Newer
Older
mbed-os / targets / TARGET_Ambiq_Micro / TARGET_Apollo3 / sdk / mcu / apollo3 / hal / am_hal_ctimer.c
//*****************************************************************************
//
//  am_hal_ctimer.c
//! @file
//!
//! @brief Functions for interfacing with the Counter/Timer module.
//!
//! @addtogroup ctimer3 Counter/Timer (CTIMER)
//! @ingroup apollo3hal
//! @{
//
//*****************************************************************************

//*****************************************************************************
//
// Copyright (c) 2020, Ambiq Micro
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from this
// software without specific prior written permission.
//
// Third party software included in this distribution is subject to the
// additional license terms as defined in the /docs/licenses directory.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// This is part of revision 2.4.2 of the AmbiqSuite Development Package.
//
//*****************************************************************************
// SPDX-License-Identifier: BSD-3-Clause

#include <stdint.h>
#include <stdbool.h>
#include "am_mcu_apollo.h"

//*****************************************************************************
//
// Adjacency check
//
// This is related to the timer read workaround. This macro checks to see if
// the two supplied count values are within one "tick" of eachother. It should
// still pass in the event of a timer rollover.
//
//*****************************************************************************
//! Timer read workaround: Do count values differ by one tick or less.
#define adjacent(A, B)      (((A) == (B)) || (((A) + 1) == (B)) || ((B) == 0))

//*****************************************************************************
//
//! Array of function pointers for handling CTimer interrupts.
//
//*****************************************************************************
static am_hal_ctimer_handler_t g_am_hal_ctimer_ppfnHandlers[32];

//
// Store the timer clock source value depending on segment.
// Getting the source clock everytime from the CTRL register will incur bus
// latency.  This table is maintained to minimize the read latency when
// attempting to retrieve the CLKSRC.
// CLKSRC is 5 bits, so uint8_t is adequate for the table.
//
static uint8_t
g_ui8ClkSrc[AM_HAL_CTIMER_TIMERS_NUM][2] =
{
    {0xFF, 0xFF}, {0xFF, 0xFF}, {0xFF, 0xFF}, {0xFF, 0xFF},
    {0xFF, 0xFF}, {0xFF, 0xFF}, {0xFF, 0xFF}, {0xFF, 0xFF}
};

//
// Table of TMR register addresses.
//
static const uint32_t
g_ui32TMRAddrTbl[AM_HAL_CTIMER_TIMERS_NUM] =
{
    AM_REGADDR(CTIMER,TMR0), AM_REGADDR(CTIMER,TMR1), AM_REGADDR(CTIMER,TMR2),
    AM_REGADDR(CTIMER,TMR3), AM_REGADDR(CTIMER,TMR4), AM_REGADDR(CTIMER,TMR5),
    AM_REGADDR(CTIMER,TMR6), AM_REGADDR(CTIMER,TMR7)
};

//
// Given the 5-bit clock source value as an index, this lookup table returns the
// number of LSbs to be masked off for the back2back reads.
//
static const uint8_t
g_ui8TmrClkSrcMask[32] =  // 5-bit field = 32 table entries
{
    0x0F,       //  0: CTIMER_CTRL0_TMRA0CLK_TMRPIN     (CLK_PIN)
    0x0F,       //  1: CTIMER_CTRL0_TMRA0CLK_HFRC_DIV4  (HFRC_12MHZ)
    0x03,       //  2: CTIMER_CTRL0_TMRA0CLK_HFRC_DIV16 (HFRC_3MHZ)
    0x01,       //  3: CTIMER_CTRL0_TMRA0CLK_HFRC_DIV256  (HFRC_187_5KHZ)
    0x01,       //  4: CTIMER_CTRL0_TMRA0CLK_HFRC_DIV1024 (HFRC_47KHZ)
    0x01,       //  5: CTIMER_CTRL0_TMRA0CLK_HFRC_DIV4K (HFRC_12KHZ)
    0x00,       //  6: CTIMER_CTRL0_TMRA0CLK_XT         (XT_32_768KHZ)
    0x00,       //  7: CTIMER_CTRL0_TMRA0CLK_XT_DIV2    (XT_16_384KHZ)
    0x00,       //  8: CTIMER_CTRL0_TMRA0CLK_XT_DIV16   (XT_2_048KHZ)
    0x00,       //  9: CTIMER_CTRL0_TMRA0CLK_XT_DIV128  (XT_256HZ)
    0x00,       // 10: CTIMER_CTRL0_TMRA0CLK_LFRC_DIV2  (LFRC_512HZ)
    0x00,       // 11: CTIMER_CTRL0_TMRA0CLK_LFRC_DIV32 (LFRC_32HZ)
    0x00,       // 12: CTIMER_CTRL0_TMRA0CLK_LFRC_DIV1K (LFRC_1HZ)
    0x00,       // 13: CTIMER_CTRL0_TMRA0CLK_LFRC       (LFRC_1_16HZ)
    0x00,       // 14: CTIMER_CTRL0_TMRA0CLK_RTC_100HZ  (RTC_100HZ)
    0x00,       // 15: CTIMER_CTRL0_TMRA0CLK_HCLK_DIV4  (HCLK_DIV4)
    0x00,       // 16: CTIMER_CTRL0_TMRA0CLK_XT_DIV4    (XT_DIV4)
    0x00,       // 17: CTIMER_CTRL0_TMRA0CLK_XT_DIV8    (XT_DIV8)
    0x00,       // 18: CTIMER_CTRL0_TMRA0CLK_XT_DIV32   (XT_DIV32)
    0x00,       // 19: Reserved
    0x0F,       // 20: CTIMERxx OUT
    0x0F,       // 21:  "
    0x0F,       // 22:  "
    0x0F,       // 23:  "
    0x0F,       // 24:  "
    0x0F,       // 25:  "
    0x0F,       // 26:  "
    0x0F,       // 27:  "
    0x0F,       // 28:  "
    0x00,       // 29: CTIMER_CTRL0_TMRA0CLK_BUCKBLE
    0x00,       // 30: CTIMER_CTRL0_TMRA0CLK_BUCKB
    0x00        // 31: CTIMER_CTRL0_TMRA0CLK_BUCKA
};

//*****************************************************************************
//
// Lookup tables used by am_hal_ctimer_output_config().
//
//  CTx_tbl[] relates the padnum and pad funcsel based on a given CTx.
//  Valid pads for CTx are: 4-7, 11-13, 18-19, 22-33, 35, 37, 39, 42-49.
//
//  outcfg_tbl[] contains attributes of the 4 output signal types for each
//  of the 32 CTx signals. Therefore it is indexed by CTnumber 0-31.
//  This table provides only the non-common OUTCFG attributes (2-5, other
//  settings are shown below).
//  OUTCFG 0 = Force output to 0.
//  OUTCFG 1 = Force output to 1.
//  OUTCFG 6 = A6OUT2.
//  OUTCFG 7 = A7OUT2.
//
//*****************************************************************************
#define CTXPADNUM(ctx)  ((CTx_tbl[ctx] >> 0) & 0x3f)
#define CTXPADFNC(ctx)  ((CTx_tbl[ctx] >> 8) & 0x7)
#define CTX(pad, fn)    ((fn << 8) | (pad << 0))
static const uint16_t CTx_tbl[32] =
{
    CTX(12,2), CTX(25,2), CTX(13,2), CTX(26,2), CTX(18,2),      // 0 - 4
    CTX(27,2), CTX(19,2), CTX(28,2), CTX( 5,7), CTX(29,2),      // 5 - 9
    CTX( 6,5), CTX(30,2), CTX(22,2), CTX(31,2), CTX(23,2),      // 10 - 14
    CTX(32,2), CTX(42,2), CTX( 4,6), CTX(43,2), CTX( 7,7),      // 15 - 19
    CTX(44,2), CTX(24,5), CTX(45,2), CTX(33,6), CTX(46,2),      // 20 - 24
    CTX(39,2), CTX(47,2), CTX(35,5), CTX(48,2), CTX(37,7),      // 25 - 29
    CTX(49,2), CTX(11,2)                                        // 30 - 31
};

