (4 CPU cycles) */
        latency = LL_FLASH_LATENCY_3;
      }
      else
      {
        status = ERROR;
      }
      /* else HCLK_Frequency <= 10MHz default LL_FLASH_LATENCY_0 0WS */
    }
    else
    {
      if (HCLK_Frequency <= UTILS_SCALE4_LATENCY0_FREQ)
      {
        /* 0 < HCLK <= 8 => 0WS (1 CPU cycles) : Do nothing, keep latency to default  LL_FLASH_LATENCY_0 */
      }
      else if (HCLK_Frequency <= UTILS_SCALE4_LATENCY1_FREQ)
      {
        /* 8 < HCLK <= 16 => 1WS (2 CPU cycles) */
        latency = LL_FLASH_LATENCY_1;
      }
      else if (HCLK_Frequency <= UTILS_SCALE4_LATENCY2_FREQ)
      {
        /* 16 < HCLK <= 24 => 2WS (3 CPU cycles) */
        latency = LL_FLASH_LATENCY_2;
      }
      else
      {
        status = ERROR;
      }
      /* else HCLK_Frequency <= 10MHz default LL_FLASH_LATENCY_0 0WS */
    }
  }

  if(status == SUCCESS)
  {
    LL_FLASH_SetLatency(latency);
  
    /* Check that the new number of wait states is taken into account to access the Flash
    memory by reading the FLASH_ACR register */
    timeout = 2;
    do
    {
      /* Wait for Flash latency to be updated */
      getlatency = LL_FLASH_GetLatency();
      timeout--;
    } while ((getlatency != latency) && (timeout > 0U));
  
    if(getlatency != latency)
    {
      status = ERROR;
    }
  }

  return status;
}

/**
  * @brief  This function configures system clock with MSI as clock source of the PLL
  * @note   The application needs to ensure that PLL1, PLL2 and/or PLL3 are disabled.
  * @note   Function is based on the following formula:
  *         - PLL1 output frequency = (((MSI frequency / PLL1M) * PLL1N) / PLL1R)
  *         - PLL1M: ensure that the VCO input frequency ranges from 1 to 16 MHz (PLL1VCO_input = MSI frequency / PLL1M)
  *         - PLL1N: ensure that the VCO output frequency is between 4 and 512 MHz
             (PLL1VCO_output = PLL1VCO_input * PLL1N)
  *         - PLL1R: ensure that max frequency at 160 MHz is reached (PLL1VCO_output / PLL1R)
  * @param  UTILS_PLLInitStruct pointer to a @ref LL_UTILS_PLLInitTypeDef structure that contains
  *                             the configuration information for the PLL1.
  * @param  UTILS_ClkInitStruct pointer to a @ref LL_UTILS_ClkInitTypeDef structure that contains
  *                             the configuration information for the BUS prescalers.
  * @retval An ErrorStatus enumeration value:
  *          - SUCCESS: Max frequency configuration done
  *          - ERROR: Max frequency configuration not done
  */
ErrorStatus LL_PLL_ConfigSystemClock_MSI(LL_UTILS_PLLInitTypeDef *UTILS_PLLInitStruct,
                                          LL_UTILS_ClkInitTypeDef *UTILS_ClkInitStruct)
{
  ErrorStatus status = SUCCESS;
  uint32_t pllfreq;
  uint32_t msi_range;

