Newer
Older
mbed-os / targets / TARGET_Freescale / TARGET_MCUXpresso_MCUS / TARGET_KL82Z / drivers / fsl_dspi_edma.c
/*
* Copyright (c) 2015, Freescale Semiconductor, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
*   of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
*   list of conditions and the following disclaimer in the documentation and/or
*   other materials provided with the distribution.
*
* o Neither the name of Freescale Semiconductor, Inc. nor the names of its
*   contributors may be used to endorse or promote products derived from this
*   software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

#include "fsl_dspi_edma.h"

/***********************************************************************************************************************
* Definitons
***********************************************************************************************************************/

/*!
* @brief Structure definition for dspi_master_edma_private_handle_t. The structure is private.
*/
typedef struct _dspi_master_edma_private_handle
{
    SPI_Type *base;                    /*!< DSPI peripheral base address. */
    dspi_master_edma_handle_t *handle; /*!< dspi_master_edma_handle_t handle */
} dspi_master_edma_private_handle_t;

/*!
* @brief Structure definition for dspi_slave_edma_private_handle_t. The structure is private.
*/
typedef struct _dspi_slave_edma_private_handle
{
    SPI_Type *base;                   /*!< DSPI peripheral base address. */
    dspi_slave_edma_handle_t *handle; /*!< dspi_master_edma_handle_t handle */
} dspi_slave_edma_private_handle_t;

/***********************************************************************************************************************
* Prototypes
***********************************************************************************************************************/
/*!
* @brief EDMA_DspiMasterCallback after the DSPI master transfer completed by using EDMA.
* This is not a public API as it is called from other driver functions.
*/
static void EDMA_DspiMasterCallback(edma_handle_t *edmaHandle,
                                    void *g_dspiEdmaPrivateHandle,
                                    bool transferDone,
                                    uint32_t tcds);

/*!
* @brief EDMA_DspiSlaveCallback after the DSPI slave transfer completed by using EDMA.
* This is not a public API as it is called from other driver functions.
*/
static void EDMA_DspiSlaveCallback(edma_handle_t *edmaHandle,
                                   void *g_dspiEdmaPrivateHandle,
                                   bool transferDone,
                                   uint32_t tcds);
/*!
* @brief Get instance number for DSPI module.
*
* This is not a public API and it's extern from fsl_dspi.c.
*
* @param base DSPI peripheral base address
*/
extern uint32_t DSPI_GetInstance(SPI_Type *base);

/***********************************************************************************************************************
* Variables
***********************************************************************************************************************/

/*! @brief Pointers to dspi edma handles for each instance. */
static dspi_master_edma_private_handle_t s_dspiMasterEdmaPrivateHandle[FSL_FEATURE_SOC_DSPI_COUNT];
static dspi_slave_edma_private_handle_t s_dspiSlaveEdmaPrivateHandle[FSL_FEATURE_SOC_DSPI_COUNT];

/***********************************************************************************************************************
* Code
***********************************************************************************************************************/

void DSPI_MasterTransferCreateHandleEDMA(SPI_Type *base,
                                         dspi_master_edma_handle_t *handle,
                                         dspi_master_edma_transfer_callback_t callback,
                                         void *userData,
                                         edma_handle_t *edmaRxRegToRxDataHandle,
                                         edma_handle_t *edmaTxDataToIntermediaryHandle,
                                         edma_handle_t *edmaIntermediaryToTxRegHandle)
{
    assert(handle);

    /* Zero the handle. */
    memset(handle, 0, sizeof(*handle));

    uint32_t instance = DSPI_GetInstance(base);

    s_dspiMasterEdmaPrivateHandle[instance].base = base;
    s_dspiMasterEdmaPrivateHandle[instance].handle = handle;

    handle->callback = callback;
    handle->userData = userData;

    handle->edmaRxRegToRxDataHandle = edmaRxRegToRxDataHandle;
    handle->edmaTxDataToIntermediaryHandle = edmaTxDataToIntermediaryHandle;
    handle->edmaIntermediaryToTxRegHandle = edmaIntermediaryToTxRegHandle;
}

status_t DSPI_MasterTransferEDMA(SPI_Type *base, dspi_master_edma_handle_t *handle, dspi_transfer_t *transfer)
{
    assert(handle && transfer);

    /* If the transfer count is zero, then return immediately.*/
    if (transfer->dataSize == 0)
    {
        return kStatus_InvalidArgument;
    }

    /* If both send buffer and receive buffer is null */
    if ((!(transfer->txData)) && (!(transfer->rxData)))
    {
        return kStatus_InvalidArgument;
    }

    /* Check that we're not busy.*/
    if (handle->state == kDSPI_Busy)
    {
        return kStatus_DSPI_Busy;
    }

    uint32_t instance = DSPI_GetInstance(base);
    uint16_t wordToSend = 0;
    uint8_t dummyData = DSPI_DUMMY_DATA;
    uint8_t dataAlreadyFed = 0;
    uint8_t dataFedMax = 2;

    uint32_t rxAddr = DSPI_GetRxRegisterAddress(base);
    uint32_t txAddr = DSPI_MasterGetTxRegisterAddress(base);

    edma_tcd_t *softwareTCD = (edma_tcd_t *)((uint32_t)(&handle->dspiSoftwareTCD[1]) & (~0x1FU));

    edma_transfer_config_t transferConfigA;
    edma_transfer_config_t transferConfigB;
    edma_transfer_config_t transferConfigC;

    handle->txBuffIfNull = ((uint32_t)DSPI_DUMMY_DATA << 8) | DSPI_DUMMY_DATA;

    handle->state = kDSPI_Busy;

    dspi_command_data_config_t commandStruct;
    DSPI_StopTransfer(base);
    DSPI_FlushFifo(base, true, true);
    DSPI_ClearStatusFlags(base, kDSPI_AllStatusFlag);

