Newer
Older
mbed-os / targets / TARGET_STM / TARGET_STM32G4 / STM32Cube_FW / STM32G4xx_HAL_Driver / stm32g4xx_hal_dac_ex.c
@jeromecoutant jeromecoutant on 16 Oct 2020 37 KB STM32G4: STM32Cube_FW_G4_V1.3.0
/**
  ******************************************************************************
  * @file    stm32g4xx_hal_dac_ex.c
  * @author  MCD Application Team
  * @brief   DAC HAL module driver.
  *          This file provides firmware functions to manage the extended
  *          functionalities of the DAC peripheral.
  *
  *
  @verbatim
  ==============================================================================
                      ##### How to use this driver #####
  ==============================================================================
    [..]
     *** Dual mode IO operation ***
     ==============================
      (+) Use HAL_DACEx_DualStart() to enable both channel and start conversion
          for dual mode operation.
          If software trigger is selected, using HAL_DACEx_DualStart() will start
          the conversion of the value previously set by HAL_DACEx_DualSetValue().
      (+) Use HAL_DACEx_DualStop() to disable both channel and stop conversion
          for dual mode operation.
      (+) Use HAL_DACEx_DualStart_DMA() to enable both channel and start conversion
          for dual mode operation using DMA to feed DAC converters.
          First issued trigger will start the conversion of the value previously
          set by HAL_DACEx_DualSetValue().
          The same callbacks that are used in single mode are called in dual mode to notify
          transfer completion (half complete or complete), errors or underrun.
      (+) Use HAL_DACEx_DualStop_DMA() to disable both channel and stop conversion
          for dual mode operation using DMA to feed DAC converters.
      (+) When Dual mode is enabled (i.e. DAC Channel1 and Channel2 are used simultaneously) :
          Use HAL_DACEx_DualGetValue() to get digital data to be converted and use
          HAL_DACEx_DualSetValue() to set digital value to converted simultaneously in
          Channel 1 and Channel 2.

     *** Signal generation operation ***
     ===================================
      (+) Use HAL_DACEx_TriangleWaveGenerate() to generate Triangle signal.
      (+) Use HAL_DACEx_NoiseWaveGenerate() to generate Noise signal.

      (+) Use HAL_DACEx_SawtoothWaveGenerate() to generate sawtooth signal.
      (+) Use HAL_DACEx_SawtoothWaveDataReset() to reset sawtooth wave.
      (+) Use HAL_DACEx_SawtoothWaveDataStep() to step sawtooth wave.

      (+) HAL_DACEx_SelfCalibrate to calibrate one DAC channel.
      (+) HAL_DACEx_SetUserTrimming to set user trimming value.
      (+) HAL_DACEx_GetTrimOffset to retrieve trimming value (factory setting
          after reset, user setting if HAL_DACEx_SetUserTrimming have been used
          at least one time after reset).

 @endverbatim
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; Copyright (c) 2019 STMicroelectronics.
  * All rights reserved.</center></h2>
  *
  * This software component is licensed by ST under BSD 3-Clause license,
  * the "License"; You may not use this file except in compliance with the
  * License. You may obtain a copy of the License at:
  *                        opensource.org/licenses/BSD-3-Clause
  *
  ******************************************************************************
  */


/* Includes ------------------------------------------------------------------*/
#include "stm32g4xx_hal.h"

/** @addtogroup STM32G4xx_HAL_Driver
  * @{
  */

#ifdef HAL_DAC_MODULE_ENABLED

#if defined(DAC1) || defined(DAC2) || defined(DAC3) ||defined (DAC4)

/** @defgroup DACEx DACEx
  * @brief DAC Extended HAL module driver
  * @{
  */

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/

/** @defgroup DACEx_Exported_Functions DACEx Exported Functions
  * @{
  */

/** @defgroup DACEx_Exported_Functions_Group2 IO operation functions
  *  @brief    Extended IO operation functions
  *
@verbatim
  ==============================================================================
                 ##### Extended features functions #####
  ==============================================================================
    [..]  This section provides functions allowing to:
      (+) Start conversion.
      (+) Stop conversion.
      (+) Start conversion and enable DMA transfer.
      (+) Stop conversion and disable DMA transfer.
      (+) Get result of conversion.
      (+) Get result of dual mode conversion.

@endverbatim
  * @{
  */

/**
  * @brief  Enables DAC and starts conversion of both channels.
  * @param  hdac pointer to a DAC_HandleTypeDef structure that contains
  *         the configuration information for the specified DAC.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_DACEx_DualStart(DAC_HandleTypeDef *hdac)
{
  uint32_t tmp_swtrig = 0UL;

  /* Check the parameters */
  assert_param(IS_DAC_CHANNEL(hdac->Instance, DAC_CHANNEL_2));

  /* Process locked */
  __HAL_LOCK(hdac);

  /* Change DAC state */
  hdac->State = HAL_DAC_STATE_BUSY;

  /* Enable the Peripheral */
  __HAL_DAC_ENABLE(hdac, DAC_CHANNEL_1);
  __HAL_DAC_ENABLE(hdac, DAC_CHANNEL_2);
  /* Ensure minimum wait before using peripheral after enabling it */
  HAL_Delay(1);