#define OUTC(timB,timN,N2)      ((N2 << 4) | (timB << 3) | (timN << 0))
#define OUTCTIMN(ctx,n)         (outcfg_tbl[ctx][n] & (0x7 << 0))
#define OUTCTIMB(ctx,n)         (outcfg_tbl[ctx][n] & (0x1 << 3))
#define OUTCO2(ctx,n)           (outcfg_tbl[ctx][n] & (0x1 << 4))
static const uint8_t outcfg_tbl[32][4] =
{
    {OUTC(0,0,0), OUTC(1,2,1), OUTC(0,5,1), OUTC(0,6,0)},     // CTX0:  A0OUT,  B2OUT2, A5OUT2, A6OUT
    {OUTC(0,0,1), OUTC(0,0,0), OUTC(0,5,0), OUTC(1,7,1)},     // CTX1:  A0OUT2, A0OUT,  A5OUT,  B7OUT2
    {OUTC(1,0,0), OUTC(1,1,1), OUTC(1,6,1), OUTC(0,7,0)},     // CTX2:  B0OUT,  B1OUT2, B6OUT2, A7OUT
    {OUTC(1,0,1), OUTC(1,0,0), OUTC(0,1,0), OUTC(0,6,0)},     // CTX3:  B0OUT2, B0OUT,  A1OUT,  A6OUT
    {OUTC(0,1,0), OUTC(0,2,1), OUTC(0,5,1), OUTC(1,5,0)},     // CTX4:  A1OUT,  A2OUT2, A5OUT2, B5OUT
    {OUTC(0,1,1), OUTC(0,1,0), OUTC(1,6,0), OUTC(0,7,0)},     // CTX5:  A1OUT2, A1OUT,  B6OUT,  A7OUT
    {OUTC(1,1,0), OUTC(0,1,0), OUTC(1,5,1), OUTC(1,7,0)},     // CTX6:  B1OUT,  A1OUT,  B5OUT2, B7OUT
    {OUTC(1,1,1), OUTC(1,1,0), OUTC(1,5,0), OUTC(0,7,0)},     // CTX7:  B1OUT2, B1OUT,  B5OUT,  A7OUT
    {OUTC(0,2,0), OUTC(0,3,1), OUTC(0,4,1), OUTC(1,6,0)},     // CTX8:  A2OUT,  A3OUT2, A4OUT2, B6OUT
    {OUTC(0,2,1), OUTC(0,2,0), OUTC(0,4,0), OUTC(1,0,0)},     // CTX9:  A2OUT2, A2OUT,  A4OUT,  B0OUT
    {OUTC(1,2,0), OUTC(1,3,1), OUTC(1,4,1), OUTC(0,6,0)},     // CTX10: B2OUT,  B3OUT2, B4OUT2, A6OUT
    {OUTC(1,2,1), OUTC(1,2,0), OUTC(1,4,0), OUTC(1,5,1)},     // CTX11: B2OUT2, B2OUT,  B4OUT,  B5OUT2
    {OUTC(0,3,0), OUTC(1,1,0), OUTC(1,0,1), OUTC(1,6,1)},     // CTX12: A3OUT,  B1OUT,  B0OUT2, B6OUT2
    {OUTC(0,3,1), OUTC(0,3,0), OUTC(0,6,0), OUTC(1,4,1)},     // CTX13: A3OUT2, A3OUT,  A6OUT,  B4OUT2
    {OUTC(1,3,0), OUTC(1,1,0), OUTC(1,7,1), OUTC(0,7,0)},     // CTX14: B3OUT,  B1OUT,  B7OUT2, A7OUT
    {OUTC(1,3,1), OUTC(1,3,0), OUTC(0,7,0), OUTC(0,4,1)},     // CTX15: B3OUT2, B3OUT,  A7OUT,  A4OUT2
    {OUTC(0,4,0), OUTC(0,0,0), OUTC(0,0,1), OUTC(1,3,1)},     // CTX16: A4OUT,  A0OUT,  A0OUT2, B3OUT2
    {OUTC(0,4,1), OUTC(1,7,0), OUTC(0,4,0), OUTC(0,1,1)},     // CTX17: A4OUT2, B7OUT,  A4OUT,  A1OUT2
    {OUTC(1,4,0), OUTC(1,0,0), OUTC(0,0,0), OUTC(0,3,1)},     // CTX18: B4OUT,  B0OUT,  A0OUT,  A3OUT2
    {OUTC(1,4,1), OUTC(0,2,0), OUTC(1,4,0), OUTC(1,1,1)},     // CTX19: B4OUT2, A2OUT,  B4OUT,  B1OUT2
    {OUTC(0,5,0), OUTC(0,1,0), OUTC(0,1,1), OUTC(1,2,1)},     // CTX20: A5OUT,  A1OUT,  A1OUT2, B2OUT2
    {OUTC(0,5,1), OUTC(0,1,0), OUTC(1,5,0), OUTC(0,0,1)},     // CTX21: A5OUT2, A1OUT,  B5OUT,  A0OUT2
    {OUTC(1,5,0), OUTC(0,6,0), OUTC(0,1,0), OUTC(0,2,1)},     // CTX22: B5OUT,  A6OUT,  A1OUT,  A2OUT2
    {OUTC(1,5,1), OUTC(0,7,0), OUTC(0,5,0), OUTC(1,0,1)},     // CTX23: B5OUT2, A7OUT,  A5OUT,  B0OUT2
    {OUTC(0,6,0), OUTC(0,2,0), OUTC(0,1,0), OUTC(1,1,1)},     // CTX24: A6OUT,  A2OUT,  A1OUT,  B1OUT2
    {OUTC(1,4,1), OUTC(1,2,0), OUTC(0,6,0), OUTC(0,2,1)},     // CTX25: B4OUT2, B2OUT,  A6OUT,  A2OUT2
    {OUTC(1,6,0), OUTC(1,2,0), OUTC(0,5,0), OUTC(0,1,1)},     // CTX26: B6OUT,  B2OUT,  A5OUT,  A1OUT2
    {OUTC(1,6,1), OUTC(0,1,0), OUTC(1,6,0), OUTC(1,2,1)},     // CTX27: B6OUT2, A1OUT,  B6OUT,  B2OUT2
    {OUTC(0,7,0), OUTC(0,3,0), OUTC(0,5,1), OUTC(1,0,1)},     // CTX28: A7OUT,  A3OUT,  A5OUT2, B0OUT2
    {OUTC(1,5,1), OUTC(0,1,0), OUTC(0,7,0), OUTC(0,3,1)},     // CTX29: B5OUT2, A1OUT,  A7OUT,  A3OUT2
    {OUTC(1,7,0), OUTC(1,3,0), OUTC(0,4,1), OUTC(0,0,1)},     // CTX30: B7OUT,  B3OUT,  A4OUT2, A0OUT2
    {OUTC(1,7,1), OUTC(0,6,0), OUTC(1,7,0), OUTC(1,3,1)},     // CTX31: B7OUT2, A6OUT,  B7OUT,  B3OUT2
};

//*****************************************************************************
//
// Static function for reading the timer value.
//
//*****************************************************************************
#if (defined (__ARMCC_VERSION)) && (__ARMCC_VERSION < 6000000)
__asm void
am_hal_triple_read( uint32_t u32TimerAddr, uint32_t ui32Data[])
{
    push    {r1, r4}                // Save r1=ui32Data, r4
    mrs     r4, PRIMASK             // Save current interrupt state
    cpsid   i                       // Disable INTs while reading the reg
    ldr     r1, [r0, #0]            // Read the designated register 3 times
    ldr     r2, [r0, #0]            //  "
    ldr     r3, [r0, #0]            //  "
    msr     PRIMASK, r4             // Restore interrupt state
    pop     {r0, r4}                // Get r0=ui32Data, restore r4
    str     r1, [r0, #0]            // Store 1st read value to array
    str     r2, [r0, #4]            // Store 2nd read value to array
    str     r3, [r0, #8]            // Store 3rd read value to array
    bx      lr                      // Return to caller
}
#elif (defined (__ARMCC_VERSION)) && (__ARMCC_VERSION >= 6000000)
void
am_hal_triple_read(uint32_t u32TimerAddr, uint32_t ui32Data[])
{
  __asm (
    " push  {R1, R4}\n"
    " mrs   R4, PRIMASK\n"
    " cpsid i\n"
    " nop\n"
    " ldr   R1, [R0, #0]\n"
    " ldr   R2, [R0, #0]\n"
    " ldr   R3, [R0, #0]\n"
    " msr   PRIMASK, r4\n"
    " pop   {R0, R4}\n"
    " str   R1, [R0, #0]\n"
    " str   R2, [R0, #4]\n"
    " str   R3, [R0, #8]\n"
    :
    : [u32TimerAddr] "r" (u32TimerAddr),
      [ui32Data] "r" (&ui32Data[0])
    : "r0", "r1", "r2", "r3", "r4"
  );
}
#elif defined(__GNUC_STDC_INLINE__)
__attribute__((naked))
void
am_hal_triple_read(uint32_t u32TimerAddr, uint32_t ui32Data[])
{
    __asm
    (
        "   push    {r1, r4}\n"                 // Save r1=ui32Data, r4
        "   mrs     r4, PRIMASK \n"             // Save current interrupt state
        "   cpsid   i           \n"             // Disable INTs while reading the reg
        "   ldr     r1, [r0, #0]\n"             // Read the designated register 3 times
        "   ldr     r2, [r0, #0]\n"             //  "
        "   ldr     r3, [r0, #0]\n"             //  "
        "   msr     PRIMASK, r4 \n"             // Restore interrupt state
        "   pop     {r0, r4}\n"                 // Get r0=ui32Data, restore r4
        "   str     r1, [r0, #0]\n"             // Store 1st read value to array
        "   str     r2, [r0, #4]\n"             // Store 2nd read value to array
        "   str     r3, [r0, #8]\n"             // Store 3rd read value to array
        "   bx      lr          \n"             // Return to caller
    );
}
#elif defined(__IAR_SYSTEMS_ICC__)
#pragma diag_suppress = Pe940   // Suppress IAR compiler warning about missing
                                // return statement on a non-void function
__stackless void
am_hal_triple_read( uint32_t u32TimerAddr, uint32_t ui32Data[])
{
    __asm(" push    {r1, r4}    ");         // Save r1=ui32Data, r4
    __asm(" mrs     r4, PRIMASK ");         // Save current interrupt state
    __asm(" cpsid   i           ");         // Disable INTs while reading the reg
    __asm(" ldr     r1, [r0, #0]");         // Read the designated register 3 times
    __asm(" ldr     r2, [r0, #0]");         //  "
    __asm(" ldr     r3, [r0, #0]");         //  "
    __asm(" msr     PRIMASK, r4 ");         // Restore interrupt state
    __asm(" pop     {r0, r4}    ");         // Get r0=ui32Data, restore r4
    __asm(" str     r1, [r0, #0]");         // Store 1st read value to array
    __asm(" str     r2, [r0, #4]");         // Store 2nd read value to array
    __asm(" str     r3, [r0, #8]");         // Store 3rd read value to array
    __asm(" bx      lr          ");         // Return to caller
}
#pragma diag_default = Pe940    // Restore IAR compiler warning
#else
#error Compiler is unknown, please contact Ambiq support team
#endif



//*****************************************************************************
//
// ctimer_clr()
//
// For the appropriate ctimer configuration register, set the CLR bit high
// in the appropriate timer segment (A, B, or both).
//
// The CLR bit is required to be set in order to completely initialize
// the timer at config time.  The timer clear occurs asynchrnously during the
// low-to-high transition of the CLR bit.
//
// This function only sets the CLR bit.  It is assumed that the actual timer
// configuration will occur following the call to this function and will clear
// the CLR bit at that time.
//
//*****************************************************************************
static void
ctimer_clr(uint32_t ui32TimerNumber, uint32_t ui32TimerSegment)
{
    //
    // Find the address of the correct control register and set the CLR bit
    // for the timer segment in that control register.
    //
    volatile uint32_t *pui32ConfigReg =
        (uint32_t*)CTIMERADDRn(CTIMER, ui32TimerNumber, CTRL0);

    AM_CRITICAL_BEGIN
    AM_REGVAL(pui32ConfigReg) |= (ui32TimerSegment &
                                  (CTIMER_CTRL0_TMRA0CLR_Msk |
                                   CTIMER_CTRL0_TMRB0CLR_Msk));
    AM_CRITICAL_END

} // ctimer_clr()

//*****************************************************************************
//
//! @brief Convenience function for responding to CTimer interrupts.
//!
//! @param ui32Status is the interrupt status as returned by
//! am_hal_ctimer_int_status_get()
//!
//! This function may be called from am_ctimer_isr() to read the status of
//! the CTimer interrupts, determine which source caused the most recent
//! interrupt, and call an interrupt handler function to respond. The interrupt
//! handler to be called must be first registered with the
//! am_hal_ctimer_int_register() function.
//!
//! In the event that multiple sources are active, the corresponding
//! interrupt handlers will be called in numerical order based on interrupt def.
//!
//! @return None.
//
//*****************************************************************************
void
am_hal_ctimer_int_service(uint32_t ui32Status)
{

    am_hal_ctimer_handler_t pfnHandler;

    while ( ui32Status )
    {
        uint32_t ui32Clz;
        //
        // Pick one of any remaining active interrupt bits
        //
#ifdef __IAR_SYSTEMS_ICC__
        ui32Clz = __CLZ(ui32Status);
#else
        ui32Clz = __builtin_clz(ui32Status);
#endif