    commandStruct.whichPcs =
        (dspi_which_pcs_t)(1U << ((transfer->configFlags & DSPI_MASTER_PCS_MASK) >> DSPI_MASTER_PCS_SHIFT));
    commandStruct.isEndOfQueue = false;
    commandStruct.clearTransferCount = false;
    commandStruct.whichCtar =
        (dspi_ctar_selection_t)((transfer->configFlags & DSPI_MASTER_CTAR_MASK) >> DSPI_MASTER_CTAR_SHIFT);
    commandStruct.isPcsContinuous = (bool)(transfer->configFlags & kDSPI_MasterPcsContinuous);
    handle->command = DSPI_MasterGetFormattedCommand(&(commandStruct));

    commandStruct.isEndOfQueue = true;
    commandStruct.isPcsContinuous = (bool)(transfer->configFlags & kDSPI_MasterActiveAfterTransfer);
    handle->lastCommand = DSPI_MasterGetFormattedCommand(&(commandStruct));

    handle->bitsPerFrame = ((base->CTAR[commandStruct.whichCtar] & SPI_CTAR_FMSZ_MASK) >> SPI_CTAR_FMSZ_SHIFT) + 1;

    if ((base->MCR & SPI_MCR_DIS_RXF_MASK) || (base->MCR & SPI_MCR_DIS_TXF_MASK))
    {
        handle->fifoSize = 1;
    }
    else
    {
        handle->fifoSize = FSL_FEATURE_DSPI_FIFO_SIZEn(base);
    }
    handle->txData = transfer->txData;
    handle->rxData = transfer->rxData;
    handle->remainingSendByteCount = transfer->dataSize;
    handle->remainingReceiveByteCount = transfer->dataSize;
    handle->totalByteCount = transfer->dataSize;

    /* this limits the amount of data we can transfer due to the linked channel.
    * The max bytes is 511 if 8-bit/frame or 1022 if 16-bit/frame
    */
    if (handle->bitsPerFrame > 8)
    {
        if (transfer->dataSize > 1022)
        {
            return kStatus_DSPI_OutOfRange;
        }
    }
    else
    {
        if (transfer->dataSize > 511)
        {
            return kStatus_DSPI_OutOfRange;
        }
    }

    DSPI_DisableDMA(base, kDSPI_RxDmaEnable | kDSPI_TxDmaEnable);

    EDMA_SetCallback(handle->edmaRxRegToRxDataHandle, EDMA_DspiMasterCallback,
                     &s_dspiMasterEdmaPrivateHandle[instance]);

    handle->isThereExtraByte = false;
    if (handle->bitsPerFrame > 8)
    {
        if (handle->remainingSendByteCount % 2 == 1)
        {
            handle->remainingSendByteCount++;
            handle->remainingReceiveByteCount--;
            handle->isThereExtraByte = true;
        }
    }

    /*If dspi has separate dma request , prepare the first data in "intermediary" .
    else (dspi has shared dma request) , send first 2 data if there is fifo or send first 1 data if there is no fifo*/
    if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
    {
        /* For DSPI instances with separate RX/TX DMA requests, we'll use the TX DMA request to
        * trigger the TX DMA channel and RX DMA request to trigger the RX DMA channel
        */

        /*Prepare the firt data*/
        if (handle->bitsPerFrame > 8)
        {
            /* If it's the last word */
            if (handle->remainingSendByteCount <= 2)
            {
                if (handle->txData)
                {
                    if (handle->isThereExtraByte)
                    {
                        wordToSend = *(handle->txData) | ((uint32_t)dummyData << 8);
                    }
                    else
                    {
                        wordToSend = *(handle->txData);
                        ++handle->txData; /* increment to next data byte */
                        wordToSend |= (unsigned)(*(handle->txData)) << 8U;
                    }
                }
                else
                {
                    wordToSend = ((uint32_t)dummyData << 8) | dummyData;
                }
                handle->lastCommand = (handle->lastCommand & 0xffff0000U) | wordToSend;
            }
            else /* For all words except the last word , frame > 8bits */
            {
                if (handle->txData)
                {
                    wordToSend = *(handle->txData);
                    ++handle->txData; /* increment to next data byte */
                    wordToSend |= (unsigned)(*(handle->txData)) << 8U;
                    ++handle->txData; /* increment to next data byte */
                }
                else
                {
                    wordToSend = ((uint32_t)dummyData << 8) | dummyData;
                }
                handle->command = (handle->command & 0xffff0000U) | wordToSend;
            }
        }
        else /* Optimized for bits/frame less than or equal to one byte. */
        {
            if (handle->txData)
            {
                wordToSend = *(handle->txData);
                ++handle->txData; /* increment to next data word*/
            }
            else
            {
                wordToSend = dummyData;
            }

            if (handle->remainingSendByteCount == 1)
            {
                handle->lastCommand = (handle->lastCommand & 0xffff0000U) | wordToSend;
            }
            else
            {
                handle->command = (handle->command & 0xffff0000U) | wordToSend;
            }
        }
    }

    else /*dspi has shared dma request*/

    {
        /* For DSPI instances with shared RX/TX DMA requests, we'll use the RX DMA request to
        * trigger ongoing transfers and will link to the TX DMA channel from the RX DMA channel.
        */