  /* Check if software trigger enabled */
  if ((hdac->Instance->CR & (DAC_CR_TEN1 | DAC_CR_TSEL1)) == DAC_CR_TEN1)
  {
    tmp_swtrig |= DAC_SWTRIGR_SWTRIG1;
  }
  if ((hdac->Instance->CR & (DAC_CR_TEN2 | DAC_CR_TSEL2)) == DAC_CR_TEN2)
  {
    tmp_swtrig |= DAC_SWTRIGR_SWTRIG2;
  }
  /* Enable the selected DAC software conversion*/
  SET_BIT(hdac->Instance->SWTRIGR, tmp_swtrig);

  /* Change DAC state */
  hdac->State = HAL_DAC_STATE_READY;

  /* Process unlocked */
  __HAL_UNLOCK(hdac);

  /* Return function status */
  return HAL_OK;
}

/**
  * @brief  Disables DAC and stop conversion of both channels.
  * @param  hdac pointer to a DAC_HandleTypeDef structure that contains
  *         the configuration information for the specified DAC.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_DACEx_DualStop(DAC_HandleTypeDef *hdac)
{
  /* Check the parameters */
  assert_param(IS_DAC_CHANNEL(hdac->Instance, DAC_CHANNEL_2));

  /* Disable the Peripheral */
  __HAL_DAC_DISABLE(hdac, DAC_CHANNEL_1);
  __HAL_DAC_DISABLE(hdac, DAC_CHANNEL_2);
  /* Ensure minimum wait before enabling peripheral after disabling it */
  HAL_Delay(1);

  /* Change DAC state */
  hdac->State = HAL_DAC_STATE_READY;

  /* Return function status */
  return HAL_OK;
}

/**
  * @brief  Enables DAC and starts conversion of both channel 1 and 2 of the same DAC.
  * @param  hdac pointer to a DAC_HandleTypeDef structure that contains
  *         the configuration information for the specified DAC.
  * @param  Channel The DAC channel that will request data from DMA.
  *          This parameter can be one of the following values:
  *            @arg DAC_CHANNEL_1: DAC Channel1 selected
  *            @arg DAC_CHANNEL_2: DAC Channel2 selected
  * @param  pData The destination peripheral Buffer address.
  * @param  Length The length of data to be transferred from memory to DAC peripheral
  * @param  Alignment Specifies the data alignment for DAC channel.
  *          This parameter can be one of the following values:
  *            @arg DAC_ALIGN_8B_R: 8bit right data alignment selected
  *            @arg DAC_ALIGN_12B_L: 12bit left data alignment selected
  *            @arg DAC_ALIGN_12B_R: 12bit right data alignment selected
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_DACEx_DualStart_DMA(DAC_HandleTypeDef *hdac, uint32_t Channel, uint32_t *pData, uint32_t Length,
                                          uint32_t Alignment)
{
  HAL_StatusTypeDef status;
  uint32_t tmpreg = 0U;

  /* Check the parameters */
  assert_param(IS_DAC_CHANNEL(hdac->Instance, Channel));
  /* Ensure Channel 2 exists for this particular DAC instance */
  assert_param(IS_DAC_CHANNEL(hdac->Instance, DAC_CHANNEL_2));
  assert_param(IS_DAC_ALIGN(Alignment));

  /* Process locked */
  __HAL_LOCK(hdac);

  /* Change DAC state */
  hdac->State = HAL_DAC_STATE_BUSY;

  if (Channel == DAC_CHANNEL_1)
  {
    /* Set the DMA transfer complete callback for channel1 */
    hdac->DMA_Handle1->XferCpltCallback = DAC_DMAConvCpltCh1;

    /* Set the DMA half transfer complete callback for channel1 */
    hdac->DMA_Handle1->XferHalfCpltCallback = DAC_DMAHalfConvCpltCh1;

    /* Set the DMA error callback for channel1 */
    hdac->DMA_Handle1->XferErrorCallback = DAC_DMAErrorCh1;

    /* Enable the selected DAC channel1 DMA request */
    SET_BIT(hdac->Instance->CR, DAC_CR_DMAEN1);
  }
  else
  {
    /* Set the DMA transfer complete callback for channel2 */
    hdac->DMA_Handle2->XferCpltCallback = DAC_DMAConvCpltCh2;

    /* Set the DMA half transfer complete callback for channel2 */
    hdac->DMA_Handle2->XferHalfCpltCallback = DAC_DMAHalfConvCpltCh2;

    /* Set the DMA error callback for channel2 */
    hdac->DMA_Handle2->XferErrorCallback = DAC_DMAErrorCh2;

    /* Enable the selected DAC channel2 DMA request */
    SET_BIT(hdac->Instance->CR, DAC_CR_DMAEN2);
  }

  switch (Alignment)
  {
    case DAC_ALIGN_12B_R:
      /* Get DHR12R1 address */
      tmpreg = (uint32_t)&hdac->Instance->DHR12RD;
      break;
    case DAC_ALIGN_12B_L:
      /* Get DHR12L1 address */
      tmpreg = (uint32_t)&hdac->Instance->DHR12LD;
      break;
    case DAC_ALIGN_8B_R:
      /* Get DHR8R1 address */
      tmpreg = (uint32_t)&hdac->Instance->DHR8RD;
      break;
    default:
      break;
  }

  /* Enable the DMA channel */
  if (Channel == DAC_CHANNEL_1)
  {
    /* Enable the DAC DMA underrun interrupt */
    __HAL_DAC_ENABLE_IT(hdac, DAC_IT_DMAUDR1);