        //
        // Turn off the bit we picked in the working copy
        //
        ui32Status &= ~(0x80000000 >> ui32Clz);

        //
        // Check the bit handler table to see if there is an interrupt handler
        // registered for this particular bit.
        //
        pfnHandler = g_am_hal_ctimer_ppfnHandlers[31 - ui32Clz];
        if ( pfnHandler )
        {
            //
            // If we found an interrupt handler routine, call it now.
            //
            pfnHandler();
        }
    }

} // am_hal_ctimer_int_service()

//*****************************************************************************
//
//! @brief Register an interrupt handler for CTimer.
//!
//! @param ui32Interrupt - interrupt number to assign this interrupt handler to.
//! @param pfnHandler - Function to call when this interrupt is received.
//!
//! This function allows the caller to specify a function that should be called
//! any time a Ctimer interrupt is received. Registering an
//! interrupt handler using this function adds the function pointer to an array
//! in SRAM. This interrupt handler will be called by am_hal_ctimer_int_service()
//! whenever the ui32Status parameter indicates that the corresponding interrupt.
//!
//! To remove an interrupt handler that has already been registered, the
//! pfnHandler parameter may be set to zero.
//!
//! @note This function will not have any effect unless the
//! am_hal_ctimer_int_service() function is being used.
//!
//! @return None.
//
//*****************************************************************************
void
am_hal_ctimer_int_register(uint32_t ui32Interrupt,
                           am_hal_ctimer_handler_t pfnHandler)
{
    uint32_t intIdx = 0;

    //
    // Check to make sure the interrupt number is valid. (Debug builds only)
    //
    switch (ui32Interrupt)
    {
        case CTIMER_INTEN_CTMRA0C0INT_Msk:
            intIdx = CTIMER_INTEN_CTMRA0C0INT_Pos;
            break;

        case CTIMER_INTEN_CTMRB0C0INT_Msk:
            intIdx = CTIMER_INTEN_CTMRB0C0INT_Pos;
            break;

        case CTIMER_INTEN_CTMRA1C0INT_Msk:
            intIdx = CTIMER_INTEN_CTMRA1C0INT_Pos;
            break;

        case CTIMER_INTEN_CTMRB1C0INT_Msk:
            intIdx = CTIMER_INTEN_CTMRB1C0INT_Pos;
            break;

        case CTIMER_INTEN_CTMRA2C0INT_Msk:
            intIdx = CTIMER_INTEN_CTMRA2C0INT_Pos;
            break;

        case CTIMER_INTEN_CTMRB2C0INT_Msk:
            intIdx = CTIMER_INTEN_CTMRB2C0INT_Pos;
            break;

        case CTIMER_INTEN_CTMRA3C0INT_Msk:
            intIdx = CTIMER_INTEN_CTMRA3C0INT_Pos;
            break;

        case CTIMER_INTEN_CTMRB3C0INT_Msk:
            intIdx = CTIMER_INTEN_CTMRB3C0INT_Pos;
            break;

        case CTIMER_INTEN_CTMRA4C0INT_Msk:
            intIdx = CTIMER_INTEN_CTMRA4C0INT_Pos;
            break;

        case CTIMER_INTEN_CTMRB4C0INT_Msk:
            intIdx = CTIMER_INTEN_CTMRB4C0INT_Pos;
            break;

        case CTIMER_INTEN_CTMRA5C0INT_Msk:
            intIdx = CTIMER_INTEN_CTMRA5C0INT_Pos;
            break;

        case CTIMER_INTEN_CTMRB5C0INT_Msk:
            intIdx = CTIMER_INTEN_CTMRB5C0INT_Pos;
            break;

        case CTIMER_INTEN_CTMRA6C0INT_Msk:
            intIdx = CTIMER_INTEN_CTMRA6C0INT_Pos;
            break;

        case CTIMER_INTEN_CTMRB6C0INT_Msk:
            intIdx = CTIMER_INTEN_CTMRB6C0INT_Pos;
            break;

        case CTIMER_INTEN_CTMRA7C0INT_Msk:
            intIdx = CTIMER_INTEN_CTMRA7C0INT_Pos;
            break;

        case CTIMER_INTEN_CTMRB7C0INT_Msk:
            intIdx = CTIMER_INTEN_CTMRB7C0INT_Pos;
            break;

        // Counter/Timer A0 interrupt based on COMPR1.
        case CTIMER_INTEN_CTMRA0C1INT_Msk:
            intIdx = CTIMER_INTEN_CTMRA0C1INT_Pos;
            break;

        case CTIMER_INTEN_CTMRB0C1INT_Msk:
            intIdx = CTIMER_INTEN_CTMRB0C1INT_Pos;
            break;

        case CTIMER_INTEN_CTMRA1C1INT_Msk:
            intIdx = CTIMER_INTEN_CTMRA1C1INT_Pos;
            break;

        case CTIMER_INTEN_CTMRB1C1INT_Msk:
            intIdx = CTIMER_INTEN_CTMRB1C1INT_Pos;
            break;

        case CTIMER_INTEN_CTMRA2C1INT_Msk:
            intIdx = CTIMER_INTEN_CTMRA2C1INT_Pos;
            break;

        case CTIMER_INTEN_CTMRB2C1INT_Msk:
            intIdx = CTIMER_INTEN_CTMRB2C1INT_Pos;
            break;

        case CTIMER_INTEN_CTMRA3C1INT_Msk:
            intIdx = CTIMER_INTEN_CTMRA3C1INT_Pos;
            break;

        case CTIMER_INTEN_CTMRB3C1INT_Msk:
            intIdx = CTIMER_INTEN_CTMRB3C1INT_Pos;
            break;

        case CTIMER_INTEN_CTMRA4C1INT_Msk:
            intIdx = CTIMER_INTEN_CTMRA4C1INT_Pos;
            break;

        case CTIMER_INTEN_CTMRB4C1INT_Msk:
            intIdx = CTIMER_INTEN_CTMRB4C1INT_Pos;
            break;
        case CTIMER_INTEN_CTMRA5C1INT_Msk:
            intIdx = CTIMER_INTEN_CTMRA5C1INT_Pos;
            break;

        case CTIMER_INTEN_CTMRB5C1INT_Msk:
            intIdx = CTIMER_INTEN_CTMRB5C1INT_Pos;
            break;
        case CTIMER_INTEN_CTMRA6C1INT_Msk:
            intIdx = CTIMER_INTEN_CTMRA6C1INT_Pos;
            break;

        case CTIMER_INTEN_CTMRB6C1INT_Msk:
            intIdx = CTIMER_INTEN_CTMRB6C1INT_Pos;
            break;
        case CTIMER_INTEN_CTMRA7C1INT_Msk:
            intIdx = CTIMER_INTEN_CTMRA7C1INT_Pos;
            break;

        case CTIMER_INTEN_CTMRB7C1INT_Msk:
            intIdx = CTIMER_INTEN_CTMRB7C1INT_Pos;
            break;

        default:
            am_hal_debug_assert_msg(false, "CTimer interrupt number out of range.");
    }

    g_am_hal_ctimer_ppfnHandlers[intIdx] = pfnHandler;

} // am_hal_ctimer_int_register()

//*****************************************************************************
//
//! @brief Set up the counter/timer.
//!
//! @param ui32ConfigVal is the value to set the global enable register.
//!
//! This function sets the global enable register inside a critical section.
//!
//! @return None.
//
//*****************************************************************************
void
am_hal_ctimer_globen(uint32_t ui32ConfigVal)
{
    uint32_t *pui32ConfigReg;

    //
    // Find the correct register to write.
    //
    pui32ConfigReg = (uint32_t *)(&CTIMERn(0)->GLOBEN);

    //
    // Begin critical section while config registers are read and modified.
    //
    AM_CRITICAL_BEGIN

    //
    // Write our configuration value.
    //
    AM_REGVAL(pui32ConfigReg) = ui32ConfigVal;

    //
    // Done with critical section.
    //
    AM_CRITICAL_END

} // am_hal_ctimer_globen()

//*****************************************************************************
//
//! @brief Set up the counter/timer.
//!
//! @param ui32TimerNumber is the number of the Timer that should be
//! configured.
//!
//! @param psConfig is a pointer to a structure that holds important settings
//! for the timer.
//!
//! This function should be used to perform the initial set-up of the
//! counter-timer.
//!
//! @note This function is deprecated and will eventually be replaced by
//! am_hal_ctimer_config_single(), which performs the same configuration
//! without requiring a structure and without assuming both timer halves
//! are being configured.
//! Please use am_hal_ctimer_config_single() for new development.
//!
//! @return None.
//!
//!
//! @note In order to initialize the given timer into a known state, this
//! function asserts the CLR configuration bit. The CLR bit will be deasserted
//! with the write of the configuration register. The CLR bit is also
//! intentionally deasserted with a call to am_hal_ctimer_start().
//!
//
//*****************************************************************************
void
am_hal_ctimer_config(uint32_t ui32TimerNumber,
                     am_hal_ctimer_config_t *psConfig)
{
    uint32_t ui32ConfigVal;
    uint32_t ui32Seg, ui32ClkSrc;
    uint32_t *pui32ConfigReg;

    //
    // Make sure the timer is completely initialized on configuration by
    // setting the CLR bit.
    //
    ctimer_clr(ui32TimerNumber, AM_HAL_CTIMER_BOTH);

    //
    // Start preparing the configuration word for this timer. The configuration
    // values for Timer A and Timer B provided in the config structure should
    // match the register definitions already, so we will mostly just need to
    // OR them together.
    //
    ui32ConfigVal = ( (psConfig->ui32TimerAConfig)  |
                      (psConfig->ui32TimerBConfig << 16) );

    //
    // OR in the Link bit if the timers need to be linked.
    //
    ui32ConfigVal |= psConfig->ui32Link ? AM_HAL_CTIMER_LINK : 0;

    //
    // Find the correct register to write.
    //
    pui32ConfigReg = (uint32_t*)CTIMERADDRn(CTIMER, ui32TimerNumber, CTRL0);

    //
    // Begin critical section while config registers are read and modified.
    //
    AM_CRITICAL_BEGIN

    //
    // Write our configuration value.
    //
    AM_REGVAL(pui32ConfigReg) = ui32ConfigVal;