        /* If bits/frame is greater than one byte */
        if (handle->bitsPerFrame > 8)
        {
            while (DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag)
            {
                if (handle->remainingSendByteCount <= 2)
                {
                    if (handle->txData)
                    {
                        if (handle->isThereExtraByte)
                        {
                            wordToSend = *(handle->txData) | ((uint32_t)dummyData << 8);
                        }
                        else
                        {
                            wordToSend = *(handle->txData);
                            ++handle->txData;
                            wordToSend |= (unsigned)(*(handle->txData)) << 8U;
                        }
                    }
                    else
                    {
                        wordToSend = ((uint32_t)dummyData << 8) | dummyData;
                        ;
                    }
                    handle->remainingSendByteCount = 0;
                    base->PUSHR = (handle->lastCommand & 0xffff0000U) | wordToSend;
                }
                /* For all words except the last word */
                else
                {
                    if (handle->txData)
                    {
                        wordToSend = *(handle->txData);
                        ++handle->txData;
                        wordToSend |= (unsigned)(*(handle->txData)) << 8U;
                        ++handle->txData;
                    }
                    else
                    {
                        wordToSend = ((uint32_t)dummyData << 8) | dummyData;
                        ;
                    }
                    handle->remainingSendByteCount -= 2;
                    base->PUSHR = (handle->command & 0xffff0000U) | wordToSend;
                }

                /* Try to clear the TFFF; if the TX FIFO is full this will clear */
                DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);

                dataAlreadyFed += 2;

                /* exit loop if send count is zero, else update local variables for next loop */
                if ((handle->remainingSendByteCount == 0) || (dataAlreadyFed == (dataFedMax * 2)))
                {
                    break;
                }
            } /* End of TX FIFO fill while loop */
        }
        else /* Optimized for bits/frame less than or equal to one byte. */
        {
            while (DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag)
            {
                if (handle->txData)
                {
                    wordToSend = *(handle->txData);
                    ++handle->txData;
                }
                else
                {
                    wordToSend = dummyData;
                }

                if (handle->remainingSendByteCount == 1)
                {
                    base->PUSHR = (handle->lastCommand & 0xffff0000U) | wordToSend;
                }
                else
                {
                    base->PUSHR = (handle->command & 0xffff0000U) | wordToSend;
                }

                /* Try to clear the TFFF; if the TX FIFO is full this will clear */
                DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);

                --handle->remainingSendByteCount;

                dataAlreadyFed++;

                /* exit loop if send count is zero, else update local variables for next loop */
                if ((handle->remainingSendByteCount == 0) || (dataAlreadyFed == dataFedMax))
                {
                    break;
                }
            } /* End of TX FIFO fill while loop */
        }
    }

    /***channel_A *** used for carry the data from Rx_Data_Register(POPR) to User_Receive_Buffer*/
    EDMA_ResetChannel(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel);

    transferConfigA.srcAddr = (uint32_t)rxAddr;
    transferConfigA.srcOffset = 0;

    if (handle->rxData)
    {
        transferConfigA.destAddr = (uint32_t) & (handle->rxData[0]);
        transferConfigA.destOffset = 1;
    }
    else
    {
        transferConfigA.destAddr = (uint32_t) & (handle->rxBuffIfNull);
        transferConfigA.destOffset = 0;
    }

    transferConfigA.destTransferSize = kEDMA_TransferSize1Bytes;

    if (handle->bitsPerFrame <= 8)
    {
        transferConfigA.srcTransferSize = kEDMA_TransferSize1Bytes;
        transferConfigA.minorLoopBytes = 1;
        transferConfigA.majorLoopCounts = handle->remainingReceiveByteCount;
    }
    else
    {
        transferConfigA.srcTransferSize = kEDMA_TransferSize2Bytes;
        transferConfigA.minorLoopBytes = 2;
        transferConfigA.majorLoopCounts = handle->remainingReceiveByteCount / 2;
    }
    EDMA_SetTransferConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
                           &transferConfigA, NULL);
    EDMA_EnableChannelInterrupts(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
                                 kEDMA_MajorInterruptEnable);

    /***channel_B *** used for carry the data from User_Send_Buffer to "intermediary" because the SPIx_PUSHR should
    write the 32bits at once time . Then use channel_C to carry the "intermediary" to SPIx_PUSHR. Note that the
    SPIx_PUSHR upper 16 bits are the "command" and the low 16bits are data */
    EDMA_ResetChannel(handle->edmaTxDataToIntermediaryHandle->base, handle->edmaTxDataToIntermediaryHandle->channel);

    if (handle->remainingSendByteCount > 0)
    {
        if (handle->txData)
        {
            transferConfigB.srcAddr = (uint32_t)(handle->txData);
            transferConfigB.srcOffset = 1;
        }
        else
        {
            transferConfigB.srcAddr = (uint32_t)(&handle->txBuffIfNull);
            transferConfigB.srcOffset = 0;
        }

        transferConfigB.destAddr = (uint32_t)(&handle->command);
        transferConfigB.destOffset = 0;

        transferConfigB.srcTransferSize = kEDMA_TransferSize1Bytes;

        if (handle->bitsPerFrame <= 8)
        {
            transferConfigB.destTransferSize = kEDMA_TransferSize1Bytes;
            transferConfigB.minorLoopBytes = 1;

            if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
            {
                /*already prepared the first data in "intermediary" , so minus 1 */
                transferConfigB.majorLoopCounts = handle->remainingSendByteCount - 1;
            }
            else
            {
                /*Only enable channel_B minorlink to channel_C , so need to add one count due to the last time is
                majorlink , the majorlink would not trigger the channel_C*/
                transferConfigB.majorLoopCounts = handle->remainingSendByteCount + 1;
            }
        }
        else
        {
            transferConfigB.destTransferSize = kEDMA_TransferSize2Bytes;
            transferConfigB.minorLoopBytes = 2;
            if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
            {
                /*already prepared the first data in "intermediary" , so minus 1 */
                transferConfigB.majorLoopCounts = handle->remainingSendByteCount / 2 - 1;
            }
            else
            {
                /*Only enable channel_B minorlink to channel_C , so need to add one count due to the last time is
                * majorlink*/
                transferConfigB.majorLoopCounts = handle->remainingSendByteCount / 2 + 1;
            }
        }