    /* Enable the DMA channel */
    status = HAL_DMA_Start_IT(hdac->DMA_Handle1, (uint32_t)pData, tmpreg, Length);
  }
  else
  {
    /* Enable the DAC DMA underrun interrupt */
    __HAL_DAC_ENABLE_IT(hdac, DAC_IT_DMAUDR2);

    /* Enable the DMA channel */
    status = HAL_DMA_Start_IT(hdac->DMA_Handle2, (uint32_t)pData, tmpreg, Length);
  }

  /* Process Unlocked */
  __HAL_UNLOCK(hdac);

  if (status == HAL_OK)
  {
    /* Enable the Peripheral */
    __HAL_DAC_ENABLE(hdac, DAC_CHANNEL_1);
    __HAL_DAC_ENABLE(hdac, DAC_CHANNEL_2);
    /* Ensure minimum wait before using peripheral after enabling it */
    HAL_Delay(1);
  }
  else
  {
    hdac->ErrorCode |= HAL_DAC_ERROR_DMA;
  }

  /* Return function status */
  return status;
}

/**
  * @brief  Disables DAC and stop conversion both channel.
  * @param  hdac pointer to a DAC_HandleTypeDef structure that contains
  *         the configuration information for the specified DAC.
  * @param  Channel The DAC channel that requests data from DMA.
  *          This parameter can be one of the following values:
  *            @arg DAC_CHANNEL_1: DAC Channel1 selected
  *            @arg DAC_CHANNEL_2: DAC Channel2 selected
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_DACEx_DualStop_DMA(DAC_HandleTypeDef *hdac, uint32_t Channel)
{
  HAL_StatusTypeDef status;

  /* Ensure Channel 2 exists for this particular DAC instance */
  assert_param(IS_DAC_CHANNEL(hdac->Instance, DAC_CHANNEL_2));

  /* Disable the selected DAC channel DMA request */
  CLEAR_BIT(hdac->Instance->CR, DAC_CR_DMAEN2 | DAC_CR_DMAEN1);

  /* Disable the Peripheral */
  __HAL_DAC_DISABLE(hdac, DAC_CHANNEL_1);
  __HAL_DAC_DISABLE(hdac, DAC_CHANNEL_2);
  /* Ensure minimum wait before enabling peripheral after disabling it */
  HAL_Delay(1);

  /* Disable the DMA channel */

  /* Channel1 is used */
  if (Channel == DAC_CHANNEL_1)
  {
    /* Disable the DMA channel */
    status = HAL_DMA_Abort(hdac->DMA_Handle1);

    /* Disable the DAC DMA underrun interrupt */
    __HAL_DAC_DISABLE_IT(hdac, DAC_IT_DMAUDR1);
  }
  else
  {
    /* Disable the DMA channel */
    status = HAL_DMA_Abort(hdac->DMA_Handle2);

    /* Disable the DAC DMA underrun interrupt */
    __HAL_DAC_DISABLE_IT(hdac, DAC_IT_DMAUDR2);
  }

  /* Check if DMA Channel effectively disabled */
  if (status != HAL_OK)
  {
    /* Update DAC state machine to error */
    hdac->State = HAL_DAC_STATE_ERROR;
  }
  else
  {
    /* Change DAC state */
    hdac->State = HAL_DAC_STATE_READY;
  }

  /* Return function status */
  return status;
}

/**
  * @brief  Enable or disable the selected DAC channel wave generation.
  * @param  hdac pointer to a DAC_HandleTypeDef structure that contains
  *         the configuration information for the specified DAC.
  * @param  Channel The selected DAC channel.
  *          This parameter can be one of the following values:
  *            @arg DAC_CHANNEL_1: DAC Channel1 selected
  *            @arg DAC_CHANNEL_2: DAC Channel2 selected (1)
  *
  *         (1) On this STM32 series, parameter not available on all instances.
  *             Refer to device datasheet for channels availability.
  * @param  Amplitude Select max triangle amplitude.
  *          This parameter can be one of the following values:
  *            @arg DAC_TRIANGLEAMPLITUDE_1: Select max triangle amplitude of 1
  *            @arg DAC_TRIANGLEAMPLITUDE_3: Select max triangle amplitude of 3
  *            @arg DAC_TRIANGLEAMPLITUDE_7: Select max triangle amplitude of 7
  *            @arg DAC_TRIANGLEAMPLITUDE_15: Select max triangle amplitude of 15
  *            @arg DAC_TRIANGLEAMPLITUDE_31: Select max triangle amplitude of 31
  *            @arg DAC_TRIANGLEAMPLITUDE_63: Select max triangle amplitude of 63
  *            @arg DAC_TRIANGLEAMPLITUDE_127: Select max triangle amplitude of 127
  *            @arg DAC_TRIANGLEAMPLITUDE_255: Select max triangle amplitude of 255
  *            @arg DAC_TRIANGLEAMPLITUDE_511: Select max triangle amplitude of 511
  *            @arg DAC_TRIANGLEAMPLITUDE_1023: Select max triangle amplitude of 1023
  *            @arg DAC_TRIANGLEAMPLITUDE_2047: Select max triangle amplitude of 2047
  *            @arg DAC_TRIANGLEAMPLITUDE_4095: Select max triangle amplitude of 4095
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_DACEx_TriangleWaveGenerate(DAC_HandleTypeDef *hdac, uint32_t Channel, uint32_t Amplitude)
{
  /* Check the parameters */
  assert_param(IS_DAC_CHANNEL(hdac->Instance, Channel));
  assert_param(IS_DAC_LFSR_UNMASK_TRIANGLE_AMPLITUDE(Amplitude));