    //
    // Done with critical section.
    //
    AM_CRITICAL_END

    //
    // Save the clock source for this timer.
    //
    if ( ( psConfig->ui32TimerAConfig != 0 )  ||  psConfig->ui32Link )
    {
        ui32Seg = 0;
        ui32ClkSrc = _FLD2VAL(CTIMER_CTRL0_TMRA0CLK, psConfig->ui32TimerAConfig);
    }
    else if ( psConfig->ui32TimerBConfig != 0)
    {
        ui32Seg = 1;
        ui32ClkSrc = _FLD2VAL(CTIMER_CTRL0_TMRA0CLK, psConfig->ui32TimerBConfig);
    }
    else
    {
        return;
    }

    //
    // Save the clock source for this timer/segment.
    //
    g_ui8ClkSrc[ui32TimerNumber][ui32Seg] = ui32ClkSrc;

} // am_hal_ctimer_config()

//*****************************************************************************
//
//! @brief Set up the counter/timer.
//!
//! @param ui32TimerNumber is the number of the Timer that should be
//! configured.
//!
//! @param ui32TimerSegment specifies which segment of the timer should be
//! enabled.
//!
//! @param ui32ConfigVal specifies the configuration options for the selected
//! timer.
//!
//! This function should be used to perform the initial set-up of the
//! counter-timer. It can be used to configure either a 16-bit timer (A or B) or a
//! 32-bit timer using the BOTH option.
//!
//!
//! Valid values for ui32TimerSegment are:
//!
//!     AM_HAL_CTIMER_TIMERA
//!     AM_HAL_CTIMER_TIMERB
//!     AM_HAL_CTIMER_BOTH
//!
//! The timer's clock source, mode, interrupt, and external pin behavior are
//! all controlled through the \e ui32Configval parameter. The valid options
//! for ui32ConfigVal include any ORed together combination of the following:
//!
//! Clock configuration macros:
//!
//!     AM_HAL_CTIMER_HFRC_24MHZ
//!     AM_HAL_CTIMER_LFRC_512HZ
//!     ... etc. (See am_hal_ctimer.h for the full set of options.)
//!
//! Mode selection macros:
//!
//!     AM_HAL_CTIMER_FN_ONCE
//!     AM_HAL_CTIMER_FN_REPEAT
//!     AM_HAL_CTIMER_FN_PWM_ONCE
//!     AM_HAL_CTIMER_FN_PWM_REPEAT
//!     AM_HAL_CTIMER_FN_CONTINUOUS
//!
//! Interrupt control:
//!
//!     AM_HAL_CTIMER_INT_ENABLE
//!
//! Pin control:
//!
//!     AM_HAL_CTIMER_PIN_ENABLE
//!     AM_HAL_CTIMER_PIN_INVERT
//!
//! ADC trigger (Timer 3 only):
//!
//!     AM_HAL_CTIMER_ADC_TRIG
//!
//! @return None.
//!
//!
//! @note In order to initialize the given timer into a known state, this
//! function asserts the CLR configuration bit. The CLR bit will be deasserted
//! with the write of the configuration register. The CLR bit is also
//! intentionally deasserted with a call to am_hal_ctimer_start().
//!
//
//*****************************************************************************
void
am_hal_ctimer_config_single(uint32_t ui32TimerNumber,
                            uint32_t ui32TimerSegment,
                            uint32_t ui32ConfigVal)
{
    volatile uint32_t *pui32ConfigReg;
    uint32_t ui32Seg, ui32ClkSrc;

    //
    // Make sure the timer is completely initialized on configuration by
    // setting the CLR bit.
    //
    ctimer_clr(ui32TimerNumber, ui32TimerSegment);

    //
    // Find the correct register to write based on the timer number.
    //
    pui32ConfigReg = (uint32_t*)CTIMERADDRn(CTIMER, ui32TimerNumber, CTRL0);

    //
    // Begin critical section while config registers are read and modified.
    //
    AM_CRITICAL_BEGIN
    uint32_t ui32WriteVal;

    //
    // Save the value that's already in the register.
    //
    ui32WriteVal = AM_REGVAL(pui32ConfigReg);

    //
    // If we're working with TIMERB, we need to shift our configuration value
    // up by 16 bits.
    //
    if ( ui32TimerSegment == AM_HAL_CTIMER_TIMERB )
    {
        ui32ConfigVal = ((ui32ConfigVal & 0xFFFF) << 16);
    }

    //
    // Replace part of the saved register value with the configuration value
    // from the caller.
    //
    ui32WriteVal = (ui32WriteVal & ~(ui32TimerSegment)) | ui32ConfigVal;

    //
    // If we're configuring both timers, we need to set the "link" bit.
    //
    if ( ui32TimerSegment == AM_HAL_CTIMER_BOTH )
    {
        ui32WriteVal |= AM_HAL_CTIMER_LINK;
    }

    //
    // Write our completed configuration value.
    //
    AM_REGVAL(pui32ConfigReg) = ui32WriteVal;

    //
    // Done with critical section.
    //
    AM_CRITICAL_END

    //
    // Save the clock source for this timer.
    //
    switch ( ui32TimerSegment )
    {
        case AM_HAL_CTIMER_TIMERA:
        case AM_HAL_CTIMER_BOTH:
            ui32Seg = 0;
            break;
        case AM_HAL_CTIMER_TIMERB:
            ui32Seg = 1;
            break;
        default:
            return;
    }

    ui32ClkSrc = _FLD2VAL(CTIMER_CTRL0_TMRA0CLK, ui32ConfigVal);

    //
    // Save the clock source for this timer/segment.
    //
    g_ui8ClkSrc[ui32TimerNumber][ui32Seg] = (uint8_t)ui32ClkSrc;

} // am_hal_ctimer_config_single()

//*****************************************************************************
//
//! @brief Set up the counter/timer trigger.
//!
//! @param ui32TimerNumber is the number of the Timer that should be
//! configured.
//!
//! @param ui32TimerSegment specifies which segment of the timer should be
//! enabled.
//!
//! @param ui32ConfigVal specifies the configuration options for the selected
//! timer trigger AUXn register.
//!
//! This function should be used to perform the configuration of the trigger
//! for the counter-timer (A or B).
//!
//! Valid values for ui32TimerSegment are:
//!
//!     AM_HAL_CTIMER_TIMERA
//!     AM_HAL_CTIMER_TIMERB
//!
//! @return None.
//!
//!
//! @note In order to initialize the given timer into a known state, this
//! function asserts the CLR configuration bit. The CLR bit will be deasserted
//! with the write of the configuration register. The CLR bit is also
//! intentionally deasserted with a call to am_hal_ctimer_start().
//!
//
//*****************************************************************************
void
am_hal_ctimer_config_trigger(uint32_t ui32TimerNumber,
                             uint32_t ui32TimerSegment,
                             uint32_t ui32ConfigVal)
{
    volatile uint32_t *pui32ConfigReg;

    //
    // Find the correct register to write based on the timer number.
    //
    pui32ConfigReg = (uint32_t*)CTIMERADDRn(CTIMER, ui32TimerNumber, AUX0);

    //
    // Begin critical section while config registers are read and modified.
    //
    AM_CRITICAL_BEGIN
    uint32_t ui32WriteVal;

    //
    // Save the value that's already in the register.
    //
    ui32WriteVal = AM_REGVAL(pui32ConfigReg);

    //
    // If we're working with TIMERB, we need to shift our configuration value
    // up by 16 bits.
    //

    if ( ui32TimerSegment == AM_HAL_CTIMER_TIMERB )
    {
        ui32ConfigVal = ((ui32ConfigVal & 0xFFFF) << 16);
    }

    //
    // Replace part of the saved register value with the configuration value
    // from the caller.
    //
    ui32WriteVal = (ui32WriteVal & ~(ui32TimerSegment)) | ui32ConfigVal;

    //
    // Write our completed configuration value.
    //
    AM_REGVAL(pui32ConfigReg) = ui32WriteVal;

    //
    // Done with critical section.
    //
    AM_CRITICAL_END

} // am_hal_ctimer_config_trigger()

//*****************************************************************************
//
//! @brief Start a timer
//!
//! @param ui32TimerNumber is the number of the timer to enable
//!
//! @param ui32TimerSegment specifies which segment of the timer should be
//! enabled.  Valid values for ui32TimerSegment are:
//!     AM_HAL_CTIMER_TIMERA
//!     AM_HAL_CTIMER_TIMERB
//!     AM_HAL_CTIMER_BOTH
//!
//! This function will enable a timer to begin incrementing. The \e
//! ui32TimerNumber parameter selects the timer that should be enabled, for
//! example, a 0 would target TIMER0. The \e ui32TimerSegment parameter allows
//! the caller to individually select a segment within a timer to be enabled,
//! such as TIMER0A, TIMER0B, or both.
//!
//! @return None.
//
//*****************************************************************************
void
am_hal_ctimer_start(uint32_t ui32TimerNumber, uint32_t ui32TimerSegment)
{
    uint32_t ui32Seg, ui32ClkSrc;
    volatile uint32_t *pui32ConfigReg;

    //
    // Find the correct control register.
    //
    pui32ConfigReg = (uint32_t*)CTIMERADDRn(CTIMER, ui32TimerNumber, CTRL0);

    //
    // Begin critical section while config registers are read and modified.
    //
    AM_CRITICAL_BEGIN

    //
    // Read the current value.
    //
    uint32_t ui32ConfigVal = *pui32ConfigReg;

    //
    // Clear out the "clear" bit.
    //
    ui32ConfigVal &= ~(ui32TimerSegment & (CTIMER_CTRL0_TMRA0CLR_Msk |
                                           CTIMER_CTRL0_TMRB0CLR_Msk));

    //
    // Set the "enable bit"
    //
    ui32ConfigVal |= (ui32TimerSegment & (CTIMER_CTRL0_TMRA0EN_Msk |
                                          CTIMER_CTRL0_TMRB0EN_Msk));

    //
    // While we already have the CTRL reg, get and save the CLKSRC.
    //
    if ( ui32TimerSegment == AM_HAL_CTIMER_TIMERB )
    {
        ui32Seg = 1;
        ui32ClkSrc = _FLD2VAL(CTIMER_CTRL0_TMRB0CLK, ui32ConfigVal);
    }
    else
    {
        ui32Seg = 0;
        ui32ClkSrc = _FLD2VAL(CTIMER_CTRL0_TMRA0CLK, ui32ConfigVal);
    }

    //
    // Save the clock source for this timer/segment.
    //
    g_ui8ClkSrc[ui32TimerNumber][ui32Seg] = ui32ClkSrc;

    //
    // Write the configuration to start the timer.
    //
    AM_REGVAL(pui32ConfigReg) = ui32ConfigVal;