        EDMA_SetTransferConfig(handle->edmaTxDataToIntermediaryHandle->base,
                               handle->edmaTxDataToIntermediaryHandle->channel, &transferConfigB, NULL);
    }

    /***channel_C ***carry the "intermediary" to SPIx_PUSHR. used the edma Scatter Gather function on channel_C to
    handle the last data */
    EDMA_ResetChannel(handle->edmaIntermediaryToTxRegHandle->base, handle->edmaIntermediaryToTxRegHandle->channel);

    if (((handle->remainingSendByteCount > 0) && (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))) ||
        ((((handle->remainingSendByteCount > 1) && (handle->bitsPerFrame <= 8)) ||
          ((handle->remainingSendByteCount > 2) && (handle->bitsPerFrame > 8))) &&
         (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))))
    {
        if (handle->txData)
        {
            uint32_t bufferIndex = 0;

            if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
            {
                if (handle->bitsPerFrame <= 8)
                {
                    bufferIndex = handle->remainingSendByteCount - 1;
                }
                else
                {
                    bufferIndex = handle->remainingSendByteCount - 2;
                }
            }
            else
            {
                bufferIndex = handle->remainingSendByteCount;
            }

            if (handle->bitsPerFrame <= 8)
            {
                handle->lastCommand = (handle->lastCommand & 0xffff0000U) | handle->txData[bufferIndex - 1];
            }
            else
            {
                if (handle->isThereExtraByte)
                {
                    handle->lastCommand = (handle->lastCommand & 0xffff0000U) | handle->txData[bufferIndex - 2] |
                                          ((uint32_t)dummyData << 8);
                }
                else
                {
                    handle->lastCommand = (handle->lastCommand & 0xffff0000U) |
                                          ((uint32_t)handle->txData[bufferIndex - 1] << 8) |
                                          handle->txData[bufferIndex - 2];
                }
            }
        }
        else
        {
            if (handle->bitsPerFrame <= 8)
            {
                wordToSend = dummyData;
            }
            else
            {
                wordToSend = ((uint32_t)dummyData << 8) | dummyData;
            }
            handle->lastCommand = (handle->lastCommand & 0xffff0000U) | wordToSend;
        }
    }

    if ((1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) ||
        ((1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) && (handle->remainingSendByteCount > 0)))
    {
        transferConfigC.srcAddr = (uint32_t) & (handle->lastCommand);
        transferConfigC.destAddr = (uint32_t)txAddr;
        transferConfigC.srcTransferSize = kEDMA_TransferSize4Bytes;
        transferConfigC.destTransferSize = kEDMA_TransferSize4Bytes;
        transferConfigC.srcOffset = 0;
        transferConfigC.destOffset = 0;
        transferConfigC.minorLoopBytes = 4;
        transferConfigC.majorLoopCounts = 1;

        EDMA_TcdReset(softwareTCD);
        EDMA_TcdSetTransferConfig(softwareTCD, &transferConfigC, NULL);
    }

    if (((handle->remainingSendByteCount > 1) && (handle->bitsPerFrame <= 8)) ||
        ((handle->remainingSendByteCount > 2) && (handle->bitsPerFrame > 8)))
    {
        transferConfigC.srcAddr = (uint32_t)(&(handle->command));
        transferConfigC.destAddr = (uint32_t)txAddr;

        transferConfigC.srcTransferSize = kEDMA_TransferSize4Bytes;
        transferConfigC.destTransferSize = kEDMA_TransferSize4Bytes;
        transferConfigC.srcOffset = 0;
        transferConfigC.destOffset = 0;
        transferConfigC.minorLoopBytes = 4;

        if (handle->bitsPerFrame <= 8)
        {
            transferConfigC.majorLoopCounts = handle->remainingSendByteCount - 1;
        }
        else
        {
            transferConfigC.majorLoopCounts = handle->remainingSendByteCount / 2 - 1;
        }

        EDMA_SetTransferConfig(handle->edmaIntermediaryToTxRegHandle->base,
                               handle->edmaIntermediaryToTxRegHandle->channel, &transferConfigC, softwareTCD);
        EDMA_EnableAutoStopRequest(handle->edmaIntermediaryToTxRegHandle->base,
                                   handle->edmaIntermediaryToTxRegHandle->channel, false);
    }
    else
    {
        EDMA_SetTransferConfig(handle->edmaIntermediaryToTxRegHandle->base,
                               handle->edmaIntermediaryToTxRegHandle->channel, &transferConfigC, NULL);
    }

    /*Start the EDMA channel_A , channel_B , channel_C transfer*/
    EDMA_StartTransfer(handle->edmaRxRegToRxDataHandle);
    EDMA_StartTransfer(handle->edmaTxDataToIntermediaryHandle);
    EDMA_StartTransfer(handle->edmaIntermediaryToTxRegHandle);

    /*Set channel priority*/
    uint8_t channelPriorityLow = handle->edmaRxRegToRxDataHandle->channel;
    uint8_t channelPriorityMid = handle->edmaTxDataToIntermediaryHandle->channel;
    uint8_t channelPriorityHigh = handle->edmaIntermediaryToTxRegHandle->channel;
    uint8_t t = 0;
    if (channelPriorityLow > channelPriorityMid)
    {
        t = channelPriorityLow;
        channelPriorityLow = channelPriorityMid;
        channelPriorityMid = t;
    }

    if (channelPriorityLow > channelPriorityHigh)
    {
        t = channelPriorityLow;
        channelPriorityLow = channelPriorityHigh;
        channelPriorityHigh = t;
    }

    if (channelPriorityMid > channelPriorityHigh)
    {
        t = channelPriorityMid;
        channelPriorityMid = channelPriorityHigh;
        channelPriorityHigh = t;
    }
    edma_channel_Preemption_config_t preemption_config_t;
    preemption_config_t.enableChannelPreemption = true;
    preemption_config_t.enablePreemptAbility = true;
    preemption_config_t.channelPriority = channelPriorityLow;