  /* Process locked */
  __HAL_LOCK(hdac);

  /* Change DAC state */
  hdac->State = HAL_DAC_STATE_BUSY;

  /* Enable the triangle wave generation for the selected DAC channel */
  MODIFY_REG(hdac->Instance->CR, ((DAC_CR_WAVE1) | (DAC_CR_MAMP1)) << (Channel & 0x10UL), (DAC_CR_WAVE1_1 | Amplitude) << (Channel & 0x10UL));

  /* Change DAC state */
  hdac->State = HAL_DAC_STATE_READY;

  /* Process unlocked */
  __HAL_UNLOCK(hdac);

  /* Return function status */
  return HAL_OK;
}

/**
  * @brief  Enable or disable the selected DAC channel wave generation.
  * @param  hdac pointer to a DAC_HandleTypeDef structure that contains
  *         the configuration information for the specified DAC.
  * @param  Channel The selected DAC channel.
  *          This parameter can be one of the following values:
  *            @arg DAC_CHANNEL_1: DAC Channel1 selected
  *            @arg DAC_CHANNEL_2: DAC Channel2 selected (1)
  *
  *         (1) On this STM32 series, parameter not available on all instances.
  *             Refer to device datasheet for channels availability.
  * @param  Amplitude Unmask DAC channel LFSR for noise wave generation.
  *          This parameter can be one of the following values:
  *            @arg DAC_LFSRUNMASK_BIT0: Unmask DAC channel LFSR bit0 for noise wave generation
  *            @arg DAC_LFSRUNMASK_BITS1_0: Unmask DAC channel LFSR bit[1:0] for noise wave generation
  *            @arg DAC_LFSRUNMASK_BITS2_0: Unmask DAC channel LFSR bit[2:0] for noise wave generation
  *            @arg DAC_LFSRUNMASK_BITS3_0: Unmask DAC channel LFSR bit[3:0] for noise wave generation
  *            @arg DAC_LFSRUNMASK_BITS4_0: Unmask DAC channel LFSR bit[4:0] for noise wave generation
  *            @arg DAC_LFSRUNMASK_BITS5_0: Unmask DAC channel LFSR bit[5:0] for noise wave generation
  *            @arg DAC_LFSRUNMASK_BITS6_0: Unmask DAC channel LFSR bit[6:0] for noise wave generation
  *            @arg DAC_LFSRUNMASK_BITS7_0: Unmask DAC channel LFSR bit[7:0] for noise wave generation
  *            @arg DAC_LFSRUNMASK_BITS8_0: Unmask DAC channel LFSR bit[8:0] for noise wave generation
  *            @arg DAC_LFSRUNMASK_BITS9_0: Unmask DAC channel LFSR bit[9:0] for noise wave generation
  *            @arg DAC_LFSRUNMASK_BITS10_0: Unmask DAC channel LFSR bit[10:0] for noise wave generation
  *            @arg DAC_LFSRUNMASK_BITS11_0: Unmask DAC channel LFSR bit[11:0] for noise wave generation
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_DACEx_NoiseWaveGenerate(DAC_HandleTypeDef *hdac, uint32_t Channel, uint32_t Amplitude)
{
  /* Check the parameters */
  assert_param(IS_DAC_CHANNEL(hdac->Instance, Channel));
  assert_param(IS_DAC_LFSR_UNMASK_TRIANGLE_AMPLITUDE(Amplitude));

  /* Process locked */
  __HAL_LOCK(hdac);

  /* Change DAC state */
  hdac->State = HAL_DAC_STATE_BUSY;

  /* Enable the noise wave generation for the selected DAC channel */
  MODIFY_REG(hdac->Instance->CR, ((DAC_CR_WAVE1) | (DAC_CR_MAMP1)) << (Channel & 0x10UL), (DAC_CR_WAVE1_0 | Amplitude) << (Channel & 0x10UL));

  /* Change DAC state */
  hdac->State = HAL_DAC_STATE_READY;

  /* Process unlocked */
  __HAL_UNLOCK(hdac);

  /* Return function status */
  return HAL_OK;
}

/**
  * @brief  Enable or disable the selected DAC channel sawtooth wave generation.
  * @param  hdac pointer to a DAC_HandleTypeDef structure that contains
  *         the configuration information for the specified DAC.
  * @param  Channel The selected DAC channel.
  *          This parameter can be one of the following values:
  *            @arg DAC_CHANNEL_1: DAC Channel1 selected
  *            @arg DAC_CHANNEL_2: DAC Channel2 selected (1)
  *
  *         (1) On this STM32 series, parameter not available on all instances.
  *             Refer to device datasheet for channels availability.
  * @param  Polarity polarity to be used for wave generation.
  *          This parameter can be one of the following values:
  *            @arg DAC_SAWTOOTH_POLARITY_DECREMENT
  *            @arg DAC_SAWTOOTH_POLARITY_INCREMENT
  * @param  ResetData Sawtooth wave reset value.
  *          Range is from 0 to DAC full range 4095 (0xFFF)
  * @param  StepData Sawtooth wave step value.
  *          12.4 bit format, unsigned: 12 bits exponent / 4 bits mantissa
  *          Step value step is 1/16 = 0.0625
  *          Step value range is 0.0000 to 4095.9375 (0xFFF.F)
  * @note    Sawtooth reset and step triggers are configured by calling @ref HAL_DAC_ConfigChannel
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_DACEx_SawtoothWaveGenerate(DAC_HandleTypeDef *hdac, uint32_t Channel, uint32_t Polarity,
                                                 uint32_t ResetData, uint32_t StepData)
{
  /* Check the parameters */
  assert_param(IS_DAC_CHANNEL(hdac->Instance, Channel));
  assert_param(IS_DAC_SAWTOOTH_POLARITY(Polarity));
  assert_param(IS_DAC_RESET_DATA(ResetData));
  assert_param(IS_DAC_STEP_DATA(StepData));