  /* Check if one of the PLL is enabled */
  if (UTILS_PLL_IsBusy() == SUCCESS)
  {
    /* Get the current MSI range */
    if (LL_RCC_MSI_IsEnabledRangeSelect() != 0U)
    {
      msi_range =  LL_RCC_MSIS_GetRange();
      switch (msi_range)
      {
        case LL_RCC_MSISRANGE_15:    /* MSI = 100 kHz  */
        case LL_RCC_MSISRANGE_14:    /* MSI = 150 kHz  */
        case LL_RCC_MSISRANGE_13:    /* MSI = 200 kHz  */
        case LL_RCC_MSISRANGE_12:    /* MSI = 400 kHz  */
        case LL_RCC_MSISRANGE_11:    /* MSI = 768 kHz  */
        case LL_RCC_MSISRANGE_10:    /* MSI = 1.024 MHz*/
        case LL_RCC_MSISRANGE_9:     /* MSI = 1.536 MHz*/
        case LL_RCC_MSISRANGE_8:     /* MSI = 3.072 MHz*/
        case LL_RCC_MSISRANGE_7:     /* MSI = 1 MHz    */
        case LL_RCC_MSISRANGE_6:     /* MSI = 1.5 MHz  */
        case LL_RCC_MSISRANGE_5:     /* MSI = 2 MHz    */
          /* PLLVCO input frequency is less then 4 MHz*/
          status = ERROR;
          break;

        case LL_RCC_MSISRANGE_0:     /* MSI = 48 MHz   */
        case LL_RCC_MSISRANGE_1:     /* MSI = 24 MHz   */
        case LL_RCC_MSISRANGE_2:     /* MSI = 16 MHz   */
        case LL_RCC_MSISRANGE_3:     /* MSI = 12 MHz   */
        case LL_RCC_MSISRANGE_4:     /* MSI = 4 MHz    */
        default:
          break;
      }
    }
    else
    {
      msi_range = LL_RCC_MSIS_GetRangeAfterStandby();
      switch (msi_range)
      {
        case LL_RCC_MSISSRANGE_5:    /* MSI = 2 MHz    */
        case LL_RCC_MSISSRANGE_6:    /* MSI = 1.5 MHz  */
        case LL_RCC_MSISSRANGE_7:    /* MSI = 1 MHz    */
        case LL_RCC_MSISSRANGE_8:    /* MSI = 3.072 MHz*/
          /* PLLVCO input frequency is less then 4 MHz */
          status = ERROR;
          break;

        case LL_RCC_MSISSRANGE_4:    /* MSI = 4 MHz    */
        default:
          break;
      }
    }

    /* Main PLL configuration and activation */
    if (status != ERROR)
    {
      /* Calculate the new PLL output frequency */
      pllfreq = UTILS_GetPLLOutputFrequency(__LL_RCC_CALC_MSIS_FREQ(LL_RCC_MSI_IsEnabledRangeSelect(), msi_range),
                                            UTILS_PLLInitStruct);

      /* Enable MSI if not enabled */
      if (LL_RCC_MSIS_IsReady() != 1U)
      {
        LL_RCC_MSIS_Enable();
        while ((LL_RCC_MSIS_IsReady() != 1U))
        {
          /* Wait for MSI ready */
        }
      }

      /* Configure PLL1 */
      LL_RCC_PLL1_ConfigDomain_SYS(LL_RCC_PLL1SOURCE_MSIS, UTILS_PLLInitStruct->PLLM, UTILS_PLLInitStruct->PLLN,
                                   UTILS_PLLInitStruct->PLLR);

      /* Enable PLL and switch system clock to PLL */
      status = UTILS_EnablePLLAndSwitchSystem(pllfreq, UTILS_ClkInitStruct);

    }
  }
  else
  {
    /* Current PLL configuration cannot be modified */
    status = ERROR;
  }