    //
    // Done with critical section.
    //
    AM_CRITICAL_END

} // am_hal_ctimer_start()

//*****************************************************************************
//
//! @brief Stop a timer
//!
//! @param ui32TimerNumber is the number of the timer to disable.
//!
//! @param ui32TimerSegment specifies which segment of the timer should be
//! disabled.
//!
//! This function will stop the selected timer from incrementing. The \e
//! ui32TimerNumber parameter selects the timer that should be disabled, for
//! example, a 0 would target TIMER0. The \e ui32TimerSegment parameter allows
//! the caller to individually select a segment within a timer to be disabled,
//! such as TIMER0A, TIMER0B, or both.
//!
//! This function will stop a counter/timer from counting, but does not return
//! the count value to 'zero'. If you would like to reset the counter back to
//! zero, try the am_hal_ctimer_clear() function instead.
//!
//! Valid values for ui32TimerSegment are:
//!
//!     AM_HAL_CTIMER_TIMERA
//!     AM_HAL_CTIMER_TIMERB
//!     AM_HAL_CTIMER_BOTH
//!
//! @return None.
//
//*****************************************************************************
void
am_hal_ctimer_stop(uint32_t ui32TimerNumber, uint32_t ui32TimerSegment)
{
    volatile uint32_t *pui32ConfigReg;

    //
    // Find the correct control register.
    //
    pui32ConfigReg = (uint32_t*)CTIMERADDRn(CTIMER, ui32TimerNumber, CTRL0);

    //
    // Begin critical section.
    //
    AM_CRITICAL_BEGIN

    //
    // Clear the "enable" bit
    //
    AM_REGVAL(pui32ConfigReg) &= ~(ui32TimerSegment &
                                   (CTIMER_CTRL0_TMRA0EN_Msk |
                                    CTIMER_CTRL0_TMRB0EN_Msk));

    //
    // Done with critical section.
    //
    AM_CRITICAL_END

} // am_hal_ctimer_stop()

//*****************************************************************************
//
//! @brief Stops a timer and resets its value back to zero.
//!
//! @param ui32TimerNumber is the number of the timer to clear.
//!
//! @param ui32TimerSegment specifies which segment of the timer should be
//! cleared.
//!
//! This function will stop a free-running counter-timer, reset its value to
//! zero, and leave the timer disabled. When you would like to restart the
//! counter, you will need to call am_hal_ctimer_start().
//!
//! The \e ui32TimerSegment parameter allows the caller to individually select
//! a segment within, such as TIMER0A, TIMER0B, or both.
//!
//! Valid values for ui32TimerSegment are:
//!
//!     AM_HAL_CTIMER_TIMERA
//!     AM_HAL_CTIMER_TIMERB
//!     AM_HAL_CTIMER_BOTH
//!
//! @return None.
//!
//!
//! @note Setting the CLR bit is necessary for completing timer initialization
//! including after MCU resets.
//!
//
//*****************************************************************************
void
am_hal_ctimer_clear(uint32_t ui32TimerNumber, uint32_t ui32TimerSegment)
{
    volatile uint32_t *pui32ConfigReg;

    //
    // Find the correct control register.
    //
    pui32ConfigReg = (uint32_t*)CTIMERADDRn(CTIMER, ui32TimerNumber, CTRL0);

    //
    // Begin critical section.
    //
    AM_CRITICAL_BEGIN

    //
    // Set the "clear" bit
    //
    AM_REGVAL(pui32ConfigReg) |= (ui32TimerSegment &
                                  (CTIMER_CTRL0_TMRA0CLR_Msk |
                                   CTIMER_CTRL0_TMRB0CLR_Msk));

    //
    // Done with critical section.
    //
    AM_CRITICAL_END

} // am_hal_ctimer_clear()

//*****************************************************************************
//
//! @brief Returns the current free-running value of the selected timer.
//!
//! @param ui32TimerNumber is the number of the timer to read.
//! @param ui32TimerSegment specifies which segment of the timer should be
//! read.
//!
//! This function returns the current free-running value of the selected timer.
//!
//! @note When reading from a linked timer, be sure to use AM_HAL_CTIMER both
//! for the segment argument.
//!
//! Valid values for ui32TimerSegment are:
//!
//!     AM_HAL_CTIMER_TIMERA
//!     AM_HAL_CTIMER_TIMERB
//!     AM_HAL_CTIMER_BOTH
//!
//! @return Current timer value.
//
//*****************************************************************************
uint32_t
am_hal_ctimer_read(uint32_t ui32TimerNumber, uint32_t ui32TimerSegment)
{
    uint32_t ui32RetVal = 0;
    uint32_t ui32ClkMsk, ui32Seg, ui32TmrAddr, ui32Ctrl;
    uint8_t  ui8ClkSrc;
    uint32_t ui32Values[3];

    //
    // Determine the timer segment.
    //
    ui32Seg = ( ui32TimerSegment == AM_HAL_CTIMER_TIMERB ) ? 1 : 0;

    //
    // Get the address of the register for this timer.
    //
    ui32TmrAddr = g_ui32TMRAddrTbl[ui32TimerNumber];

    //
    // Get the clock source for this timer.
    //
    ui8ClkSrc = g_ui8ClkSrc[ui32TimerNumber][ui32Seg];

    if ( ui8ClkSrc == 0xFF )
    {
        //
        // If user did not configure using am_hal_ctimer_config_single() or
        // am_hal_ctimer_config(), read the register to get the clock source.
        // Note that this will incur bus latencies.
        //
        ui32Ctrl = AM_REGVAL(ui32TmrAddr + 0xC);
        if ( ui32TimerSegment == AM_HAL_CTIMER_TIMERB )
        {
            ui8ClkSrc = _FLD2VAL(CTIMER_CTRL0_TMRB0CLK, ui32Ctrl);
        }
        else
        {
            ui8ClkSrc = _FLD2VAL(CTIMER_CTRL0_TMRA0CLK, ui32Ctrl);
        }

        //
        // And save the clock source to the lookup table.
        //
        g_ui8ClkSrc[ui32TimerNumber][ui32Seg] = ui8ClkSrc;
    }

    //
    // Based on the source clock, mask off bits not needed for the comparison.
    //
    ui32ClkMsk = g_ui8TmrClkSrcMask[ui8ClkSrc & _FLD2VAL(CTIMER_CTRL0_TMRA0CLK, 0xFFFFFFFF)];

    if ( ui32ClkMsk != 0 )
    {
        if ( am_hal_burst_mode_status() == AM_HAL_BURST_MODE )
        {
            //
            // In burst mode, extend the mask by 1 bit.
            //
            ui32ClkMsk <<= 1;
            ui32ClkMsk |= 0x1;
        }

        //
        // Invert the mask so that the unneeded bits can be masked off.
        //
        ui32ClkMsk = ~ui32ClkMsk;

        //
        // Read the register into ui32Values[].
        //
        am_hal_triple_read(ui32TmrAddr, ui32Values);

        //
        // Now determine which of the three values is the correct value.
        // If the first 2 match, then the values are both correct and we're done.
        // Otherwise, the third value is taken to be the correct value.
        //
        if ( (ui32Values[0] & ui32ClkMsk)  == (ui32Values[1] & ui32ClkMsk) )
        {
            //
            // If the first two values match, then neither one was a bad read.
            // We'll take this as the current time.
            //
            ui32RetVal = ui32Values[1];
        }
        else
        {
            ui32RetVal = ui32Values[2];
        }
    }
    else
    {
        //
        // No need for the workaround.  Just read and return the register.
        //
        ui32RetVal = AM_REGVAL(ui32TmrAddr);
    }

    //
    // Get the correct return value
    //
    ui32RetVal &= ui32TimerSegment;

    if ( ui32TimerSegment == AM_HAL_CTIMER_TIMERB )
    {
        ui32RetVal >>= 16;
    }

    return ui32RetVal;

} // am_hal_ctimer_read()

//*****************************************************************************
//
//! @brief Configure timer pin output.
//!
//! @param ui32TimerNumber is the number of the timer to configure.
//!
//! @param ui32TimerSegment specifies which segment of the timer to use.
//!
//! @param ui32TimerOutputConfig Output Configuration options.
//!
//! This function will configure the output pin for the selected timer.
//!
//! ui32TimerNumber
//!     The timer number, 0-7.
//! ui32TimerSegment
//!     AM_HAL_CTIMER_TIMERA
//!     AM_HAL_CTIMER_TIMERB
//!     AM_HAL_CTIMER_BOTH
//! ui32PadNum
//!     Pad number to be used for the output signal.
//! eOutputType
//!     AM_HAL_CTIMER_OUTPUT_NORMAL
//!     AM_HAL_CTIMER_OUTPUT_SECONDARY
//!     AM_HAL_CTIMER_OUTPUT_FORCE0
//!     AM_HAL_CTIMER_OUTPUT_FORCE1
//! eDriveStrength
//!     AM_HAL_GPIO_PIN_DRIVESTRENGTH_2MA   = 0x0,
//!     AM_HAL_GPIO_PIN_DRIVESTRENGTH_4MA   = 0x1,
//!     AM_HAL_GPIO_PIN_DRIVESTRENGTH_8MA   = 0x2,
//!     AM_HAL_GPIO_PIN_DRIVESTRENGTH_12MA  = 0x3
//!
//! @return None.
//
//*****************************************************************************
uint32_t
am_hal_ctimer_output_config(uint32_t ui32TimerNumber,
                            uint32_t ui32TimerSegment,
                            uint32_t ui32PadNum,
                            uint32_t eOutputType,
                            uint32_t eDriveStrength)
{
    uint32_t ux, ui32Ctx, ui32CtxPadNum;
    uint32_t ui32CtxOutcfgFnc, ui32CtxOutcfgMsk, ui32CfgShf;
    uint32_t ui32OutcfgValue;

    am_hal_gpio_pincfg_t sPinCfg = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

    if ( (ui32PadNum > 49)  ||  (ui32TimerNumber > 7)   ||
         (eOutputType > AM_HAL_CTIMER_OUTPUT_FORCE1)    ||
         ( (ui32TimerSegment != AM_HAL_CTIMER_TIMERA) &&
           (ui32TimerSegment != AM_HAL_CTIMER_TIMERB) &&
           (ui32TimerSegment != AM_HAL_CTIMER_BOTH) ) )
    {
        return AM_HAL_STATUS_INVALID_ARG;
    }