  /* Process locked */
  __HAL_LOCK(hdac);

  /* Change DAC state */
  hdac->State = HAL_DAC_STATE_BUSY;

  if (Channel == DAC_CHANNEL_1)
  {
    /* Configure the sawtooth wave generation data parameters */
    MODIFY_REG(hdac->Instance->STR1,
               DAC_STR1_STINCDATA1 | DAC_STR1_STDIR1 | DAC_STR1_STRSTDATA1,
               (StepData << DAC_STR1_STINCDATA1_Pos)
               | Polarity
               | (ResetData << DAC_STR1_STRSTDATA1_Pos));
  }
  else
  {
    /* Configure the sawtooth wave generation data parameters */
    MODIFY_REG(hdac->Instance->STR2,
               DAC_STR2_STINCDATA2 | DAC_STR2_STDIR2 | DAC_STR2_STRSTDATA2,
               (StepData << DAC_STR2_STINCDATA2_Pos)
               | Polarity
               | (ResetData << DAC_STR2_STRSTDATA2_Pos));
  }

  /* Enable the sawtooth wave generation for the selected DAC channel */
  MODIFY_REG(hdac->Instance->CR, (DAC_CR_WAVE1) << (Channel & 0x10UL), (uint32_t)(DAC_CR_WAVE1_1 | DAC_CR_WAVE1_0) << (Channel & 0x10UL));

  /* Change DAC state */
  hdac->State = HAL_DAC_STATE_READY;

  /* Process unlocked */
  __HAL_UNLOCK(hdac);

  /* Return function status */
  return HAL_OK;
}

/**
  * @brief  Trig sawtooth wave reset
  * @note   This function allows to reset sawtooth wave in case of SW trigger
  *         has been configured for this usage.
  * @param  hdac pointer to a DAC_HandleTypeDef structure that contains
  *         the configuration information for the specified DAC.
  * @param  Channel The selected DAC channel.
  *          This parameter can be one of the following values:
  *            @arg DAC_CHANNEL_1: DAC Channel1 selected
  *            @arg DAC_CHANNEL_2: DAC Channel2 selected (1)
  *
  *         (1) On this STM32 series, parameter not available on all instances.
  *             Refer to device datasheet for channels availability.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_DACEx_SawtoothWaveDataReset(DAC_HandleTypeDef *hdac, uint32_t Channel)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check the parameters */
  assert_param(IS_DAC_CHANNEL(hdac->Instance, Channel));

  /* Process locked */
  __HAL_LOCK(hdac);

  if (((hdac->Instance->STMODR >> (Channel & 0x10UL)) & DAC_STMODR_STRSTTRIGSEL1) == 0U /* SW TRIGGER */)
  {
    /* Change DAC state */
    hdac->State = HAL_DAC_STATE_BUSY;

    if (Channel == DAC_CHANNEL_1)
    {
      /* Enable the selected DAC software conversion */
      SET_BIT(hdac->Instance->SWTRIGR, DAC_SWTRIGR_SWTRIG1);
    }
    else
    {
      /* Enable the selected DAC software conversion */
      SET_BIT(hdac->Instance->SWTRIGR, DAC_SWTRIGR_SWTRIG2);
    }

    /* Change DAC state */
    hdac->State = HAL_DAC_STATE_READY;
  }
  else
  {
    status = HAL_ERROR;
  }

  /* Process unlocked */
  __HAL_UNLOCK(hdac);

  /* Return function status */
  return status;
}

/**
  * @brief  Trig sawtooth wave step
  * @note   This function allows to generate step  in sawtooth wave in case of
  *         SW trigger has been configured for this usage.
  * @param  hdac pointer to a DAC_HandleTypeDef structure that contains
  *         the configuration information for the specified DAC.
  * @param  Channel The selected DAC channel.
  *          This parameter can be one of the following values:
  *            @arg DAC_CHANNEL_1: DAC Channel1 selected
  *            @arg DAC_CHANNEL_2: DAC Channel2 selected (1)
  *
  *         (1) On this STM32 series, parameter not available on all instances.
  *             Refer to device datasheet for channels availability.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_DACEx_SawtoothWaveDataStep(DAC_HandleTypeDef *hdac, uint32_t Channel)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check the parameters */
  assert_param(IS_DAC_CHANNEL(hdac->Instance, Channel));

  /* Process locked */
  __HAL_LOCK(hdac);

  if (((hdac->Instance->STMODR >> (Channel & 0x10UL)) & DAC_STMODR_STINCTRIGSEL1) == 0U /* SW TRIGGER */)
  {
    /* Change DAC state */
    hdac->State = HAL_DAC_STATE_BUSY;

    if (Channel == DAC_CHANNEL_1)
    {
      /* Enable the selected DAC software conversion */
      SET_BIT(hdac->Instance->SWTRIGR, DAC_SWTRIGR_SWTRIGB1);
    }
    else
    {
      /* Enable the selected DAC software conversion */
      SET_BIT(hdac->Instance->SWTRIGR, DAC_SWTRIGR_SWTRIGB2);
    }