    if (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
    {
        EDMA_SetChannelPreemptionConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
                                        &preemption_config_t);

        preemption_config_t.channelPriority = channelPriorityMid;
        EDMA_SetChannelPreemptionConfig(handle->edmaTxDataToIntermediaryHandle->base,
                                        handle->edmaTxDataToIntermediaryHandle->channel, &preemption_config_t);

        preemption_config_t.channelPriority = channelPriorityHigh;
        EDMA_SetChannelPreemptionConfig(handle->edmaIntermediaryToTxRegHandle->base,
                                        handle->edmaIntermediaryToTxRegHandle->channel, &preemption_config_t);
    }
    else
    {
        EDMA_SetChannelPreemptionConfig(handle->edmaIntermediaryToTxRegHandle->base,
                                        handle->edmaIntermediaryToTxRegHandle->channel, &preemption_config_t);

        preemption_config_t.channelPriority = channelPriorityMid;
        EDMA_SetChannelPreemptionConfig(handle->edmaTxDataToIntermediaryHandle->base,
                                        handle->edmaTxDataToIntermediaryHandle->channel, &preemption_config_t);

        preemption_config_t.channelPriority = channelPriorityHigh;
        EDMA_SetChannelPreemptionConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
                                        &preemption_config_t);
    }

    /*Set the channel link.
    For DSPI instances with shared RX/TX DMA requests: Rx DMA request -> channel_A -> channel_B-> channel_C.
    For DSPI instances with separate RX and TX DMA requests:
    Rx DMA request -> channel_A
    Tx DMA request -> channel_C -> channel_B . (so need prepare the first data in "intermediary"  before the DMA
    transfer and then channel_B is used to prepare the next data to "intermediary" ) */
    if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
    {
        /*if there is Tx DMA request , carry the 32bits data (handle->command) to PUSHR first , then link to channelB
        to prepare the next 32bits data (User_send_buffer to handle->command) */
        if (handle->remainingSendByteCount > 1)
        {
            EDMA_SetChannelLink(handle->edmaIntermediaryToTxRegHandle->base,
                                handle->edmaIntermediaryToTxRegHandle->channel, kEDMA_MinorLink,
                                handle->edmaTxDataToIntermediaryHandle->channel);
        }

        DSPI_EnableDMA(base, kDSPI_RxDmaEnable | kDSPI_TxDmaEnable);
    }
    else
    {
        if (handle->remainingSendByteCount > 0)
        {
            EDMA_SetChannelLink(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
                                kEDMA_MinorLink, handle->edmaTxDataToIntermediaryHandle->channel);

            if (handle->isThereExtraByte)
            {
                EDMA_SetChannelLink(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
                                    kEDMA_MajorLink, handle->edmaTxDataToIntermediaryHandle->channel);
            }

            EDMA_SetChannelLink(handle->edmaTxDataToIntermediaryHandle->base,
                                handle->edmaTxDataToIntermediaryHandle->channel, kEDMA_MinorLink,
                                handle->edmaIntermediaryToTxRegHandle->channel);
        }

        DSPI_EnableDMA(base, kDSPI_RxDmaEnable);
    }

    DSPI_StartTransfer(base);

    return kStatus_Success;
}

static void EDMA_DspiMasterCallback(edma_handle_t *edmaHandle,
                                    void *g_dspiEdmaPrivateHandle,
                                    bool transferDone,
                                    uint32_t tcds)
{
    dspi_master_edma_private_handle_t *dspiEdmaPrivateHandle;

    dspiEdmaPrivateHandle = (dspi_master_edma_private_handle_t *)g_dspiEdmaPrivateHandle;

    uint32_t dataReceived;

    DSPI_DisableDMA((dspiEdmaPrivateHandle->base), kDSPI_RxDmaEnable | kDSPI_TxDmaEnable);

    if (dspiEdmaPrivateHandle->handle->isThereExtraByte)
    {
        while (!((dspiEdmaPrivateHandle->base)->SR & SPI_SR_RFDF_MASK))
        {
        }
        dataReceived = (dspiEdmaPrivateHandle->base)->POPR;
        if (dspiEdmaPrivateHandle->handle->rxData)
        {
            (dspiEdmaPrivateHandle->handle->rxData[dspiEdmaPrivateHandle->handle->totalByteCount - 1]) = dataReceived;
        }
    }

    if (dspiEdmaPrivateHandle->handle->callback)
    {
        dspiEdmaPrivateHandle->handle->callback(dspiEdmaPrivateHandle->base, dspiEdmaPrivateHandle->handle,
                                                kStatus_Success, dspiEdmaPrivateHandle->handle->userData);
    }

    dspiEdmaPrivateHandle->handle->state = kDSPI_Idle;
}

void DSPI_MasterTransferAbortEDMA(SPI_Type *base, dspi_master_edma_handle_t *handle)
{
    DSPI_StopTransfer(base);

    DSPI_DisableDMA(base, kDSPI_RxDmaEnable | kDSPI_TxDmaEnable);

    EDMA_AbortTransfer(handle->edmaRxRegToRxDataHandle);
    EDMA_AbortTransfer(handle->edmaTxDataToIntermediaryHandle);
    EDMA_AbortTransfer(handle->edmaIntermediaryToTxRegHandle);

    handle->state = kDSPI_Idle;
}

status_t DSPI_MasterTransferGetCountEDMA(SPI_Type *base, dspi_master_edma_handle_t *handle, size_t *count)
{
    assert(handle);

    if (!count)
    {
        return kStatus_InvalidArgument;
    }

    /* Catch when there is not an active transfer. */
    if (handle->state != kDSPI_Busy)
    {
        *count = 0;
        return kStatus_NoTransferInProgress;
    }

    size_t bytes;

    bytes = EDMA_GetRemainingBytes(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel);