    //
    // Lookup the CTx number based on the given pad number.
    //
    for ( ux = 0; ux < 32; ux++ )
    {
        ui32CtxPadNum = CTXPADNUM(ux);
        if ( ui32CtxPadNum == ui32PadNum )
        {
            ui32Ctx = ux;
            break;
        }
        ui32CtxPadNum = 0xFF;
    }

    if ( ui32CtxPadNum >= AM_HAL_GPIO_MAX_PADS )
    {
        // No valid pad found.
        return AM_HAL_STATUS_OUT_OF_RANGE;
    }

    if ( ( ui32TimerNumber >= 6 )                               &&
         ( ui32TimerSegment == AM_HAL_CTIMER_TIMERA )           &&
         (eOutputType == AM_HAL_CTIMER_OUTPUT_SECONDARY) )
    {
        //
        // A6OUT2 is function 6 for every CTx.
        // A7OUT2 is function 7 for every CTx.
        // Set the function to either 6 or 7.
        //
        ui32CtxOutcfgFnc = ui32TimerNumber;
    }
    else if ( eOutputType >= AM_HAL_CTIMER_OUTPUT_FORCE0 )
    {
        // Set the function to 0 or 1.
        ui32CtxOutcfgFnc = eOutputType - AM_HAL_CTIMER_OUTPUT_FORCE0;
    }
    else
    {
        //
        // Now, scan outcfg_tbl[] to determine how to set the pin.
        //
        for ( ux = 0; ux < 4; ux++ )
        {
            if ( (OUTCTIMN(ui32Ctx, ux) == ui32TimerNumber) )
            {
                bool bTimerB = OUTCTIMB(ui32Ctx, ux);
                bool bO2 = OUTCO2(ui32Ctx, ux) ? true : false;
                bool bOut2 = (eOutputType == AM_HAL_CTIMER_OUTPUT_SECONDARY);
                if ( ( ui32TimerSegment == AM_HAL_CTIMER_TIMERA )   &&
                     (!bTimerB)                                     &&
                     (bO2 == bOut2) )
                {
                    break;
                }

                if ( ( ui32TimerSegment == AM_HAL_CTIMER_TIMERB )   &&
                     (bTimerB)                                      &&
                     (bO2 == bOut2) )
                {
                    break;
                }
            }
        }

        if ( ux >= 4 )
        {
            return AM_HAL_STATUS_INVALID_OPERATION;
        }

        ui32CtxOutcfgFnc = ux + 2;
    }

    //
    // Looks like everything is valid.  Configure the pin.
    // Do the actual configuring inside a critical section.
    //
    ux = ui32Ctx % 10;
    ui32CfgShf = ux * 3;
    if ( ux > 4 )
    {
        ui32CfgShf += 1;
    }
    ui32CtxOutcfgMsk   = 0x7 << ui32CfgShf;
    ui32CtxOutcfgFnc <<= ui32CfgShf;

    //
    // Begin critical section.
    //
    AM_CRITICAL_BEGIN

    //
    // Note: It turns out that the offsets of the 4 OUTCFG registers are not
    // evenly spaced.  Therefore we purposely use this 'if' chain to program
    // them explicitly (as opposed to doing modulo math to compute an addr).
    //
    if ( ui32Ctx < 10 )
    {
        ui32OutcfgValue = CTIMER->OUTCFG0;
        ui32OutcfgValue &= ~ui32CtxOutcfgMsk;
        ui32OutcfgValue |=  ui32CtxOutcfgFnc;
        CTIMER->OUTCFG0 = ui32OutcfgValue;
    }
    else if ( ui32Ctx < 20 )
    {
        ui32OutcfgValue = CTIMER->OUTCFG1;
        ui32OutcfgValue &= ~ui32CtxOutcfgMsk;
        ui32OutcfgValue |=  ui32CtxOutcfgFnc;
        CTIMER->OUTCFG1 = ui32OutcfgValue;
    }
    else if ( ui32Ctx < 30 )
    {
        ui32OutcfgValue = CTIMER->OUTCFG2;
        ui32OutcfgValue &= ~ui32CtxOutcfgMsk;
        ui32OutcfgValue |=  ui32CtxOutcfgFnc;
        CTIMER->OUTCFG2 = ui32OutcfgValue;
    }
    else
    {
        ui32OutcfgValue = CTIMER->OUTCFG3;
        ui32OutcfgValue &= ~ui32CtxOutcfgMsk;
        ui32OutcfgValue |=  ui32CtxOutcfgFnc;
        CTIMER->OUTCFG3 = ui32OutcfgValue;
    }

    GPIO->CTENCFG &= ~(1 << ui32Ctx);

    //
    // Done with critical section.
    //
    AM_CRITICAL_END

    //
    // Configure the GPIO for the given pad.
    //
    sPinCfg.uFuncSel = CTXPADFNC(ui32Ctx);
    sPinCfg.eDriveStrength = eDriveStrength;
    am_hal_gpio_pinconfig(ui32CtxPadNum, sPinCfg);

    return AM_HAL_STATUS_SUCCESS;

} // am_hal_ctimer_output_config()

//*****************************************************************************
//
//! @brief Configure timer inputs.
//!
//! @param ui32TimerNumber is the number of the timer to configure.
//!
//! @param ui32TimerSegment specifies which segment of the timer to use.
//!
//! @param ui32TimerInputConfig Input Configuration options.
//!
//! This function will configure the input pin for the selected timer.
//!
//! Valid values for ui32TimerSegment are:
//!     AM_HAL_CTIMER_TIMERA
//!     AM_HAL_CTIMER_TIMERB
//!     AM_HAL_CTIMER_BOTH
//!
//! @return None.
//
//*****************************************************************************
void
am_hal_ctimer_input_config(uint32_t ui32TimerNumber, uint32_t ui32TimerSegment,
                           uint32_t ui32TimerInputConfig)
{
    //
    // Begin critical section.
    //
    AM_CRITICAL_BEGIN

    //
    // Done with critical section.
    //
    AM_CRITICAL_END

} // am_hal_ctimer_input_config()

//*****************************************************************************
//
//! @brief Set a compare register.
//!
//! @param ui32TimerNumber is the number of the timer to configure.
//!
//! @param ui32TimerSegment specifies which segment of the timer to use.
//! Valid values for ui32TimerSegment are:
//!
//!     AM_HAL_CTIMER_TIMERA
//!     AM_HAL_CTIMER_TIMERB
//!     AM_HAL_CTIMER_BOTH
//!
//! @param ui32CompareReg specifies which compare register should be set
//! (either 0 or 1)
//!
//! @param ui32Value is the value that should be written to the compare
//! register.
//!
//! This function allows the caller to set the values in the compare registers
//! for a timer. These registers control the period and duty cycle of the
//! timers and their associated output pins. Please see the datasheet for
//! further information on the operation of the compare registers. The \e
//! ui32TimerSegment parameter allows the caller to individually select a
//! segment within, such as TIMER0A, TIMER0B, or both.
//!
//! @note For simple manipulations of period or duty cycle for timers and PWMs,
//! you may find it easier to use the am_hal_ctimer_period_set() function.
//!
//! @return None.
//
//*****************************************************************************
void
am_hal_ctimer_compare_set(uint32_t ui32TimerNumber, uint32_t ui32TimerSegment,
                          uint32_t ui32CompareReg, uint32_t ui32Value)
{
    volatile uint32_t *pui32CmprRegA, *pui32CmprRegB;
    uint32_t ui32CmprRegA, ui32CmprRegB, ui32ValB;

    //
    // Find the correct compare register to write.
    // Assume A or BOTH.  We'll change later if B.
    //
    pui32CmprRegA = (uint32_t *)CTIMERADDRn(CTIMER, ui32TimerNumber, CMPRA0);
    pui32CmprRegB = (uint32_t *)CTIMERADDRn(CTIMER, ui32TimerNumber, CMPRB0);

    ui32ValB = ( ui32TimerSegment == AM_HAL_CTIMER_BOTH ) ?
               ui32Value >> 16 : ui32Value & 0xFFFF;

    //
    // Write the compare register with the selected value.
    // Begin critical section while CMPR registers are modified.
    //
    AM_CRITICAL_BEGIN

    ui32CmprRegA = *pui32CmprRegA;
    ui32CmprRegB = *pui32CmprRegB;

    if ( ui32CompareReg == 1 )
    {
        //
        // CMPR reg 1
        // Get the lower 16b (but may not be used if TIMERB).
        //
        ui32CmprRegA = ( (ui32CmprRegA & CTIMER_CMPRA0_CMPR0A0_Msk) |
                          _VAL2FLD(CTIMER_CMPRA0_CMPR1A0, ui32Value & 0xFFFF) );

        //
        // Get the upper 16b (but may not be used if TIMERA)
        //
        ui32CmprRegB = ( (ui32CmprRegB & CTIMER_CMPRA0_CMPR0A0_Msk) |
                          _VAL2FLD(CTIMER_CMPRA0_CMPR1A0, ui32ValB) );
    }
    else
    {
        //
        // CMPR reg 0
        // Get the lower 16b (but may not be used if TIMERB)
        //
        ui32CmprRegA = ( (ui32CmprRegA & CTIMER_CMPRA0_CMPR1A0_Msk) |
                         _VAL2FLD(CTIMER_CMPRA0_CMPR0A0, ui32Value & 0xFFFF) );

        //
        // Set the upper 16b (but may not be used if TIMERA)
        //
        ui32CmprRegB = ( (ui32CmprRegB & CTIMER_CMPRA0_CMPR1A0_Msk) |
                         _VAL2FLD(CTIMER_CMPRA0_CMPR0A0, ui32ValB) );
    }

    if ( ui32TimerSegment == AM_HAL_CTIMER_TIMERB )
    {
        *pui32CmprRegB = ui32CmprRegB;
    }
    else
    {
        //
        // It's TIMERA or BOTH.
        //
        *pui32CmprRegA = ui32CmprRegA;

        if ( ui32TimerSegment == AM_HAL_CTIMER_BOTH )
        {
            *pui32CmprRegB = ui32CmprRegB;
        }
    }

    //
    // Done with critical section.
    //
    AM_CRITICAL_END

} // am_hal_ctimer_compare_set()