  return status;
}

/**
  * @brief  This function configures system clock at maximum frequency with HSI as clock source of the PLL
  * @note   The application need to ensure that PLL1, PLL2 and/or PLL3 are disabled.
  * @note   Function is based on the following formula:
  *         - PLL output frequency = (((HSI frequency / PLLM) * PLLN) / PLLR)
  *         - PLL1M: ensure that the VCO input frequency ranges from 1 to 16 MHz (PLL1VCO_input = MSI frequency / PLL1M)
  *         - PLL1N: ensure that the VCO output frequency is between 4 and 512 MHz
             (PLL1VCO_output = PLL1VCO_input * PLL1N)
  *         - PLL1R: ensure that max frequency at 160 MHz is reached (PLL1VCO_output / PLL1R)
  * @param  UTILS_PLLInitStruct pointer to a @ref LL_UTILS_PLLInitTypeDef structure that contains
  *                             the configuration information for the PLL.
  * @param  UTILS_ClkInitStruct pointer to a @ref LL_UTILS_ClkInitTypeDef structure that contains
  *                             the configuration information for the BUS prescalers.
  * @retval An ErrorStatus enumeration value:
  *          - SUCCESS: Max frequency configuration done
  *          - ERROR: Max frequency configuration not done
  */
ErrorStatus LL_PLL_ConfigSystemClock_HSI(LL_UTILS_PLLInitTypeDef *UTILS_PLLInitStruct,
                                          LL_UTILS_ClkInitTypeDef *UTILS_ClkInitStruct)
{
  ErrorStatus status;
  uint32_t pllfreq;

  /* Check if one of the PLL is enabled */
  if (UTILS_PLL_IsBusy() == SUCCESS)
  {
    /* Calculate the new PLL output frequency */
    pllfreq = UTILS_GetPLLOutputFrequency(HSI_VALUE, UTILS_PLLInitStruct);

    /* Enable HSI if not enabled */
    if (LL_RCC_HSI_IsReady() != 1U)
    {
      LL_RCC_HSI_Enable();
      while (LL_RCC_HSI_IsReady() != 1U)
      {
        /* Wait for HSI ready */
      }
    }

    /* Configure PLL */
    LL_RCC_PLL1_ConfigDomain_SYS(LL_RCC_PLL1SOURCE_HSI, UTILS_PLLInitStruct->PLLM, UTILS_PLLInitStruct->PLLN,
                                 UTILS_PLLInitStruct->PLLR);

    /* Enable PLL and switch system clock to PLL */
    status = UTILS_EnablePLLAndSwitchSystem(pllfreq, UTILS_ClkInitStruct);
  }
  else
  {
    /* Current PLL configuration cannot be modified */
    status = ERROR;
  }

  return status;
}

/**
  * @brief  This function configures system clock with HSE as clock source of the PLL
  * @note   The application need to ensure that PLL, PLLSAI1 and/or PLLSAI2 are disabled.
  * @note   Function is based on the following formula:
  *         - PLL output frequency = (((HSE frequency / PLLM) * PLLN) / PLLR)
  *         - PLL1M: ensure that the VCO input frequency ranges from 1 to 16 MHz (PLL1VCO_input = MSI frequency / PLL1M)
  *         - PLL1N: ensure that the VCO output frequency is between 4 and 512 MHz
             (PLL1VCO_output = PLL1VCO_input * PLL1N)
  *         - PLL1R: ensure that max frequency at 160 MHz is reached (PLL1VCO_output / PLL1R)
  * @param  HSEFrequency Value between Min_Data = 4000000 and Max_Data = 50000000
  * @param  HSEBypass This parameter can be one of the following values:
  *         @arg @ref LL_UTILS_HSEBYPASS_ON
  *         @arg @ref LL_UTILS_HSEBYPASS_OFF
  * @param  UTILS_PLLInitStruct pointer to a @ref LL_UTILS_PLLInitTypeDef structure that contains
  *                             the configuration information for the PLL.
  * @param  UTILS_ClkInitStruct pointer to a @ref LL_UTILS_ClkInitTypeDef structure that contains
  *                             the configuration information for the BUS prescalers.
  * @retval An ErrorStatus enumeration value:
  *          - SUCCESS: Max frequency configuration done
  *          - ERROR: Max frequency configuration not done
  */
ErrorStatus LL_PLL_ConfigSystemClock_HSE(uint32_t HSEFrequency, uint32_t HSEBypass,
                                          LL_UTILS_PLLInitTypeDef *UTILS_PLLInitStruct,
                                          LL_UTILS_ClkInitTypeDef *UTILS_ClkInitStruct)
{
  ErrorStatus status;
  uint32_t pllfreq;