    /* Change DAC state */
    hdac->State = HAL_DAC_STATE_READY;
  }
  else
  {
    status = HAL_ERROR;
  }

  /* Process unlocked */
  __HAL_UNLOCK(hdac);

  /* Return function status */
  return status;
}

/**
  * @brief  Set the specified data holding register value for dual DAC channel.
  * @param  hdac pointer to a DAC_HandleTypeDef structure that contains
  *               the configuration information for the specified DAC.
  * @param  Alignment Specifies the data alignment for dual channel DAC.
  *          This parameter can be one of the following values:
  *            DAC_ALIGN_8B_R: 8bit right data alignment selected
  *            DAC_ALIGN_12B_L: 12bit left data alignment selected
  *            DAC_ALIGN_12B_R: 12bit right data alignment selected
  * @param  Data1 Data for DAC Channel1 to be loaded in the selected data holding register.
  * @param  Data2 Data for DAC Channel2 to be loaded in the selected data  holding register.
  * @note   In dual mode, a unique register access is required to write in both
  *          DAC channels at the same time.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_DACEx_DualSetValue(DAC_HandleTypeDef *hdac, uint32_t Alignment, uint32_t Data1, uint32_t Data2)
{
  uint32_t data;
  uint32_t tmp;

  /* Check the parameters */
  assert_param(IS_DAC_ALIGN(Alignment));
  assert_param(IS_DAC_DATA(Data1));
  assert_param(IS_DAC_DATA(Data2));

  /* Calculate and set dual DAC data holding register value */
  if (Alignment == DAC_ALIGN_8B_R)
  {
    data = ((uint32_t)Data2 << 8U) | Data1;
  }
  else
  {
    data = ((uint32_t)Data2 << 16U) | Data1;
  }

  tmp = (uint32_t)hdac->Instance;
  tmp += DAC_DHR12RD_ALIGNMENT(Alignment);

  /* Set the dual DAC selected data holding register */
  *(__IO uint32_t *)tmp = data;

  /* Return function status */
  return HAL_OK;
}

/**
  * @brief  Conversion complete callback in non-blocking mode for Channel2.
  * @param  hdac pointer to a DAC_HandleTypeDef structure that contains
  *         the configuration information for the specified DAC.
  * @retval None
  */
__weak void HAL_DACEx_ConvCpltCallbackCh2(DAC_HandleTypeDef *hdac)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hdac);

  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_DACEx_ConvCpltCallbackCh2 could be implemented in the user file
   */
}

/**
  * @brief  Conversion half DMA transfer callback in non-blocking mode for Channel2.
  * @param  hdac pointer to a DAC_HandleTypeDef structure that contains
  *         the configuration information for the specified DAC.
  * @retval None
  */
__weak void HAL_DACEx_ConvHalfCpltCallbackCh2(DAC_HandleTypeDef *hdac)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hdac);

  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_DACEx_ConvHalfCpltCallbackCh2 could be implemented in the user file
   */
}

/**
  * @brief  Error DAC callback for Channel2.
  * @param  hdac pointer to a DAC_HandleTypeDef structure that contains
  *         the configuration information for the specified DAC.
  * @retval None
  */
__weak void HAL_DACEx_ErrorCallbackCh2(DAC_HandleTypeDef *hdac)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hdac);

  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_DACEx_ErrorCallbackCh2 could be implemented in the user file
   */
}

/**
  * @brief  DMA underrun DAC callback for Channel2.
  * @param  hdac pointer to a DAC_HandleTypeDef structure that contains
  *         the configuration information for the specified DAC.
  * @retval None
  */
__weak void HAL_DACEx_DMAUnderrunCallbackCh2(DAC_HandleTypeDef *hdac)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hdac);

  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_DACEx_DMAUnderrunCallbackCh2 could be implemented in the user file
   */
}

/**
  * @brief  Run the self calibration of one DAC channel.
  * @param  hdac pointer to a DAC_HandleTypeDef structure that contains
  *         the configuration information for the specified DAC.
  * @param  sConfig DAC channel configuration structure.
  * @param  Channel The selected DAC channel.
  *          This parameter can be one of the following values:
  *            @arg DAC_CHANNEL_1: DAC Channel1 selected
  *            @arg DAC_CHANNEL_2: DAC Channel2 selected (1)
  *
  *         (1) On this STM32 series, parameter not available on all instances.
  *             Refer to device datasheet for channels availability.
  * @retval Updates DAC_TrimmingValue. , DAC_UserTrimming set to DAC_UserTrimming
  * @retval HAL status
  * @note   Calibration runs about 7 ms.
  */

HAL_StatusTypeDef HAL_DACEx_SelfCalibrate(DAC_HandleTypeDef *hdac, DAC_ChannelConfTypeDef *sConfig, uint32_t Channel)
{
  HAL_StatusTypeDef status = HAL_OK;

  __IO uint32_t tmp;
  uint32_t trimmingvalue;
  uint32_t delta;

  /* store/restore channel configuration structure purpose */
  uint32_t oldmodeconfiguration;

  /* Check the parameters */
  assert_param(IS_DAC_CHANNEL(hdac->Instance, Channel));