//*****************************************************************************
//
//! @brief Set a compare register.
//!
//! @param ui32TimerNumber is the number of the timer to configure.
//!
//! @param ui32TimerSegment specifies which segment of the timer to use.
//! Valid values for ui32TimerSegment are:
//!
//!     AM_HAL_CTIMER_TIMERA
//!     AM_HAL_CTIMER_TIMERB
//!     AM_HAL_CTIMER_BOTH
//!
//! @param ui32CompareReg specifies which compare register should be set
//! (either 0 or 1)
//!
//! @param ui32Value is the value that should be written to the compare
//! register.
//!
//! This function allows the caller to set the values in the compare registers
//! for a timer. These registers control the period and duty cycle of the
//! timers and their associated output pins. Please see the datasheet for
//! further information on the operation of the compare registers. The \e
//! ui32TimerSegment parameter allows the caller to individually select a
//! segment within, such as TIMER0A, TIMER0B, or both.
//!
//! @note For simple manipulations of period or duty cycle for timers and PWMs,
//! you may find it easier to use the am_hal_ctimer_period_set() function.
//!
//! @return None.
//
//*****************************************************************************
void
am_hal_ctimer_aux_compare_set(uint32_t ui32TimerNumber, uint32_t ui32TimerSegment,
                              uint32_t ui32CompareReg, uint32_t ui32Value)
{
    volatile uint32_t *pui32CmprRegA, *pui32CmprRegB;
    uint32_t ui32CmprRegA, ui32CmprRegB, ui32ValB;

    //
    // Find the correct compare register to write.
    // Assume A or BOTH.  We'll change later if B.
    //
    pui32CmprRegA = (uint32_t *)CTIMERADDRn(CTIMER, ui32TimerNumber, CMPRAUXA0);
    pui32CmprRegB = (uint32_t *)CTIMERADDRn(CTIMER, ui32TimerNumber, CMPRAUXB0);

    ui32ValB = ( ui32TimerSegment == AM_HAL_CTIMER_BOTH ) ?
               ui32Value >> 16 : ui32Value & 0xFFFF;

    //
    // Write the compare register with the selected value.
    // Begin critical section while CMPR registers are modified.
    //
    AM_CRITICAL_BEGIN

    ui32CmprRegA = *pui32CmprRegA;
    ui32CmprRegB = *pui32CmprRegB;

    if ( ui32CompareReg == 1 )
    {
        //
        // CMPR reg 1
        // Get the lower 16b (but may not be used if TIMERB).
        //
        ui32CmprRegA = ( (ui32CmprRegA & CTIMER_CMPRAUXA0_CMPR2A0_Msk) |
                          _VAL2FLD(CTIMER_CMPRAUXA0_CMPR3A0, ui32Value & 0xFFFF) );

        //
        // Get the upper 16b (but may not be used if TIMERA)
        //
        ui32CmprRegB = ( (ui32CmprRegB & CTIMER_CMPRAUXA0_CMPR2A0_Msk) |
                          _VAL2FLD(CTIMER_CMPRAUXA0_CMPR3A0, ui32ValB) );
    }
    else
    {
        //
        // CMPR reg 0
        // Get the lower 16b (but may not be used if TIMERB)
        //
        ui32CmprRegA = ( (ui32CmprRegA & CTIMER_CMPRAUXA0_CMPR3A0_Msk) |
                         _VAL2FLD(CTIMER_CMPRAUXA0_CMPR2A0, ui32Value & 0xFFFF) );

        //
        // Set the upper 16b (but may not be used if TIMERA)
        //
        ui32CmprRegB = ( (ui32CmprRegB & CTIMER_CMPRAUXA0_CMPR3A0_Msk) |
                         _VAL2FLD(CTIMER_CMPRAUXA0_CMPR2A0, ui32ValB) );
    }

    if ( ui32TimerSegment == AM_HAL_CTIMER_TIMERB )
    {
        *pui32CmprRegB = ui32CmprRegB;
    }
    else
    {
        //
        // It's TIMERA or BOTH.
        //
        *pui32CmprRegA = ui32CmprRegA;

        if ( ui32TimerSegment == AM_HAL_CTIMER_BOTH )
        {
            *pui32CmprRegB = ui32CmprRegB;
        }
    }

    //
    // Done with critical section.
    //
    AM_CRITICAL_END

} // am_hal_ctimer_aux_compare_set()

//*****************************************************************************
//
//! @brief Set the period and duty cycle of a timer.
//!
//! @param ui32TimerNumber is the number of the timer to configure.
//!
//! @param ui32TimerSegment specifies which segment of the timer to use.
//!
//! @param ui32Period specifies the desired period.  This parameter effectively
//! specifies the CTIMER CMPR field(s). The CMPR fields are handled in hardware
//! as (n+1) values, therefore ui32Period is actually specified as 1 less than
//! the desired period. Finally, as mentioned in the data sheet, the CMPR fields
//! cannot be 0 (a value of 1), so neither can ui32Period be 0.
//!
//! @param ui32OnTime set the number of clocks where the output signal is high.
//!
//! This function should be used for simple manipulations of the period and
//! duty cycle of a counter/timer. To set the period and/or duty cycle of a
//! linked timer pair, use AM_HAL_CTIMER_BOTH as the timer segment argument. If
//! you would like to set the period and/or duty cycle for both TIMERA and
//! TIMERB you will need to call this function twice: once for TIMERA, and once
//! for TIMERB.
//!
//! Valid values for ui32TimerSegment are:
//!
//!     AM_HAL_CTIMER_TIMERA
//!     AM_HAL_CTIMER_TIMERB
//!     AM_HAL_CTIMER_BOTH
//!
//! @note The ui32OnTime parameter will only work if the timer is currently
//! operating in one of the PWM modes.
//!
//! @return None.
//
//*****************************************************************************
void
am_hal_ctimer_period_set(uint32_t ui32TimerNumber, uint32_t ui32TimerSegment,
                         uint32_t ui32Period, uint32_t ui32OnTime)
{
    volatile uint32_t *pui32ControlReg;
    volatile uint32_t *pui32CompareRegA;
    volatile uint32_t *pui32CompareRegB;
    uint32_t ui32Mode, ui32Comp0, ui32Comp1;

    //
    // Find the correct control register to pull the function select field
    // from.
    //
    pui32ControlReg = (uint32_t*)CTIMERADDRn(CTIMER, ui32TimerNumber, CTRL0);

    //
    // Find the correct compare registers to write.
    //
    pui32CompareRegA = (uint32_t*)CTIMERADDRn(CTIMER, ui32TimerNumber, CMPRA0);

    pui32CompareRegB = (uint32_t*)CTIMERADDRn(CTIMER, ui32TimerNumber, CMPRB0);

    //
    // Begin critical section.
    //
    AM_CRITICAL_BEGIN

    //
    // Extract the timer mode from the register based on the ui32TimerSegment
    // selected by the user.
    //
    ui32Mode = *pui32ControlReg;
    if ( ui32TimerSegment == AM_HAL_CTIMER_TIMERB )
    {
        ui32Mode = ui32Mode >> 16;
    }

    //
    // Mask to get to the bits we're interested in.
    //
    ui32Mode = ui32Mode & CTIMER_CTRL0_TMRA0FN_Msk;

    //
    // If the mode is a PWM mode, we'll need to calculate the correct CMPR0 and
    // CMPR1 values here.
    //
    if (ui32Mode == AM_HAL_CTIMER_FN_PWM_ONCE   ||
        ui32Mode == AM_HAL_CTIMER_FN_PWM_REPEAT)
    {
        ui32Comp0 = ui32Period - ui32OnTime;
        ui32Comp1 = ui32Period;
    }
    else
    {
        ui32Comp0 = ui32Period;
        ui32Comp1 = 0;
    }

    //
    // Based on the timer segment argument, write the calculated Compare 0 and
    // Compare 1 values to the correct halves of the correct registers.
    //
    if ( ui32TimerSegment == AM_HAL_CTIMER_TIMERA )
    {
        //
        // For timer A, write the values to the TIMERA compare register.
        //
        *pui32CompareRegA = (_VAL2FLD(CTIMER_CMPRA0_CMPR0A0, ui32Comp0) |
                             _VAL2FLD(CTIMER_CMPRA0_CMPR1A0, ui32Comp1));
    }
    else if ( ui32TimerSegment == AM_HAL_CTIMER_TIMERB )
    {
        //
        // For timer B, write the values to the TIMERA compare register.
        //
        *pui32CompareRegB = (_VAL2FLD(CTIMER_CMPRA0_CMPR0A0, ui32Comp0) |
                             _VAL2FLD(CTIMER_CMPRA0_CMPR1A0, ui32Comp1));
    }
    else
    {
        //
        // For the linked case, write the lower halves of the values to the
        // TIMERA compare register, and the upper halves to the TIMERB compare
        // register.
        //
        *pui32CompareRegA = (_VAL2FLD(CTIMER_CMPRA0_CMPR0A0, ui32Comp0) |
                             _VAL2FLD(CTIMER_CMPRA0_CMPR1A0, ui32Comp1));

        *pui32CompareRegB = (_VAL2FLD(CTIMER_CMPRA0_CMPR0A0, ui32Comp0 >> 16) |
                             _VAL2FLD(CTIMER_CMPRA0_CMPR1A0, ui32Comp1 >> 16));
    }

    //
    // Done with critical section.
    //
    AM_CRITICAL_END

} // am_hal_ctimer_period_set()

//*****************************************************************************
//
//! @brief Set the period and duty cycle of a timer.
//!
//! @param ui32TimerNumber is the number of the timer to configure.
//!
//! @param ui32TimerSegment specifies which segment of the timer to use.
//!
//! @param ui32Period specifies the desired period.  This parameter effectively
//! specifies the CTIMER CMPR field(s). The CMPR fields are handled in hardware
//! as (n+1) values, therefore ui32Period is actually specified as 1 less than
//! the desired period. Finally, as mentioned in the data sheet, the CMPR fields
//! cannot be 0 (a value of 1), so neither can ui32Period be 0.
//!
//! @param ui32OnTime set the number of clocks where the output signal is high.
//!
//! This function should be used for simple manipulations of the period and
//! duty cycle of a counter/timer. To set the period and/or duty cycle of a
//! linked timer pair, use AM_HAL_CTIMER_BOTH as the timer segment argument. If
//! you would like to set the period and/or duty cycle for both TIMERA and
//! TIMERB you will need to call this function twice: once for TIMERA, and once
//! for TIMERB.
//!
//! Valid values for ui32TimerSegment are:
//!
//!     AM_HAL_CTIMER_TIMERA
//!     AM_HAL_CTIMER_TIMERB
//!     AM_HAL_CTIMER_BOTH
//!
//! @note The ui32OnTime parameter will only work if the timer is currently
//! operating in one of the PWM modes.
//!
//! @return None.
//
//*****************************************************************************
void
am_hal_ctimer_aux_period_set(uint32_t ui32TimerNumber, uint32_t ui32TimerSegment,
                             uint32_t ui32Period, uint32_t ui32OnTime)
{
    volatile uint32_t *pui32ControlReg;
    volatile uint32_t *pui32CompareRegA;
    volatile uint32_t *pui32CompareRegB;
    uint32_t ui32Mode, ui32Comp0, ui32Comp1;