  /* Check the parameters */
  assert_param(IS_LL_UTILS_HSE_FREQUENCY(HSEFrequency));
  assert_param(IS_LL_UTILS_HSE_BYPASS(HSEBypass));

  /* Check if one of the PLL is enabled */
  if (UTILS_PLL_IsBusy() == SUCCESS)
  {
    /* Calculate the new PLL output frequency */
    pllfreq = UTILS_GetPLLOutputFrequency(HSEFrequency, UTILS_PLLInitStruct);

    /* Enable HSE if not enabled */
    if (LL_RCC_HSE_IsReady() != 1U)
    {
      /* Check if need to enable HSE bypass feature or not */
      if (HSEBypass == LL_UTILS_HSEBYPASS_ON)
      {
        LL_RCC_HSE_EnableBypass();
      }
      else
      {
        LL_RCC_HSE_DisableBypass();
      }

      /* Enable HSE */
      LL_RCC_HSE_Enable();
      while (LL_RCC_HSE_IsReady() != 1U)
      {
        /* Wait for HSE ready */
      }
    }

    /* Configure PLL */
    LL_RCC_PLL1_ConfigDomain_SYS(LL_RCC_PLL1SOURCE_HSE, UTILS_PLLInitStruct->PLLM, UTILS_PLLInitStruct->PLLN,
                                 UTILS_PLLInitStruct->PLLR);

    /* Enable PLL and switch system clock to PLL */
    status = UTILS_EnablePLLAndSwitchSystem(pllfreq, UTILS_ClkInitStruct);
  }
  else
  {
    /* Current PLL configuration cannot be modified */
    status = ERROR;
  }

  return status;
}

/**
  * @}
  */

/**
  * @}
  */

/** @addtogroup UTILS_LL_Private_Functions
  * @{
  */

/**
  * @brief  Function to check that PLL can be modified
  * @param  PLL_InputFrequency  PLL input frequency (in Hz)
  * @param  UTILS_PLLInitStruct pointer to a @ref LL_UTILS_PLLInitTypeDef structure that contains
  *                             the configuration information for the PLL.
  * @retval PLL output frequency (in Hz)
  */
static uint32_t UTILS_GetPLLOutputFrequency(uint32_t PLL_InputFrequency, LL_UTILS_PLLInitTypeDef *UTILS_PLLInitStruct)
{
  uint32_t pllfreq;

  /* Check the parameters */
  assert_param(IS_LL_UTILS_PLLM_VALUE(UTILS_PLLInitStruct->PLLM));
  assert_param(IS_LL_UTILS_PLLN_VALUE(UTILS_PLLInitStruct->PLLN));
  assert_param(IS_LL_UTILS_PLLR_VALUE(UTILS_PLLInitStruct->PLLR));

  /* Check different PLL parameters according to RM                          */
  /*  - PLLM: ensure that the VCO input frequency ranges from 1 to 16 MHz.   */
  pllfreq = PLL_InputFrequency / (UTILS_PLLInitStruct->PLLM);
  assert_param(IS_LL_UTILS_PLLVCO_INPUT(pllfreq));

  /*  - PLLN: ensure that the VCO output frequency is between 4 and 512 MHz.*/
  pllfreq = pllfreq * (UTILS_PLLInitStruct->PLLN);
  assert_param(IS_LL_UTILS_PLLVCO_OUTPUT(pllfreq));

  /*  - PLLR: ensure that max frequency at 160 MHz is reached                   */
  pllfreq = pllfreq / (UTILS_PLLInitStruct->PLLR);
  assert_param(IS_LL_UTILS_PLL_FREQUENCY(pllfreq));

  return pllfreq;
}

/**
  * @brief  Function to check that PLL can be modified
  * @retval An ErrorStatus enumeration value:
  *          - SUCCESS: PLL modification can be done
  *          - ERROR: PLL is busy
  */
static ErrorStatus UTILS_PLL_IsBusy(void)
{
  ErrorStatus status = SUCCESS;