  /* Check the DAC handle allocation */
  /* Check if DAC running */
  if (hdac == NULL)
  {
    status = HAL_ERROR;
  }
  else if (hdac->State == HAL_DAC_STATE_BUSY)
  {
    status = HAL_ERROR;
  }
  else
  {
    /* Process locked */
    __HAL_LOCK(hdac);

    /* Store configuration */
    oldmodeconfiguration = (hdac->Instance->MCR & (DAC_MCR_MODE1 << (Channel & 0x10UL)));

    /* Disable the selected DAC channel */
    CLEAR_BIT((hdac->Instance->CR), (DAC_CR_EN1 << (Channel & 0x10UL)));
    /* Wait for ready bit to be de-asserted */
    HAL_Delay(1);

    /* Set mode in MCR  for calibration */
    MODIFY_REG(hdac->Instance->MCR, (DAC_MCR_MODE1 << (Channel & 0x10UL)), 0U);

    /* Set DAC Channel1 DHR register to the middle value */
    tmp = (uint32_t)hdac->Instance;

    if (Channel == DAC_CHANNEL_1)
    {
      tmp += DAC_DHR12R1_ALIGNMENT(DAC_ALIGN_12B_R);
    }
    else
    {
      tmp += DAC_DHR12R2_ALIGNMENT(DAC_ALIGN_12B_R);
    }

    *(__IO uint32_t *) tmp = 0x0800U;

    /* Enable the selected DAC channel calibration */
    /* i.e. set DAC_CR_CENx bit */
    SET_BIT((hdac->Instance->CR), (DAC_CR_CEN1 << (Channel & 0x10UL)));

    /* Init trimming counter */
    /* Medium value */
    trimmingvalue = 16U;
    delta = 8U;
    while (delta != 0U)
    {
      /* Set candidate trimming */
      MODIFY_REG(hdac->Instance->CCR, (DAC_CCR_OTRIM1 << (Channel & 0x10UL)), (trimmingvalue << (Channel & 0x10UL)));

      /* tOFFTRIMmax delay x ms as per datasheet (electrical characteristics */
      /* i.e. minimum time needed between two calibration steps */
      HAL_Delay(1);

      if ((hdac->Instance->SR & (DAC_SR_CAL_FLAG1 << (Channel & 0x10UL))) == (DAC_SR_CAL_FLAG1 << (Channel & 0x10UL)))
      {
        /* DAC_SR_CAL_FLAGx is HIGH try higher trimming */
        trimmingvalue -= delta;
      }
      else
      {
        /* DAC_SR_CAL_FLAGx is LOW try lower trimming */
        trimmingvalue += delta;
      }
      delta >>= 1U;
    }

    /* Still need to check if right calibration is current value or one step below */
    /* Indeed the first value that causes the DAC_SR_CAL_FLAGx bit to change from 0 to 1  */
    /* Set candidate trimming */
    MODIFY_REG(hdac->Instance->CCR, (DAC_CCR_OTRIM1 << (Channel & 0x10UL)), (trimmingvalue << (Channel & 0x10UL)));

    /* tOFFTRIMmax delay x ms as per datasheet (electrical characteristics */
    /* i.e. minimum time needed between two calibration steps */
    HAL_Delay(1U);

    if ((hdac->Instance->SR & (DAC_SR_CAL_FLAG1 << (Channel & 0x10UL))) == 0UL)
    {
      /* OPAMP_CSR_OUTCAL is actually one value more */
      trimmingvalue++;
      /* Set right trimming */
      MODIFY_REG(hdac->Instance->CCR, (DAC_CCR_OTRIM1 << (Channel & 0x10UL)), (trimmingvalue << (Channel & 0x10UL)));
    }

    /* Disable the selected DAC channel calibration */
    /* i.e. clear DAC_CR_CENx bit */
    CLEAR_BIT((hdac->Instance->CR), (DAC_CR_CEN1 << (Channel & 0x10UL)));

    sConfig->DAC_TrimmingValue = trimmingvalue;
    sConfig->DAC_UserTrimming = DAC_TRIMMING_USER;

    /* Restore configuration */
    MODIFY_REG(hdac->Instance->MCR, (DAC_MCR_MODE1 << (Channel & 0x10UL)), oldmodeconfiguration);

    /* Process unlocked */
    __HAL_UNLOCK(hdac);
  }

  return status;
}

/**
  * @brief  Set the trimming mode and trimming value (user trimming mode applied).
  * @param  hdac pointer to a DAC_HandleTypeDef structure that contains
  *         the configuration information for the specified DAC.
  * @param  sConfig DAC configuration structure updated with new DAC trimming value.
  * @param  Channel The selected DAC channel.
  *          This parameter can be one of the following values:
  *            @arg DAC_CHANNEL_1: DAC Channel1 selected
  *            @arg DAC_CHANNEL_2: DAC Channel2 selected (1)
  *
  *         (1) On this STM32 series, parameter not available on all instances.
  *             Refer to device datasheet for channels availability.
  * @param  NewTrimmingValue DAC new trimming value
  * @retval HAL status
  */

HAL_StatusTypeDef HAL_DACEx_SetUserTrimming(DAC_HandleTypeDef *hdac, DAC_ChannelConfTypeDef *sConfig, uint32_t Channel,
                                            uint32_t NewTrimmingValue)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check the parameters */
  assert_param(IS_DAC_CHANNEL(hdac->Instance, Channel));
  assert_param(IS_DAC_NEWTRIMMINGVALUE(NewTrimmingValue));