    //
    // Find the correct control register to pull the function select field
    // from.
    //
    pui32ControlReg = (uint32_t*)CTIMERADDRn(CTIMER, ui32TimerNumber, CTRL0);

    //
    // Find the correct compare registers to write.
    //
    pui32CompareRegA = (uint32_t*)CTIMERADDRn(CTIMER, ui32TimerNumber, CMPRAUXA0);

    pui32CompareRegB = (uint32_t*)CTIMERADDRn(CTIMER, ui32TimerNumber, CMPRAUXB0);

    //
    // Begin critical section.
    //
    AM_CRITICAL_BEGIN

    //
    // Extract the timer mode from the register based on the ui32TimerSegment
    // selected by the user.
    //
    ui32Mode = *pui32ControlReg;
    if ( ui32TimerSegment == AM_HAL_CTIMER_TIMERB )
    {
        ui32Mode = ui32Mode >> 16;
    }

    //
    // Mask to get to the bits we're interested in.
    //
    ui32Mode = ui32Mode & CTIMER_CTRL0_TMRA0FN_Msk;

    //
    // If the mode is a PWM mode, we'll need to calculate the correct CMPR0 and
    // CMPR1 values here.
    //
    if (ui32Mode == AM_HAL_CTIMER_FN_PWM_ONCE   ||
        ui32Mode == AM_HAL_CTIMER_FN_PWM_REPEAT)
    {
        ui32Comp0 = ui32Period - ui32OnTime;
        ui32Comp1 = ui32Period;
    }
    else
    {
        ui32Comp0 = ui32Period;
        ui32Comp1 = 0;
    }

    //
    // Based on the timer segment argument, write the calculated Compare 0 and
    // Compare 1 values to the correct halves of the correct registers.
    //
    if ( ui32TimerSegment == AM_HAL_CTIMER_TIMERA )
    {
        //
        // For timer A, write the values to the TIMERA compare register.
        //
        *pui32CompareRegA = (_VAL2FLD(CTIMER_CMPRAUXA0_CMPR2A0, ui32Comp0) |
                             _VAL2FLD(CTIMER_CMPRAUXA0_CMPR3A0, ui32Comp1));
    }
    else if ( ui32TimerSegment == AM_HAL_CTIMER_TIMERB )
    {
        //
        // For timer B, write the values to the TIMERA compare register.
        //
        *pui32CompareRegB = (_VAL2FLD(CTIMER_CMPRAUXA0_CMPR2A0, ui32Comp0) |
                             _VAL2FLD(CTIMER_CMPRAUXA0_CMPR3A0, ui32Comp1));
    }
    else
    {
        //
        // For the linked case, write the lower halves of the values to the
        // TIMERA compare register, and the upper halves to the TIMERB compare
        // register.
        //
        *pui32CompareRegA = (_VAL2FLD(CTIMER_CMPRAUXA0_CMPR2A0, ui32Comp0) |
                             _VAL2FLD(CTIMER_CMPRAUXA0_CMPR3A0, ui32Comp1));

        *pui32CompareRegB = (_VAL2FLD(CTIMER_CMPRAUXA0_CMPR2A0, ui32Comp0 >> 16) |
                             _VAL2FLD(CTIMER_CMPRAUXA0_CMPR3A0, ui32Comp1 >> 16));
    }

    //
    // Done with critical section.
    //
    AM_CRITICAL_END

} // am_hal_ctimer_aux_period_set()

//*****************************************************************************
//
//! @brief Enable the TIMERA3 ADC trigger
//!
//! This function enables the ADC trigger within TIMERA3.
//!
//! @return None.
//
//*****************************************************************************
void
am_hal_ctimer_adc_trigger_enable(void)
{
    //
    // Begin critical section.
    //
    AM_CRITICAL_BEGIN

    //
    // Enable the ADC trigger.
    //
    CTIMER->CTRL3_b.ADCEN = 1;

    //
    // Done with critical section.
    //
    AM_CRITICAL_END

} // am_hal_ctimer_adc_trigger_enable()

//*****************************************************************************
//
//! @brief Disable the TIMERA3 ADC trigger
//!
//! This function disables the ADC trigger within TIMERA3.
//!
//! @return None.
//
//*****************************************************************************
void
am_hal_ctimer_adc_trigger_disable(void)
{
    //
    // Begin critical section.
    //
    AM_CRITICAL_BEGIN

    //
    // Disable the ADC trigger.
    //
    CTIMERn(0)->CTRL3 &= ~CTIMER_CTRL3_ADCEN_Msk;

    //
    // Done with critical section.
    //
    AM_CRITICAL_END

} // am_hal_ctimer_adc_trigger_disable()

//*****************************************************************************
//
//! @brief Enables the selected timer interrupt.
//!
//! @param ui32Interrupt is the interrupt to be used.
//!
//! This function will enable the selected interrupts in the main CTIMER
//! interrupt enable register. In order to receive an interrupt from a timer,
//! you will need to enable the interrupt for that timer in this main register,
//! as well as in the timer control register (accessible though
//! am_hal_ctimer_config()), and in the NVIC.
//!
//! ui32Interrupt should be the logical OR of one or more of the following
//! values:
//!
//!     AM_HAL_CTIMER_INT_TIMERAxCx, AM_HAL_CTIMER_INT_TIMERAxCx,
//!
//! @note The AM_HAL_CTIMER_INT_TIMER defines were re-definitions of
//!       AM_REG_CTIMER_INTEN_CTMRAxCxINT_M register defines. They are
//!       dropped in this release to go back to a single source definition.
//!
//! @return None.
//
//*****************************************************************************
void
am_hal_ctimer_int_enable(uint32_t ui32Interrupt)
{
    //
    // Begin critical section.
    //
    AM_CRITICAL_BEGIN

    //
    // Enable the interrupt at the module level.
    //
    CTIMERn(0)->INTEN |= ui32Interrupt;

    //
    // Done with critical section.
    //
    AM_CRITICAL_END

} // am_hal_ctimer_int_enable()

//*****************************************************************************
//
//! @brief Return the enabled timer interrupts.
//!
//! This function will return all enabled interrupts in the main CTIMER
//! interrupt enable register.
//!
//! @return return enabled interrupts. This will be a logical or of:
//!
//!     AM_REG_CTIMER_INTEN_CTMRAxC0INT_M, AM_HAL_CTIMER_INT_TIMERAxC1,
//!
//! @return Return the enabled timer interrupts.
//
//*****************************************************************************
uint32_t
am_hal_ctimer_int_enable_get(void)
{
    //
    // Return enabled interrupts.
    //
    return CTIMERn(0)->INTEN;

} // am_hal_ctimer_int_enable_get()

//*****************************************************************************
//
//! @brief Disables the selected timer interrupt.
//!
//! @param ui32Interrupt is the interrupt to be used.
//!
//! This function will disable the selected interrupts in the main CTIMER
//! interrupt register.
//!
//! ui32Interrupt should be the logical OR of one or more of the following
//! values:
//!
//!     AM_REG_CTIMER_INTEN_CTMRAxC0INT_M, AM_HAL_CTIMER_INT_TIMERAxC1,
//!
//! @return None.
//
//*****************************************************************************
void
am_hal_ctimer_int_disable(uint32_t ui32Interrupt)
{
    //
    // Begin critical section.
    //
    AM_CRITICAL_BEGIN

    //
    // Disable the interrupt at the module level.
    //
    CTIMERn(0)->INTEN &= ~ui32Interrupt;

    //
    // Done with critical section.
    //
    AM_CRITICAL_END

} // am_hal_ctimer_int_disable()

//*****************************************************************************
//
//! @brief Clears the selected timer interrupt.
//!
//! @param ui32Interrupt is the interrupt to be used.
//!
//! This function will clear the selected interrupts in the main CTIMER
//! interrupt register.
//!
//! ui32Interrupt should be the logical OR of one or more of the following
//! values:
//!
//!     AM_REG_CTIMER_INTEN_CTMRAxC0INT_M, AM_HAL_CTIMER_INT_TIMERAxC1,
//!
//! @return None.
//
//*****************************************************************************
void
am_hal_ctimer_int_clear(uint32_t ui32Interrupt)
{
    //
    // Begin critical section.
    //
    AM_CRITICAL_BEGIN

    //
    // Disable the interrupt at the module level.
    //
    CTIMERn(0)->INTCLR = ui32Interrupt;

    //
    // Done with critical section.
    //
    AM_CRITICAL_END

} // am_hal_ctimer_int_clear()

//*****************************************************************************
//
//! @brief Sets the selected timer interrupt.
//!
//! @param ui32Interrupt is the interrupt to be used.
//!
//! This function will set the selected interrupts in the main CTIMER
//! interrupt register.
//!
//! ui32Interrupt should be the logical OR of one or more of the following
//! values:
//!
//!     AM_REG_CTIMER_INTEN_CTMRAxC0INT_M, AM_HAL_CTIMER_INT_TIMERAxC1,
//!
//! @return None.
//
//*****************************************************************************
void
am_hal_ctimer_int_set(uint32_t ui32Interrupt)
{
    //
    // Begin critical section.
    //
    AM_CRITICAL_BEGIN

    //
    // Set the interrupts.
    //
    CTIMERn(0)->INTSET = ui32Interrupt;

    //
    // Done with critical section.
    //
    AM_CRITICAL_END

} // am_hal_ctimer_int_set()

//*****************************************************************************
//
//! @brief Returns either the enabled or raw timer interrupt status.
//!
//! This function will return the timer interrupt status.
//!
//! @param bEnabledOnly if true returns the status of the enabled interrupts
//! only.
//!
//! The return value will be the logical OR of one or more of the following
//! values:
//!
//!     AM_REG_CTIMER_INTEN_CTMRAxC0INT_M, AM_HAL_CTIMER_INT_TIMERAxC1,
//!
//! @return u32RetVal either the timer interrupt status, or interrupt enabled.
//
//*****************************************************************************
uint32_t
am_hal_ctimer_int_status_get(bool bEnabledOnly)
{
    uint32_t u32RetVal = 0;

    //
    // Begin critical section.
    //
    AM_CRITICAL_BEGIN

    //
    // Return the desired status.
    //

    if ( bEnabledOnly )
    {
        u32RetVal  = CTIMERn(0)->INTSTAT;
        u32RetVal &= CTIMERn(0)->INTEN;
    }
    else
    {
        u32RetVal = CTIMERn(0)->INTSTAT;
    }

    //
    // Done with critical section.
    //
    AM_CRITICAL_END

    return u32RetVal;

} // am_hal_ctimer_int_status_get()

//*****************************************************************************
//
// End Doxygen group.
//! @}
//
//*****************************************************************************