  /* Check if PLL1 is busy*/
  if (LL_RCC_PLL1_IsReady() != 0U)
  {
    /* PLL configuration cannot be modified */
    status = ERROR;
  }

  /* Check if PLL2 is busy*/
  if (LL_RCC_PLL2_IsReady() != 0U)
  {
    /* PLL2 configuration cannot be modified */
    status = ERROR;
  }

  /* Check if PLL3 is busy*/
  if (LL_RCC_PLL3_IsReady() != 0U)
  {
    /* PLL3 configuration cannot be modified */
    status = ERROR;
  }

  return status;
}

/**
  * @brief  Function to enable PLL and switch system clock to PLL
  * @param  SYSCLK_Frequency SYSCLK frequency
  * @param  UTILS_ClkInitStruct pointer to a @ref LL_UTILS_ClkInitTypeDef structure that contains
  *                             the configuration information for the BUS prescalers.
  * @retval An ErrorStatus enumeration value:
  *          - SUCCESS: No problem to switch system to PLL
  *          - ERROR: Problem to switch system to PLL
  */
static ErrorStatus UTILS_EnablePLLAndSwitchSystem(uint32_t SYSCLK_Frequency,
                                                  LL_UTILS_ClkInitTypeDef *UTILS_ClkInitStruct)
{
  ErrorStatus status = SUCCESS;
  uint32_t hclk_frequency;

  assert_param(IS_LL_UTILS_SYSCLK_DIV(UTILS_ClkInitStruct->AHBCLKDivider));
  assert_param(IS_LL_UTILS_APB1_DIV(UTILS_ClkInitStruct->APB1CLKDivider));
  assert_param(IS_LL_UTILS_APB2_DIV(UTILS_ClkInitStruct->APB2CLKDivider));
  assert_param(IS_LL_UTILS_APB3_DIV(UTILS_ClkInitStruct->APB3CLKDivider));

  /* Calculate HCLK frequency */
  hclk_frequency = __LL_RCC_CALC_HCLK_FREQ(SYSCLK_Frequency, UTILS_ClkInitStruct->AHBCLKDivider);

  /* Increasing the number of wait states because of higher CPU frequency */
  if (SystemCoreClock < hclk_frequency)
  {
    /* Set FLASH latency to highest latency */
    status = LL_SetFlashLatency(hclk_frequency);
  }

  /* Update system clock configuration */
  if (status == SUCCESS)
  {
    /* Enable PLL1 */
    LL_RCC_PLL1_Enable();
    LL_RCC_PLL1_EnableDomain_SYS();
    while (LL_RCC_PLL1_IsReady() != 1U)
    {
      /* Wait for PLL ready */
    }

    /* Sysclk activation on the main PLL */
    LL_RCC_SetAHBPrescaler(UTILS_ClkInitStruct->AHBCLKDivider);
    LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL1);
    while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL1)
    {
      /* Wait for system clock switch to PLL */
    }

    /* Set APB1, APB2 & APB3 prescaler*/
    LL_RCC_SetAPB1Prescaler(UTILS_ClkInitStruct->APB1CLKDivider);
    LL_RCC_SetAPB2Prescaler(UTILS_ClkInitStruct->APB2CLKDivider);
    LL_RCC_SetAPB3Prescaler(UTILS_ClkInitStruct->APB3CLKDivider);
  }

  /* Decreasing the number of wait states because of lower CPU frequency */
  if (SystemCoreClock > hclk_frequency)
  {
    /* Set FLASH latency to lowest latency */
    status = LL_SetFlashLatency(hclk_frequency);
  }

  /* Update SystemCoreClock variable */
  if (status == SUCCESS)
  {
    LL_SetSystemCoreClock(hclk_frequency);
  }

  return status;
}

/**
  * @}
  */

/**
  * @}
  */

/**
  * @}
  */