    *count = handle->totalByteCount - bytes;

    return kStatus_Success;
}

void DSPI_SlaveTransferCreateHandleEDMA(SPI_Type *base,
                                        dspi_slave_edma_handle_t *handle,
                                        dspi_slave_edma_transfer_callback_t callback,
                                        void *userData,
                                        edma_handle_t *edmaRxRegToRxDataHandle,
                                        edma_handle_t *edmaTxDataToTxRegHandle)
{
    assert(handle);

    /* Zero the handle. */
    memset(handle, 0, sizeof(*handle));

    uint32_t instance = DSPI_GetInstance(base);

    s_dspiSlaveEdmaPrivateHandle[instance].base = base;
    s_dspiSlaveEdmaPrivateHandle[instance].handle = handle;

    handle->callback = callback;
    handle->userData = userData;

    handle->edmaRxRegToRxDataHandle = edmaRxRegToRxDataHandle;
    handle->edmaTxDataToTxRegHandle = edmaTxDataToTxRegHandle;
}

status_t DSPI_SlaveTransferEDMA(SPI_Type *base, dspi_slave_edma_handle_t *handle, dspi_transfer_t *transfer)
{
    assert(handle && transfer);

    /* If send/receive length is zero */
    if (transfer->dataSize == 0)
    {
        return kStatus_InvalidArgument;
    }

    /* If both send buffer and receive buffer is null */
    if ((!(transfer->txData)) && (!(transfer->rxData)))
    {
        return kStatus_InvalidArgument;
    }

    /* Check that we're not busy.*/
    if (handle->state == kDSPI_Busy)
    {
        return kStatus_DSPI_Busy;
    }

    edma_tcd_t *softwareTCD = (edma_tcd_t *)((uint32_t)(&handle->dspiSoftwareTCD[1]) & (~0x1FU));

    uint32_t instance = DSPI_GetInstance(base);
    uint8_t whichCtar = (transfer->configFlags & DSPI_SLAVE_CTAR_MASK) >> DSPI_SLAVE_CTAR_SHIFT;
    handle->bitsPerFrame =
        (((base->CTAR_SLAVE[whichCtar]) & SPI_CTAR_SLAVE_FMSZ_MASK) >> SPI_CTAR_SLAVE_FMSZ_SHIFT) + 1;

    /* If using a shared RX/TX DMA request, then this limits the amount of data we can transfer
    * due to the linked channel. The max bytes is 511 if 8-bit/frame or 1022 if 16-bit/frame
    */
    if (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
    {
        if (handle->bitsPerFrame > 8)
        {
            if (transfer->dataSize > 1022)
            {
                return kStatus_DSPI_OutOfRange;
            }
        }
        else
        {
            if (transfer->dataSize > 511)
            {
                return kStatus_DSPI_OutOfRange;
            }
        }
    }

    if ((handle->bitsPerFrame > 8) && (transfer->dataSize < 2))
    {
        return kStatus_InvalidArgument;
    }

    EDMA_SetCallback(handle->edmaRxRegToRxDataHandle, EDMA_DspiSlaveCallback, &s_dspiSlaveEdmaPrivateHandle[instance]);

    handle->state = kDSPI_Busy;

    /* Store transfer information */
    handle->txData = transfer->txData;
    handle->rxData = transfer->rxData;
    handle->remainingSendByteCount = transfer->dataSize;
    handle->remainingReceiveByteCount = transfer->dataSize;
    handle->totalByteCount = transfer->dataSize;
    handle->errorCount = 0;

    handle->isThereExtraByte = false;
    if (handle->bitsPerFrame > 8)
    {
        if (handle->remainingSendByteCount % 2 == 1)
        {
            handle->remainingSendByteCount++;
            handle->remainingReceiveByteCount--;
            handle->isThereExtraByte = true;
        }
    }

    uint16_t wordToSend = 0;
    uint8_t dummyData = DSPI_DUMMY_DATA;
    uint8_t dataAlreadyFed = 0;
    uint8_t dataFedMax = 2;

    uint32_t rxAddr = DSPI_GetRxRegisterAddress(base);
    uint32_t txAddr = DSPI_SlaveGetTxRegisterAddress(base);

    edma_transfer_config_t transferConfigA;
    edma_transfer_config_t transferConfigC;

    DSPI_StopTransfer(base);

    DSPI_FlushFifo(base, true, true);
    DSPI_ClearStatusFlags(base, kDSPI_AllStatusFlag);

    DSPI_DisableDMA(base, kDSPI_RxDmaEnable | kDSPI_TxDmaEnable);

    DSPI_StartTransfer(base);

    /*if dspi has separate dma request , need not prepare data first .
    else (dspi has shared dma request) , send first 2 data into fifo if there is fifo or send first 1 data to
    slaveGetTxRegister if there is no fifo*/
    if (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
    {
        /* For DSPI instances with shared RX/TX DMA requests, we'll use the RX DMA request to
        * trigger ongoing transfers and will link to the TX DMA channel from the RX DMA channel.
        */
        /* If bits/frame is greater than one byte */
        if (handle->bitsPerFrame > 8)
        {
            while (DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag)
            {
                if (handle->txData)
                {
                    wordToSend = *(handle->txData);
                    ++handle->txData; /* Increment to next data byte */
                    if ((handle->remainingSendByteCount == 2) && (handle->isThereExtraByte))
                    {
                        wordToSend |= (unsigned)(dummyData) << 8U;
                        ++handle->txData; /* Increment to next data byte */
                    }
                    else
                    {
                        wordToSend |= (unsigned)(*(handle->txData)) << 8U;
                        ++handle->txData; /* Increment to next data byte */
                    }
                }
                else
                {
                    wordToSend = ((uint32_t)dummyData << 8) | dummyData;
                }
                handle->remainingSendByteCount -= 2; /* decrement remainingSendByteCount by 2 */
                base->PUSHR_SLAVE = wordToSend;