  /* Check the DAC handle allocation */
  if (hdac == NULL)
  {
    status = HAL_ERROR;
  }
  else
  {
    /* Process locked */
    __HAL_LOCK(hdac);

    /* Set new trimming */
    MODIFY_REG(hdac->Instance->CCR, (DAC_CCR_OTRIM1 << (Channel & 0x10UL)), (NewTrimmingValue << (Channel & 0x10UL)));

    /* Update trimming mode */
    sConfig->DAC_UserTrimming = DAC_TRIMMING_USER;
    sConfig->DAC_TrimmingValue = NewTrimmingValue;

    /* Process unlocked */
    __HAL_UNLOCK(hdac);
  }
  return status;
}

/**
  * @brief  Return the DAC trimming value.
  * @param  hdac DAC handle
  * @param  Channel The selected DAC channel.
  *          This parameter can be one of the following values:
  *            @arg DAC_CHANNEL_1: DAC Channel1 selected
  *            @arg DAC_CHANNEL_2: DAC Channel2 selected (1)
  *
  *         (1) On this STM32 series, parameter not available on all instances.
  *             Refer to device datasheet for channels availability.
  * @retval Trimming value : range: 0->31
  *
 */

uint32_t HAL_DACEx_GetTrimOffset(DAC_HandleTypeDef *hdac, uint32_t Channel)
{
  /* Check the parameter */
  assert_param(IS_DAC_CHANNEL(hdac->Instance, Channel));

  /* Retrieve trimming  */
  return ((hdac->Instance->CCR & (DAC_CCR_OTRIM1 << (Channel & 0x10UL))) >> (Channel & 0x10UL));
}

/**
  * @}
  */

/** @defgroup DACEx_Exported_Functions_Group3 Peripheral Control functions
  *  @brief    Extended Peripheral Control functions
  *
@verbatim
  ==============================================================================
             ##### Peripheral Control functions #####
  ==============================================================================
    [..]  This section provides functions allowing to:
      (+) Set the specified data holding register value for DAC channel.

@endverbatim
  * @{
  */

/**
  * @brief  Return the last data output value of the selected DAC channel.
  * @param  hdac pointer to a DAC_HandleTypeDef structure that contains
  *         the configuration information for the specified DAC.
  * @retval The selected DAC channel data output value.
  */
uint32_t HAL_DACEx_DualGetValue(DAC_HandleTypeDef *hdac)
{
  uint32_t tmp = 0U;

  tmp |= hdac->Instance->DOR1;

  tmp |= hdac->Instance->DOR2 << 16U;

  /* Returns the DAC channel data output register value */
  return tmp;
}

/**
  * @}
  */

/**
  * @}
  */

/* Private functions ---------------------------------------------------------*/
/** @defgroup DACEx_Private_Functions DACEx private functions
  *  @brief    Extended private functions
   * @{
  */

/**
  * @brief  DMA conversion complete callback.
  * @param  hdma pointer to a DMA_HandleTypeDef structure that contains
  *                the configuration information for the specified DMA module.
  * @retval None
  */
void DAC_DMAConvCpltCh2(DMA_HandleTypeDef *hdma)
{
  DAC_HandleTypeDef *hdac = (DAC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;

#if (USE_HAL_DAC_REGISTER_CALLBACKS == 1)
  hdac->ConvCpltCallbackCh2(hdac);
#else
  HAL_DACEx_ConvCpltCallbackCh2(hdac);
#endif /* USE_HAL_DAC_REGISTER_CALLBACKS */

  hdac->State = HAL_DAC_STATE_READY;
}

/**
  * @brief  DMA half transfer complete callback.
  * @param  hdma pointer to a DMA_HandleTypeDef structure that contains
  *                the configuration information for the specified DMA module.
  * @retval None
  */
void DAC_DMAHalfConvCpltCh2(DMA_HandleTypeDef *hdma)
{
  DAC_HandleTypeDef *hdac = (DAC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
  /* Conversion complete callback */
#if (USE_HAL_DAC_REGISTER_CALLBACKS == 1)
  hdac->ConvHalfCpltCallbackCh2(hdac);
#else
  HAL_DACEx_ConvHalfCpltCallbackCh2(hdac);
#endif /* USE_HAL_DAC_REGISTER_CALLBACKS */
}

/**
  * @brief  DMA error callback.
  * @param  hdma pointer to a DMA_HandleTypeDef structure that contains
  *                the configuration information for the specified DMA module.
  * @retval None
  */
void DAC_DMAErrorCh2(DMA_HandleTypeDef *hdma)
{
  DAC_HandleTypeDef *hdac = (DAC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;

  /* Set DAC error code to DMA error */
  hdac->ErrorCode |= HAL_DAC_ERROR_DMA;

#if (USE_HAL_DAC_REGISTER_CALLBACKS == 1)
  hdac->ErrorCallbackCh2(hdac);
#else
  HAL_DACEx_ErrorCallbackCh2(hdac);
#endif /* USE_HAL_DAC_REGISTER_CALLBACKS */

  hdac->State = HAL_DAC_STATE_READY;
}

/**
  * @}
  */

/**
  * @}
  */

#endif /* DAC1 || DAC2 || DAC3 || DAC4 */

#endif /* HAL_DAC_MODULE_ENABLED */

/**
  * @}
  */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/