                /* Try to clear the TFFF; if the TX FIFO is full this will clear */
                DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);

                dataAlreadyFed += 2;

                /* Exit loop if send count is zero, else update local variables for next loop */
                if ((handle->remainingSendByteCount == 0) || (dataAlreadyFed == (dataFedMax * 2)))
                {
                    break;
                }
            } /* End of TX FIFO fill while loop */
        }
        else /* Optimized for bits/frame less than or equal to one byte. */
        {
            while (DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag)
            {
                if (handle->txData)
                {
                    wordToSend = *(handle->txData);
                    /* Increment to next data word*/
                    ++handle->txData;
                }
                else
                {
                    wordToSend = dummyData;
                }

                base->PUSHR_SLAVE = wordToSend;

                /* Try to clear the TFFF; if the TX FIFO is full this will clear */
                DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
                /* Decrement remainingSendByteCount*/
                --handle->remainingSendByteCount;

                dataAlreadyFed++;

                /* Exit loop if send count is zero, else update local variables for next loop */
                if ((handle->remainingSendByteCount == 0) || (dataAlreadyFed == dataFedMax))
                {
                    break;
                }
            } /* End of TX FIFO fill while loop */
        }
    }

    /***channel_A *** used for carry the data from Rx_Data_Register(POPR) to User_Receive_Buffer*/
    if (handle->remainingReceiveByteCount > 0)
    {
        EDMA_ResetChannel(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel);

        transferConfigA.srcAddr = (uint32_t)rxAddr;
        transferConfigA.srcOffset = 0;

        if (handle->rxData)
        {
            transferConfigA.destAddr = (uint32_t) & (handle->rxData[0]);
            transferConfigA.destOffset = 1;
        }
        else
        {
            transferConfigA.destAddr = (uint32_t) & (handle->rxBuffIfNull);
            transferConfigA.destOffset = 0;
        }

        transferConfigA.destTransferSize = kEDMA_TransferSize1Bytes;

        if (handle->bitsPerFrame <= 8)
        {
            transferConfigA.srcTransferSize = kEDMA_TransferSize1Bytes;
            transferConfigA.minorLoopBytes = 1;
            transferConfigA.majorLoopCounts = handle->remainingReceiveByteCount;
        }
        else
        {
            transferConfigA.srcTransferSize = kEDMA_TransferSize2Bytes;
            transferConfigA.minorLoopBytes = 2;
            transferConfigA.majorLoopCounts = handle->remainingReceiveByteCount / 2;
        }
        EDMA_SetTransferConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
                               &transferConfigA, NULL);
        EDMA_EnableChannelInterrupts(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
                                     kEDMA_MajorInterruptEnable);
    }

    if (handle->remainingSendByteCount > 0)
    {
        /***channel_C *** used for carry the data from User_Send_Buffer to Tx_Data_Register(PUSHR_SLAVE)*/
        EDMA_ResetChannel(handle->edmaTxDataToTxRegHandle->base, handle->edmaTxDataToTxRegHandle->channel);

        /*If there is extra byte , it would use the */
        if (handle->isThereExtraByte)
        {
            if (handle->txData)
            {
                handle->txLastData =
                    handle->txData[handle->remainingSendByteCount - 2] | ((uint32_t)DSPI_DUMMY_DATA << 8);
            }
            else
            {
                handle->txLastData = DSPI_DUMMY_DATA | ((uint32_t)DSPI_DUMMY_DATA << 8);
            }
            transferConfigC.srcAddr = (uint32_t)(&(handle->txLastData));
            transferConfigC.destAddr = (uint32_t)txAddr;
            transferConfigC.srcTransferSize = kEDMA_TransferSize4Bytes;
            transferConfigC.destTransferSize = kEDMA_TransferSize4Bytes;
            transferConfigC.srcOffset = 0;
            transferConfigC.destOffset = 0;
            transferConfigC.minorLoopBytes = 4;
            transferConfigC.majorLoopCounts = 1;

            EDMA_TcdReset(softwareTCD);
            EDMA_TcdSetTransferConfig(softwareTCD, &transferConfigC, NULL);
        }

        /*Set another  transferConfigC*/
        if ((handle->isThereExtraByte) && (handle->remainingSendByteCount == 2))
        {
            EDMA_SetTransferConfig(handle->edmaTxDataToTxRegHandle->base, handle->edmaTxDataToTxRegHandle->channel,
                                   &transferConfigC, NULL);
        }
        else
        {
            transferConfigC.destAddr = (uint32_t)txAddr;
            transferConfigC.destOffset = 0;

            if (handle->txData)
            {
                transferConfigC.srcAddr = (uint32_t)(&(handle->txData[0]));
                transferConfigC.srcOffset = 1;
            }
            else
            {
                transferConfigC.srcAddr = (uint32_t)(&handle->txBuffIfNull);
                transferConfigC.srcOffset = 0;
                if (handle->bitsPerFrame <= 8)
                {
                    handle->txBuffIfNull = DSPI_DUMMY_DATA;
                }
                else
                {
                    handle->txBuffIfNull = (DSPI_DUMMY_DATA << 8) | DSPI_DUMMY_DATA;
                }
            }

            transferConfigC.srcTransferSize = kEDMA_TransferSize1Bytes;

            if (handle->bitsPerFrame <= 8)
            {
                transferConfigC.destTransferSize = kEDMA_TransferSize1Bytes;
                transferConfigC.minorLoopBytes = 1;
                transferConfigC.majorLoopCounts = handle->remainingSendByteCount;
            }
            else
            {
                transferConfigC.destTransferSize = kEDMA_TransferSize2Bytes;
                transferConfigC.minorLoopBytes = 2;
                if (handle->isThereExtraByte)
                {
                    transferConfigC.majorLoopCounts = handle->remainingSendByteCount / 2 - 1;
                }
                else
                {
                    transferConfigC.majorLoopCounts = handle->remainingSendByteCount / 2;
                }
            }

            if (handle->isThereExtraByte)
            {
                EDMA_SetTransferConfig(handle->edmaTxDataToTxRegHandle->base, handle->edmaTxDataToTxRegHandle->channel,
                                       &transferConfigC, softwareTCD);
                EDMA_EnableAutoStopRequest(handle->edmaTxDataToTxRegHandle->base,
                                           handle->edmaTxDataToTxRegHandle->channel, false);
            }
            else
            {
                EDMA_SetTransferConfig(handle->edmaTxDataToTxRegHandle->base, handle->edmaTxDataToTxRegHandle->channel,
                                       &transferConfigC, NULL);
            }

            EDMA_StartTransfer(handle->edmaTxDataToTxRegHandle);
        }
    }

    EDMA_StartTransfer(handle->edmaRxRegToRxDataHandle);

    /*Set channel priority*/
    uint8_t channelPriorityLow = handle->edmaRxRegToRxDataHandle->channel;
    uint8_t channelPriorityHigh = handle->edmaTxDataToTxRegHandle->channel;
    uint8_t t = 0;

    if (channelPriorityLow > channelPriorityHigh)
    {
        t = channelPriorityLow;
        channelPriorityLow = channelPriorityHigh;
        channelPriorityHigh = t;
    }

    edma_channel_Preemption_config_t preemption_config_t;
    preemption_config_t.enableChannelPreemption = true;
    preemption_config_t.enablePreemptAbility = true;
    preemption_config_t.channelPriority = channelPriorityLow;

    if (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
    {
        EDMA_SetChannelPreemptionConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
                                        &preemption_config_t);

        preemption_config_t.channelPriority = channelPriorityHigh;
        EDMA_SetChannelPreemptionConfig(handle->edmaTxDataToTxRegHandle->base, handle->edmaTxDataToTxRegHandle->channel,
                                        &preemption_config_t);
    }
    else
    {
        EDMA_SetChannelPreemptionConfig(handle->edmaTxDataToTxRegHandle->base, handle->edmaTxDataToTxRegHandle->channel,
                                        &preemption_config_t);

        preemption_config_t.channelPriority = channelPriorityHigh;
        EDMA_SetChannelPreemptionConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
                                        &preemption_config_t);
    }

    /*Set the channel link.
    For DSPI instances with shared RX/TX DMA requests: Rx DMA request -> channel_A -> channel_C.
    For DSPI instances with separate RX and TX DMA requests:
    Rx DMA request -> channel_A
    Tx DMA request -> channel_C */
    if (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
    {
        if (handle->remainingSendByteCount > 0)
        {
            EDMA_SetChannelLink(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
                                kEDMA_MinorLink, handle->edmaTxDataToTxRegHandle->channel);
        }
        DSPI_EnableDMA(base, kDSPI_RxDmaEnable);
    }
    else
    {
        DSPI_EnableDMA(base, kDSPI_RxDmaEnable | kDSPI_TxDmaEnable);
    }

    return kStatus_Success;
}

static void EDMA_DspiSlaveCallback(edma_handle_t *edmaHandle,
                                   void *g_dspiEdmaPrivateHandle,
                                   bool transferDone,
                                   uint32_t tcds)
{
    dspi_slave_edma_private_handle_t *dspiEdmaPrivateHandle;

    dspiEdmaPrivateHandle = (dspi_slave_edma_private_handle_t *)g_dspiEdmaPrivateHandle;

    uint32_t dataReceived;

    DSPI_DisableDMA((dspiEdmaPrivateHandle->base), kDSPI_RxDmaEnable | kDSPI_TxDmaEnable);

    if (dspiEdmaPrivateHandle->handle->isThereExtraByte)
    {
        while (!((dspiEdmaPrivateHandle->base)->SR & SPI_SR_RFDF_MASK))
        {
        }
        dataReceived = (dspiEdmaPrivateHandle->base)->POPR;
        if (dspiEdmaPrivateHandle->handle->rxData)
        {
            (dspiEdmaPrivateHandle->handle->rxData[dspiEdmaPrivateHandle->handle->totalByteCount - 1]) = dataReceived;
        }
    }

    if (dspiEdmaPrivateHandle->handle->callback)
    {
        dspiEdmaPrivateHandle->handle->callback(dspiEdmaPrivateHandle->base, dspiEdmaPrivateHandle->handle,
                                                kStatus_Success, dspiEdmaPrivateHandle->handle->userData);
    }

    dspiEdmaPrivateHandle->handle->state = kDSPI_Idle;
}

void DSPI_SlaveTransferAbortEDMA(SPI_Type *base, dspi_slave_edma_handle_t *handle)
{
    DSPI_StopTransfer(base);

    DSPI_DisableDMA(base, kDSPI_RxDmaEnable | kDSPI_TxDmaEnable);

    EDMA_AbortTransfer(handle->edmaRxRegToRxDataHandle);
    EDMA_AbortTransfer(handle->edmaTxDataToTxRegHandle);

    handle->state = kDSPI_Idle;
}

status_t DSPI_SlaveTransferGetCountEDMA(SPI_Type *base, dspi_slave_edma_handle_t *handle, size_t *count)
{
    assert(handle);

    if (!count)
    {
        return kStatus_InvalidArgument;
    }

    /* Catch when there is not an active transfer. */
    if (handle->state != kDSPI_Busy)
    {
        *count = 0;
        return kStatus_NoTransferInProgress;
    }

    size_t bytes;

    bytes = EDMA_GetRemainingBytes(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel);

    *count = handle->totalByteCount - bytes;

    return kStatus_Success;
}